Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Amino Acid and Peptide-Based Liquid Crystals: An Overview

Author(s): Govindaswamy Shanker*, Bishwajit Paul and Anjali Ganjiwale

Volume 18, Issue 4, 2021

Published on: 16 September, 2020

Page: [333 - 351] Pages: 19

DOI: 10.2174/1570179417666200916092109

Price: $65

Abstract

The role of amino acids and peptides has found remarkable usage in both living systems and nonliving materials, which have enabled its utility by virtue of crafting molecular architectures through covalent bonds and non-covalent interactions. In material chemistry, the role of peptides in Liquid Crystals (LCs) is profound, especially in the rapid construction of supramolecular hierarchical networks. The importance of LCs for a variety of societal needs leads to the synthesis of innumerable LCs by conventional mesogenic strategy and nonconventional molecular design principles. For example, electronic appliances, including flat panel TV displays, electronic notebooks, digital cameras, domestic devices, use LCs as an integral component for such applications. In addition, LCs are useful in biological systems, including stem cell research, sensors for bacteria, virus, and proteins. These accomplishments are possible mostly due to the non-conventional molecular design principles for crafting LCs using smaller molecular motifs. The usage of amino acids and peptides in LCs facilitates many intrinsic characteristics, including side-chain diversity, chirality, directionality, reversibility, electro-optical, columnar axis, stimuli-responsive complex molecular architectures. The next essential criteria for any LCs design for useful applications are room temperature LC (RT-LC); therefore, the quest for such LCs system remains highly significant. Evidently, there are around half a million liquid crystalline molecules; only a handful of RTLCs has been found, as there is no simple, precise strategy or molecular design principles to obtain RT-LC systems. The smaller molecular motifs of amino acids and linear peptides as a structural part of mesogenic molecules led to many LC phases with properties, including lyotropic, thermotropic, and its applications in different realms. Therefore, this review serves as a compilation of Small Peptide-based LCs (SPLCs) exhibiting lyotropic and thermotropic phases with applications in the recent advancements.

Keywords: Amino acids, phenylalanine, promesogenic, peptides, liquid crystals, polycatenars, non-covalent interactions, lyotropic, thermotropic, amphotropic, columnar, smectic, bicontinuous, cubic, ionic liquid, gelators, SAXS, optical polarizing microscopic images, DSC.

Graphical Abstract

[1]
Goodby, J.W.; Collings, P.J.; Kato, T.; Tschierske, C.; Glesson, H.; Raynes, P. Handbook of Liquid Crystals, 2nd ed; Wiley-VCH: Weinheim, 2014.
[2]
Tschierske, C. Liquid Crystals: Materials Design and Self-Assembly; Springer-Verlag: Berlin, Heidelberg, 2012.
[3]
Collings, P.J. Liquid Crystals: Natures Delicate Phase of Matter; Princeton University Press: Princeton, NJ, 2002.
[4]
Collings, P.J.; Hird, M. Introduction to Liquid Crystals: Chemistry and Physics; Taylor & Francis: London, U. K., 1997.
[http://dx.doi.org/10.4324/9780203211199]
[5]
Collings, P.J.; Patel, J.S. Handbook of Liquid Crystals Research; Oxford University Press: Oxford, 1997.
[6]
Chandrasekhar, S. Liquid Crystals; Cambridge University Press: Cambridge, U.K., 1992.
[http://dx.doi.org/10.1017/CBO9780511622496]
[7]
deGennes, P.G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: Oxford, 1993.
[8]
Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hägele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew. Chem. Int. Ed. Engl., 2007, 46(26), 4832-4887.
[http://dx.doi.org/10.1002/anie.200604203] [PMID: 17568461]
[9]
Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R.H.; MacKenzie, J.D. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science, 2001, 293(5532), 1119-1122.
[http://dx.doi.org/10.1126/science.293.5532.1119] [PMID: 11498585]
[10]
Bisoyi, H.K.; Li, Q. Light-driven liquid crystalline materials: From photo-induced phase transitions and property modulations to applications. Chem. Rev., 2016, 116(24), 15089-15166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00415] [PMID: 27936632]
[11]
Boyd, B.J.; Whittaker, D.V.; Khoo, S.M.; Davey, G. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int. J. Pharm., 2006, 309(1-2), 218-226.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.033] [PMID: 16413980]
[12]
Shah, M.H.; Paradkar, A. Effect of HLB of additives on the properties and drug release from the glyceryl monooleate matrices. Eur. J. Pharm. Biopharm., 2007, 67(1), 166-174.
[http://dx.doi.org/10.1016/j.ejpb.2007.01.001] [PMID: 17353118]
[13]
Amar-Yuli, I.; Garti, N. Transitions induced by solubilized fat into reverse hexagonal mesophases. Colloids Surf. B Biointerfaces, 2005, 43(2), 72-82.
[http://dx.doi.org/10.1016/j.colsurfb.2005.03.011] [PMID: 15921902]
[14]
Wadsten-Hindrichsen, P.; Bender, J.; Unga, J.; Engström, S. Aqueous self-assembly of phytantriol in ternary systems: effect of monoolein, distearoylphosphatidylglycerol and three water-miscible solvents. J. Colloid Interface Sci., 2007, 315(2), 701-713.
[http://dx.doi.org/10.1016/j.jcis.2007.07.011] [PMID: 17655855]
[15]
Barauskas, J.; Landh, T. Phase Behavior of the Phytantriol/Water System. Langmuir, 2003, 19(23), 9562-9565.
[http://dx.doi.org/10.1021/la0350812]
[16]
Huang, Y.; Gui, S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Adv, 2018, 8(13), 6978-6987.
[http://dx.doi.org/10.1039/C7RA12008G]
[17]
de Kruijff, B. Biomembranes. Lipids beyond the bilayer. Nature, 1997, 386(6621), 129-130.
[http://dx.doi.org/10.1038/386129a0] [PMID: 9062183]
[18]
Garg, G.; Saraf, S.; Saraf, S. Cubosomes: An overview. Biol. Pharm. Bull., 2007, 30(2), 350-353.
[http://dx.doi.org/10.1248/bpb.30.350] [PMID: 17268078]
[19]
Hirlekar, R.; Jain, S.; Patel, M.; Garse, H.; Kadam, V. Hexosomes: a novel drug delivery system. Curr. Drug Deliv., 2010, 7(1), 28-35.
[http://dx.doi.org/10.2174/156720110790396526] [PMID: 20044910]
[20]
Shanker, G. Self-Assembly of Homomeric Dipeptides, Bisamides and Dimers; SaarbrückenLambert Academic Publishing, 2015.
[21]
Lehn, J.M. Supramolecular chemistry: receptors, catalysts, and carriers. Science, 1985, 227(4689), 849-856.
[http://dx.doi.org/10.1126/science.227.4689.849] [PMID: 17821215]
[22]
Han, T.; Kim, J.; Park, J.; Park, C.; Ihee, H.; Kim, S. Liquid Crystalline Peptide Nanowires. Adv. Mater., 2007, 19(22), 3924-3927.
[http://dx.doi.org/10.1002/adma.2007001839]
[23]
Gao, X.; Matsui, H. Peptide-based nanotubes and their applications in bionanotechnology. Adv. Mater., 2005, 17(17), 2037-2050.
[http://dx.doi.org/10.1002/adma.200401849] [PMID: 31080317]
[24]
Mesquida, P.; Ammann, D.; MacPhee, C.; McKendry, R. Microarrays of peptide fibrils created by electrostatically controlled deposition. Adv. Mater., 2005, 17(7), 893-897.
[http://dx.doi.org/10.1002/adma.200401229]
[25]
Hung, A.M.; Stupp, S.I. Simultaneous self-assembly, orientation, and patterning of peptide-amphiphile nanofibers by soft lithography. Nano Lett., 2007, 7(5), 1165-1171.
[http://dx.doi.org/10.1021/nl062835z] [PMID: 17447823]
[26]
Reches, M.; Gazit, E. Controlled patterning of aligned self-assembled peptide nanotubes. Nat. Nanotechnol., 2006, 1(3), 195-200.
[http://dx.doi.org/10.1038/nnano.2006.139] [PMID: 18654186]
[27]
Parappurath, A.; Abraham, J. Novel pentadecyl phenol-tagged L-tryptophan molecules: Synthesis, self-assembly and liquid crystalline properties. ChemistrySelect, 2018, 3(1), 108-115.
[http://dx.doi.org/10.1002/slct.201702171]
[28]
Wang, Y.; Qi, W.; Wang, J.; Li, Q.; Yang, X.; Zhang, J.; Liu, X.; Huang, R.; Wang, M.; Su, R.; He, Z. Columnar liquid crystals self-assembled by minimalistic peptides for chiral sensing and synthesis of ordered mesoporous silica. Chem. Mater., 2018, 30(21), 7902-7911.
[http://dx.doi.org/10.1021/acs.chemmater.8b03496]
[29]
Neidhardt, M.M.; Wolfrum, M.; Beardsworth, S.; Wöhrle, T.; Frey, W.; Baro, A.; Stubenrauch, C.; Giesselmann, F.; Laschat, S. Tyrosine-Based Ionic Liquid Crystals: Switching from a Smectic A to a Columnar Mesophase by Exchange of the Spherical Counterion. Chem Eur. J., 2016, 22(46), 16494-16504.
[http://dx.doi.org/10.1002/chem.201602937] [PMID: 27734607]
[30]
Neidhardt, M.M.; Schmitt, K.; Baro, A.; Schneider, C.; Bilitewski, U.; Laschat, S. Self-assembly and biological activities of ionic liquid crystals derived from aromatic amino acids. Phys. Chem. Chem. Phys., 2018, 20(31), 20371-20381.
[http://dx.doi.org/10.1039/C8CP03404D] [PMID: 30043016]
[31]
Fabian, G.; Schierhorn, M.; Pcrschmann, J.; Kraus, G.; Altmann, H.; Zaschke, H. Patent, Deutsche Demokratische Republik DD241410A1, , 1986.
[32]
Mansueto, M.; Frey, W.; Laschat, S. Ionic liquid crystals derived from amino acids. Chem Eur. J.,, 2013, 19(47), 16058-16065.
[http://dx.doi.org/10.1002/chem.201302319] [PMID: 24123611]
[33]
Morán, C.; Infante, M.; Clapés, P. Synthesis of glycero amino acid-based surfactants. Part 1. Enzymatic preparation of rac-1-O-(Nα-acetyl-L-aminoacyl)glycerol derivatives. J. Chem. Soc., Perkin Trans. 1, 2001, 17(3), 2063-2070.
[http://dx.doi.org/10.1039/b103132p]
[34]
Morán, M.; Pinazo, A.; Pérez, L.; Clapés, P.; Angelet, M.; García, M.; Vinardell, Ma. P.; Infante, Ma. I. “Green” amino acid-based surfactants. Green Chem., 2004, 6(5), 233-240.
[http://dx.doi.org/10.1039/B400293H]
[35]
Wang, Y.; Feng, Y.; Yang, X.; Wang, J.; Qi, W.; Yang, X.; Liu, X.; Xing, Q.; Su, R.; He, Z. Polyamine-induced, chiral expression from liquid crystalline peptide nanofilaments to long-range ordered nanohelices. Soft Matter, 2019, 15(24), 4818-4826.
[http://dx.doi.org/10.1039/C8SM02554A] [PMID: 31179471]
[36]
Faul, C.; Krattiger, P.; Smarsly, B.; Wennemers, H. Ionic self-assembled molecular receptor-based liquid crystals with tripeptide recognition capabilities. J. Mater. Chem., 2008, 18(25), 2962-2967.
[http://dx.doi.org/10.1039/b802690d]
[37]
Song, Z.; Xin, X.; Shen, J.; Jiao, J.; Xia, C.; Wang, S.; Yang, Y. Manipulation of lyotropic liquid crystal behavior of ionic liquid-type imidazolium surfactant by amino acids. Colloid Surface A., 2017, 518, 7-14.
[http://dx.doi.org/10.1016/j.colsurfa.2017.01.004]
[38]
Ichikawa, T.; Fujimura, K.; Yoshio, M.; Kato, T.; Ohno, H. Designer lyotropic liquid-crystalline systems containing amino acid ionic liquids as self-organisation media of amphiphiles. Chem. Commun. (Camb.), 2013, 49(100), 11746-11748.
[http://dx.doi.org/10.1039/c3cc45429k] [PMID: 24195106]
[39]
Liu, Q.; Dong, Y.D.; Boyd, B.J. Selective sequence for the peptide-triggered phase transition of lyotropic liquid-crystalline structures. Langmuir, 2016, 32(20), 5155-5161.
[http://dx.doi.org/10.1021/acs.langmuir.6b00547] [PMID: 27148806]
[40]
Ogawa, S.; Asakura, K.; Osanai, S. Thermotropic and glass transition behaviors of n-alkyl β-D-glucosides. RSC Adv, 2013, 3, 21439-21446.
[http://dx.doi.org/10.1039/c3ra43187h]
[41]
Ogawa, S.; Takahashi, I.; Koga, M.; Asakura, K.; Osanai, S. Effect of freeze– thaw treatment on the precipitation of octyl β -D-galactoside hemihydrate crystal from the aqueous solution. J. Oleo Sci., 2018, 67(5), 627-637.
[http://dx.doi.org/10.5650/jos.ess17232] [PMID: 29628491]
[42]
Shimizu, Y.; Takeuchi, H.; Takeuchi, R.; Ichikawa, T. Amphotropic liquid-crystalline behaviour of glycolipids in amino acid ionic liquids. Liq. Cryst., 2019, 46(8), 1298-1306.
[http://dx.doi.org/10.1080/02678292.2019.1591532]
[43]
Mizoshita, N.; Kutsuna, T.; Hanabusa, K.; Kato, T. Physical gelation of nematic liquid crystals with amino acid derivatives leading to the formation of soft solids responsive to electric field. J. Photopolym. Sci. Technol., 2000, 13(2), 307-312.
[http://dx.doi.org/10.2494/photopolymer.13.307]
[44]
Cormack, P.; Moore, B.; Sherrington, D. Monodisperse liquid crystalline peptides. J. Mater. Chem., 1997, 7(10), 1977-1983.
[http://dx.doi.org/10.1039/a701084b]
[45]
Yelamaggad, C.V.; Shanker, G. Liquid crystal dimers derived from naturally occurring chiral moieties: synthesis and characterization. Tetrahedron, 2008, 64(17), 3760-3771.
[http://dx.doi.org/10.1016/j.tet.2008.02.013]
[46]
Saccomando, D.; Black, C.; Cave, G.; Lydon, D.; Rourke, J. Chiral cyclopalladated liquid crystals from amino acids. J. Organomet. Chem., 2000, 601(2), 305-310.
[http://dx.doi.org/10.1016/S0022-328X(00)00087-5]
[47]
Yelamaggad, C.V.; Shanker, G.; Ramana Rao, R.V.; Shankar Rao, D.S.; Prasad, S.K.; Babu, V.V.S. Supramolecular helical fluid columns from self-assembly of homomeric dipeptides. Chem Eur. J., 2008, 14(33), 10462-10471.
[http://dx.doi.org/10.1002/chem.200801607] [PMID: 18830977]
[48]
Prabhu, R.; Yelamaggad, C.V.; Shanker, G. Self-organisation properties of homomeric dipeptides derived from valine. Liq. Cryst., 2014, 41(7), 1008-1016.
[http://dx.doi.org/10.1080/02678292.2014.896484]
[49]
Terech, P.; Weiss, R.G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chem. Rev., 1997, 97(8), 3133-3160.
[http://dx.doi.org/10.1021/cr9700282] [PMID: 11851487]
[50]
Mizoshita, N.; Monobe, H.; Inoue, M.; Ukon, M.; Watanabe, T.; Shimizu, Y.; Hanabusa, K.; Kato, T. The positive effect on hole transport behaviour in anisotropic gels consisting of discotic liquid crystals and hydrogen-bonded fibres. Chem. Commun. (Camb.), 2002, (5), 428-429.
[http://dx.doi.org/10.1039/b111380c] [PMID: 12120525]
[51]
Mizoshita, N.; Suzuki, Y.; Kishimoto, K.; Hanabusa, K.; Kato, T. Electrooptical properties of liquid-crystalline physical gels: a new oligo(amino acid) gelator for light scattering display materials. J. Mater. Chem., 2002, 12(8), 2197-2201.
[http://dx.doi.org/10.1039/B201484J]
[52]
Camerel, F.; Ulrich, G.; Ziessel, R. New platforms integrating ethynyl-grafted modules for organogels and mesomorphic superstructures. Org. Lett., 2004, 6(23), 4171-4174.
[http://dx.doi.org/10.1021/ol048503n] [PMID: 15524435]
[53]
Lim, G.; Jung, B.; Lee, S.; Song, H.; Kim, C.; Chang, J. Synthesis of polycatenar-type organogelators based on chalcone and study of their supramolecular architectures. Chem. Mater., 2007, 19(3), 460-467.
[http://dx.doi.org/10.1021/cm061282q]
[54]
Shanker, G.; Rao, D.S.S.; Prasad, S.K.; Yelamaggad, C.V. Self-assembly of chiral hexacatenar-bisamides into a columnar structure. RSC Adv, 2012, 2(4), 1592-1597.
[http://dx.doi.org/10.1039/C1RA00684C]
[55]
Shanker, G.; Rao, D.S.S.; Prasad, S.K.; Yelamaggad, C.V. Synthesis and characterization of supramolecular, optically active bisamides derived from amino acids. Tetrahedron, 2012, 68(32), 6528-6534.
[http://dx.doi.org/10.1016/j.tet.2012.05.070]
[56]
Koizumi, N.; Shanker, G.; Araoka, F.; Ishikawa, K.; Yelamaggad, C.V.; Takezoe, H. Interplay between polarity and chirality in the electric-field-responsive columnar phase of a dipeptide derivative. NPG Asia Mater., 2012, 4(4)e11
[http://dx.doi.org/10.1038/am.2012.20]
[57]
Kuang, G.; Jia, X.; Teng, M.; Chen, E.; Li, W.; Ji, Y. Organogels and liquid crystalline properties of amino acid-based dendrons: A systematic study on structure–property relationship. Chem. Mater., 2012, 24(1), 71-80.
[http://dx.doi.org/10.1021/cm201913p]
[58]
Wei, Y.; Jang, C. Selective and direct detection of free amino acid using the optical birefringent patterns of confined nematic liquid crystals. Liq. Cryst., 2017, 44(2), 303-311.
[59]
Gupta, V.K.; Skaife, J.J.; Dubrovsky, T.B.; Abbott, N.L. Optical amplification of ligand-receptor binding using liquid crystals. Science, 1998, 279(5359), 2077-2080.
[http://dx.doi.org/10.1126/science.279.5359.2077] [PMID: 9516101]
[60]
Sivakumar, S.; Wark, K.L.; Gupta, J.K.; Abbott, N.L. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv. Funct. Mater., 2009, 19(14), 2260-2265.
[http://dx.doi.org/10.1002/adfm.200900399]
[61]
Zafiu, C.; Hussain, Z.; Kupcu, S.; Masutani, A.; Kilickiran, P.; Sinner, E-K. Liquid crystals as optical amplifiers for bacterial detection. Biosens. Bioelectron., 2016, 80, 161-170.
[62]
Xu, H.; Harrono, D.; Yang, K.L. Detecting and differentiating Escherichia coli strain TOP10 using optical textures of liquid crystals. Liq. Cryst., 2010, 37(10), 1269-127.
[http://dx.doi.org/10.1080/02678292.2010.498061]
[63]
McCamley, M.K.; Artenstein, A.K.; Steven, M.O.; Crawford, G.P. Optical detection of sepsis markers using liquid crystal based biosensors.Proc. SPIE 6441. Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues V., 2007, 644164411Y,
[64]
Otón, E.; Otón, J.M.; Caño-García, M.; Escolano, J.M.; Quintana, X.; Geday, M.A. Rapid detection of pathogens using lyotropic liquid crystals. Opt. Express, 2019, 27(7), 10098-10107.
[http://dx.doi.org/10.1364/OE.27.010098] [PMID: 31045156]
[65]
Hartono, D.; Bi, X.; Yang, K-I.; Yung, I-Y.I. An Air-Supported Liquid Crystal System for Real-Time and Label-Free Characterization of Phospholipases and Their Inhibitors. Adv. Funct. Mater., 2008, 18, 2938-2945.
[http://dx.doi.org/10.1002/adfm.200800424]
[66]
Hartono, D.; Qin, W.J.; Yang, K.L.; Yung, L.Y.L. Imaging the disruption of phospholipid monolayer by protein-coated nanoparticles using ordering transitions of liquid crystals. Biomaterials, 2009, 30(5), 843-849.
[http://dx.doi.org/10.1016/j.biomaterials.2008.10.037] [PMID: 19027155]
[67]
Hu, Q.Z.; Jang, C.H. Orientational behaviour of ultraviolet-tailored 4-cyano-4′-pentylbiphenyl at the aqueous/liquid crystal interface. Liq. Cryst., 2011, 38(9), 1209-1216.
[http://dx.doi.org/10.1080/02678292.2011.603439]
[68]
Hu, Q.Z.; Jang, C.H. Using liquid crystals for the real-time detection of urease at aqueous/liquid crystal interfaces. J. Mater. Sci., 2012, 47(2), 969-975.
[http://dx.doi.org/10.1007/s10853-011-5876-y]
[69]
Sidiq, S.; Pal, S.K. Liquid Crystal Biosensors: New Approaches. Proc Indian Natn Sci. Acad., 2016, 82(1), 75-98.
[70]
Omer, M.; Khan, M.; Kim, Y.K.; Lee, J.H.; Kang, I.K.; Park, S.Y. Biosensor utilizing a liquid crystal/water interface functionalized with poly(4-cyanobiphenyl-4′-oxyundecylacrylate-b-((2-dimethyl amino) ethyl methacrylate)). Colloids Surf. B Biointerfaces, 2014, 121, 400-408.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.028] [PMID: 25009103]
[71]
Omer, M.; Park, S.Y. Preparation of QP4VP-b-LCP liquid crystal block copolymer and its application as a biosensor. Anal. Bioanal. Chem., 2014, 406(22), 5369-5378.
[http://dx.doi.org/10.1007/s00216-014-7900-y] [PMID: 24980600]
[72]
Khan, M.; Khan, A.R.; Shin, J.H.; Park, S.Y. A liquid-crystal-based DNA biosensor for pathogen detection. Sci. Rep., 2016, 6, 22676.
[http://dx.doi.org/10.1038/srep22676] [PMID: 26940532]
[73]
Liu, Y.; Yang, K-L. Applications of metal ions and liquid crystals for multiplex detection of DNA. J. Colloid Interface Sci., 2015, 439, 149-153.
[http://dx.doi.org/10.1016/j.jcis.2014.10.038] [PMID: 25463187]
[74]
Lai, S.I.; Hartono, D.; Yang, K-L. Self-assembly of cholesterol DNA at liquid crystal/aqueous interface and its application for DNA detection. Appl. Phys. Lett., 2009.95153702
[http://dx.doi.org/10.1063/1.3247895]
[75]
Iwabata, K.; Seki, Y.; Toizumi, R.; Shimada, Y.; Furue, H.; Sakaguchi, K. Ion Density Analysis of Single-Stranded DNA in Liquid Crystal. Jpn. J. Appl. Phys., 2013, 52(9R)097301
[http://dx.doi.org/10.7567/JJAP.52.097301]
[76]
Xue, C.Y.; Yang, K.L. Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins. Langmuir, 2008, 24(2), 563-567.
[http://dx.doi.org/10.1021/la7026626] [PMID: 18095723]
[77]
Yan, W.; Hsiao, V.; Zheng, Y.; Shariff, Y.; Gao, T.; Huang, T. Towards nanoporous polymer thin film-based drug delivery systems. Thin Solid Films, 2009, 517(5), 1794-1798.
[http://dx.doi.org/10.1016/j.tsf.2008.09.080]
[78]
Pomerantz, W.C.; Abbott, N.L.; Gellman, S.H. Lyotropic liquid crystals from designed helical β-peptides. J. Am. Chem. Soc., 2006, 128(27), 8730-8731.
[http://dx.doi.org/10.1021/ja062412z] [PMID: 16819857]
[79]
Pomerantz, W.C.; Yuwono, V.M.; Drake, R.; Hartgerink, J.D.; Abbott, N.L.; Gellman, S.H. Lyotropic liquid crystals formed from ACHC-rich β-peptides. J. Am. Chem. Soc., 2011, 133(34), 13604-13613.
[http://dx.doi.org/10.1021/ja204874h] [PMID: 21815636]
[80]
Pomerantz, W.C.; Yuwono, V.M.; Pizzey, C.L.; Hartgerink, J.D.; Abbott, N.L.; Gellman, S.H. Nanofibers and lyotropic liquid crystals from a class of self-assembling β-peptides. Angew. Chem. Int. Ed. Engl., 2008, 47(7), 1241-1244.
[http://dx.doi.org/10.1002/anie.200704372] [PMID: 18183558]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy