Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Characterization of Seed Proteome Profile of Wild and Cultivated Chickpeas of India

Author(s): Santanu Dhar, Mamta Bhattacharjee, Debabrat Baishya* and Sumita Acharjee*

Volume 28, Issue 3, 2021

Published on: 10 September, 2020

Page: [323 - 332] Pages: 10

DOI: 10.2174/0929866527666200910164118

Price: $65

Abstract

Background: Chickpea is a widely grown legume in India, Australia, Canada, and Mediterranean regions. Seeds of chickpea are good source of protein for both human and animals. Wild relatives of chickpea (Cicer arietinum) are the potential gene pool for crop improvement; however, very little information is available on the seed proteome of these wild chickpeas.

Objective: We aimed to analyze the seed proteome profiles of three wild relatives of chickpea, Cicer bijugum, Cicer judaicum and Cicer microphyllum along with two cultivated varieties JG11 and DCP 92/3.

Methods: Total seed proteins were extracted using various extraction buffers for 2-D gel electrophoresis. Protein separated in a 2-D gels were subjected to image analyses, differentially expressed proteins were extracted from the gels and identified by the MALDI TOF/TOF. Seed protease inhibitors were analysed biochemically.

Results: We have standardized the 2-D gel electrophoresis method and separated seed proteins using the modified method. We identified a large number (400) of protein proteins which were differentially expressed in cultivated and wild type species of chickpea. A comparative analysis between C. bijugum and JG 11 revealed the presence of 9 over-expressed and 22 under-expressed proteins, while the comparison between C. bijugum with DCP 92/3 showed 8 over-expressed and 18 under-- expressed proteins. Similarly, comparative analysis between C. microphyllum with DCP 92/3 showed 8 over-expressed proteins along with 22 under-expressed proteins, while the comparative study of C. microphyllum with JG11 displayed 9 over-expressed and 24 under-expressed proteins. We also compared C. judaicum with DCP 92/3 which revealed 15 overexpressed and 11 under-expressed proteins. On the other hand, the comparative analysis of C. judaicum with JG11 showed 10 over-expressed proteins, while the numbers of under-expressed proteins were 14. Among the differentially expressed protein proteins, 19 proteins were analyzed by the MS/MS, and peptides were identified using the MASCOT search engine. In the wild relatives the differentially expressed proteins are phosphatidylinositol 4-phosphate 5- kinase, β-1-6 galactosyltransferase, RNA helicase, phenyl alanine ammonia lyase 2, flavone 3’-0-methyl transferase, Argonaute 2, Myb related protein, Tubulin beta-2 chain and others. The most important one was legumin having α- amylase inhibition activity which was up regulated in C. bijugum. We also studied the activity of protease inhibitor (trypsin and α- amylase inhibitors) in these seed lines which showed differential activity of protease inhibitors. The highest trypsin and α- amylase inhibition was observed in C. judaicum and C. bijugum, respectively.

Conclusion: The differentially expressed proteins of wild relatives of chickpea appeared to be involved in various metabolic pathways. The study provides us information about the differences in the seed proteome of these wild species and cultivated varieties for the first time.

Keywords: Chickpea, 2D electrophoresis, protease inhibitor, western blotting, MS/MS, seed proteome.

Graphical Abstract

[1]
Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br. J. Nutr., 2012, 108(Suppl. 1), S11-S26.
[http://dx.doi.org/10.1017/S0007114512000797] [PMID: 22916806]
[2]
Davidson, A. The Oxford Companion to Food., 1st ed; Oxford University Press: New York, NY, USA, 1999.
[3]
FAOSTAT. Available from: http://faostat3.fao.org/home/index. html.
[4]
Abbo, S.; Molina, C.; Jungmann, R.; Grusak, M.A.; Berkovitch, Z.; Reifen, R.; Kahl, G.; Winter, P.; Reifen, R. Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor. Appl. Genet., 2005, 111(2), 185-195.
[http://dx.doi.org/10.1007/s00122-005-1930-y] [PMID: 15918010]
[5]
Pradhan, S.; Bandhiwal, N.; Shah, N.; Kant, C.; Gaur, R.; Bhatia, S. Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds. Front. Plant Sci., 2014, 5(698), 698.
[http://dx.doi.org/10.3389/fpls.2014.00698] [PMID: 25566273]
[6]
Krishnamurti, C.R. Biochemical studies on Bengal gram. J. Sci. Indus. Res., 1975, 34, 266-281.
[7]
Mandal, S.; Mandal, R.K. Seed storage proteins and approaches for improvement of their nutritional quality by genetic engineering. Curr. Sci., 2000, 79, 576-580.
[8]
Natarajan, S.S.; Xu, C.; Garrett, W.M.; Lakshman, D.; Bae, H. Assessment of the natural variation of low abundant metabolic proteins in soybean seeds using proteomics. J. Plant Biochem. Biotechnol., 2000, 21(1), 30-37.
[http://dx.doi.org/10.1007/s13562-011-0069-y]
[9]
Jauhar, P.P. Modern biotechnology as an integral supplement to conventional plant breeding the prospects and challenges. Crop Sci., 2006, 46(5), 1841-1859.
[http://dx.doi.org/10.2135/cropsci2005.07-0223]
[10]
Varshney, R.K.; Thudi, M.; May, G.D.; Jackson, S.A. Legume genomics and breeding. Plant Breed. Rev., 2010, 33, 257-304.
[11]
Agarwal, G.; Jhanwar, S.; Priya, P.; Singh, V.K.; Saxena, M.S.; Parida, S.K.; Garg, R.; Tyagi, A.K.; Jain, M. Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS One, 2012, 7(12), e52443.
[http://dx.doi.org/10.1371/journal.pone.0052443] [PMID: 23300670]
[12]
Stevenson, P.C.; Haware, M.P. Maackiain in Cicer bijugum Rech. f. associated with resistance to Botrytis grey mould. Biochem. Syst. Ecol., 1999, 27(8), 761-767.
[http://dx.doi.org/10.1016/S0305-1978(99)00023-X]
[13]
Shah, T.M.; Hassan, M.U.; Has, M.A.; Atta, B.M.; Alam, S.S.; Ali, H. Evaluation of Cicer species for resistance to ascochyta blight. Pak. J. Bot., 2005, 37(2), 431-438.
[14]
Singh, K.; Ocampo, B.; Robertson, L. Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet. Resour. Crop Evol., 1998, 45(1), 9-17.
[http://dx.doi.org/10.1023/A:1008620002136]
[15]
Sharma, H.C.; Bhagwat, M.P.; Pampapathy, G.; Sharma, J.P.; Ridsdill-Smith, T.J. Perennial wild relatives of chickpea as potential sources of resistance to Helicoverpa armigera. Genet. Resour. Crop Evol., 2006, 53(131)
[http://dx.doi.org/10.1007/s10722-004-1951-4]
[16]
Singh, R.K. Cicer microphyllum a wonder plant for abiotic stress management Lambert academic publishing, 2014.
[17]
Ladizinsky, G.; Adler, A. The origin of chickpea as indicated by seed protein electrophoresis. Isr. J. Bot., 1975, 24, 183-189.
[18]
Ahmad, E.; Slinkard, A.E. Genetic relationships in the genus Cicer L. as by polyacrylamide gel electrophoresis of seed revealed storage proteins. Theor. Appl. Genet., 1992, 84, 688-692.
[http://dx.doi.org/10.1007/BF00224169] [PMID: 24201358]
[19]
Kazan, K.; Muehlbauer, F.J. Allozyme variation and phylogeny in annual species of Cicer (Leguminosae). Plant Syst. Evol., 1990, 175, 11-21.
[http://dx.doi.org/10.1007/BF00942142]
[20]
Ahmad, F. Random amplified polymorphic DNA (RAPD) analysis reveals genetic relationships among the annual Cicer species. Theor. Appl. Genet., 1999, 98, 657-663.
[http://dx.doi.org/10.1007/s001220051117]
[21]
Sudupak, A.; Akkaya, S.; Kence, A. Analysis of genetic relationships among perennial and annual Cicer species growing in Turkey using RAPD markers. Theor. Appl. Genet., 2002, 105(8), 1220-1228.
[http://dx.doi.org/10.1007/s00122-002-1060-8] [PMID: 12582902]
[22]
Vairinhos, F.; Murray, D.R. The seed proteins of chick pea: Comparative studies of Cicer arietinum, C. reticulatum and C. echinospermum (Leguminosae). Plant Syst. Evol., 1983, 142(11)
[http://dx.doi.org/10.1007/BF00989600]
[23]
Gautam, A.K.; Srivastava, N.; Chauhan, A.K.S.; Bhagyawsnt, S.S. Analysis of wild chickpea seed proteins for lectin composition. IJCRAR, 2017, 5(5)
[http://dx.doi.org/10.20546/ijcrar.2017.505.0]
[24]
Santos, T.; Marinho, C.; Freitas, M.; Santos, H.M. Unravelling the nutriproteomics of chickpea (Cicer arietinum) seeds. Crop Pasture Sci., 2017.
[http://dx.doi.org/10.1071/CP17307]
[25]
Garcia-Olmedo, F.; Salcedo, G.; Sanchez-Monge, R.; Gomez, L.; Royo, J.; Carbonero, P. Plant proteinaceous inhibitors of proteinases and α-amylases. Oxford Surveys of Plant Mol. Biol., 1987, 4, 275-334.
[26]
Richardson, M. The proteinase inhibitors of plants and microorganisms. Phytochemistry, 1977, 16, 159-169.
[http://dx.doi.org/10.1016/S0031-9422(00)86777-1]
[27]
Afsana, I.; Susanna, L.; Aluh, N.; Michael, T.; Manus, M.C. Kunitz Proteinase Inhibitors limit water stress responses in white clover (Trifolium repens L.) Plants Front. Plant Sci, 2017.
[28]
Zhu-Salzman, K.; Zeng, R. Insect response to plant defensive protease inhibitors. Annu. Rev. Entomol., 2015, 60, 233-252.
[http://dx.doi.org/10.1146/annurev-ento-010814-020816] [PMID: 25341101]
[29]
Franco, O.L.; Rigden, D.J.; Melo, F.R.; Grossi-de-SaÂ, M.F. Plant a-amylase inhibitors and their interaction with insect α-amylases; structure, function and potential for crop protection. Eur. J. Biochem., 2002, 269, 397-412.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02656.x] [PMID: 11856298]
[30]
Lipke, H.; Fraenkel, G.S.; Liener, I. Effect of soybean inhibitors on growth of Triblium confusum. Food Chem., 1954, 2, 410-414.
[http://dx.doi.org/10.1021/jf60028a003]
[31]
Gatehouse, A.M.R.; Gatehouse, J.; Dobie, P.; Kilminster, A.M.; Boulter, D. Biochemical basis if insect resistance in Vigna unguiculata. J. Sci. Food Agric., 1979, 30, 948-958.
[http://dx.doi.org/10.1002/jsfa.2740301003]
[32]
Mosolov, V.V.; Loginova, M.D.; Malova, E.L.; Benken, I.I. A specific inhibitor of Colletotrichum lindemuthianum protease from kidney bean (Phaseolus vulgaris) seeds. Planta, 1979, 144(3), 265-269.
[http://dx.doi.org/10.1007/BF00388768] [PMID: 24407257]
[33]
Srinivasan, A.; Chougule, N.P.; Giri, A.P.; Gatehouse, J.A.; Gupta, V.S. Podborer (Helicoverpa armigera Hübn.) does not show specific adaptations in gut proteinases to dietary Cicer arietinum Kunitz proteinase inhibitor. J. Insect Physiol., 2005, 51(11), 1268-1276.
[http://dx.doi.org/10.1016/j.jinsphys.2005.07.005] [PMID: 16140320]
[34]
Hao, X.; Li, J.; Shi, Q.; Zhang, J.; He, X.; Ma, H. Characterization of a novel legumin alpha-amylase inhibitor from chickpea (Cicer arietinum L.) seeds. Biosci. Biotechnol. Biochem., 2009, 73(5), 1200-1202.
[http://dx.doi.org/10.1271/bbb.80776] [PMID: 19420683]
[35]
Sarmah, B.K.; Moore, A.; Tate, W.; Molvig, L.; Morton, R.L.; Rees, D.P.; Chiaiese, P.; Chrispeels, M.J.; Tabe, L.M.; Higgins, T.J.V. Transgenic chickpea seeds expressing high levels of a bean α amylase inhibitor. Mol. Breed., 2007, 14, 73-82.
[http://dx.doi.org/10.1023/B:MOLB.0000037996.01494.12]
[36]
Giri, A.P.; Harsulkar, A.M.; Deshpande, V.V.; Sainani, M.N.; Gupta, V.S.; Ranjekar, P.K. Chickpea defensive proteinase inhibitors can be inactivated by pod borer gut proteinases. Plant Physiol., 1998, 116(1), 393-401.
[http://dx.doi.org/10.1104/pp.116.1.393]
[37]
Vessal, S.; Siddique, K.H.; Atkins, C.A. Comparative proteomic analysis of genotypic variation in germination and early seedling growth of chickpea under suboptimal soil-water conditions. J. Proteome Res., 2012, 11(8), 4289-4307.
[http://dx.doi.org/10.1021/pr300415w] [PMID: 22765518]
[38]
van der Maesen, L.P.G.; Pundir, R.P.S. Availability and use of wild Cicer germplasm. Plant Genet. Resour. Newsl., 1984, 57, 19-24.
[39]
Kimber, G. Evolutionary relationships and their influence on plant breeding.Gene manipulation in plant improvement., Gustafson, J.P., Ed.; Plenum Press: New York, 1984, 281-300.
[http://dx.doi.org/10.1007/978-1-4613-2429-4_10]
[40]
Ahmad, E.; Slinkard, A.E.; Scoles, G.J. Investigations into the barrier(s) to interspecific hybridization between Cicer arietinum L. and eight other annual Cicer species. Plant Breed., 1988, 100, 193-198.
[http://dx.doi.org/10.1111/j.1439-0523.1988.tb00240.x]
[41]
Ladizinsky, G.; Adler, A. Genetic relationships among the annual species of Cicer L. Theor. Appl. Genet., 1976, 48(4), 197-203. [a]
[http://dx.doi.org/10.1007/BF00527371] [PMID: PMID: 21369916]
[42]
Pundit, R.P.S. Van tier Maesen, L. J. G. Interspeeific hybridization in Cicer. Int Chickpea Newsl., 1983, 8 4-5.
[43]
Ahmad F. Interspecific hybridization and genetic relationships among the annual Cicer L. species. Ph.D thesis; University of Saskatchewan, Saskatoon, Canada, 1998.
[44]
Jorrín-Novo, J.V.; Maldonado, A.M.; Echevarría-Zomeño, S.; Valledor, L.; Castillejo, M.A.; Curto, M.; Valero, J.; Sghaier, B.; Donoso, G.; Redondo, I. Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J. Proteomics, 2009, 72(3), 285-314.
[http://dx.doi.org/10.1016/j.jprot.2009.01.026] [PMID: 19367730]
[45]
Abril, N.; Gion, J.M.; Kerner, R.; Müller-Starck, G.; Cerrillo, R.M.; Plomion, C.; Renaut, J.; Valledor, L.; Jorrin-Novo, J.V. Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 2011, 72(10), 1219-1242.
[http://dx.doi.org/10.1016/j.phytochem.2011.01.005] [PMID: 21353265]
[46]
des Francs, C.C.; Thiellement, H.; de Vienne, D. Analysis of leaf proteins by two-dimensional gel electrophoresis: protease action as exemplified by ribulose bisphosphate carboxylase/oxygenase degradation and procedure to avoid proteolysis during extraction. Plant Physiol., 1985, 78(1), 178-182.
[http://dx.doi.org/10.1104/pp.78.1.178] [PMID: 16664194]
[47]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[48]
O’Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 1975, 250(10), 4007-4021.
[PMID: 236308]
[49]
Mortz, E.; Krogh, T.N.; Vorum, H.; Görg, A. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics, 2001, 1(11), 1359-1363.
[http://dx.doi.org/10.1002/1615-9861(200111)1:11<1359:AID-PROT1359>3.0.CO;2-Q] [PMID: 11922595]
[50]
Meitei, A.L.; Bhattacharjee, M.; Dhar, S.; Chowdhury, N.; Sharma, R.; Acharjee, S.; Sarmah, B.K. Activity of defense related enzymes and gene expression in pigeon pea (Cajanus cajan) due to feeding of Helicoverpa armigera larvae. J. Plant Interact., 2018, 13(1), 231-238.
[http://dx.doi.org/10.1080/17429145.2018.1466373]
[51]
McCue, P.P.; Shetty, K. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac. J. Clin. Nutr., 2004, 13(1), 101-106.
[PMID: 15003922]
[52]
Wang, W.; Sun, J.; Nimtz, M.; Deckwer, W.D.; Zeng, A.P. Protein identification from two-dimensional gel electrophoresis analysis of Klebsiella pneumoniae by combined use of mass spectrometry data and raw genome sequences. Proteome Sci., 2003, 1, 6.
[http://dx.doi.org/10.1186/1477-5956-1-6] [PMID: 14653859]
[53]
Méchin, V.; Damerval, C.; Zivy, M. Total protein extraction with TCA-acetone. Methods Mol. Biol., 2007, 355, 1-8.
[PMID: 17093296]
[54]
Gorg, A.; Weiss, W.; Rabilloud, T. Proteome Research: Two-Dimensional electrophoresis and identification methods In: Springer; , 2000; pp. 57-106.
[http://dx.doi.org/10.1007/978-3-642-57105-3_4]
[55]
Granier, F. Extraction of plant proteins for two-dimensional electrophoresis. Electrophoresis, 1988, 9(11), 712-718.
[http://dx.doi.org/10.1002/elps.1150091106] [PMID: 3074923]
[56]
Singh, P.K.; Shrivastava, N.; Chaturvedi, K.; Sharma, B.; Bhagyawant, S.S. Characterization of seed storage proteins from chickpea using 2D electrophoresis coupled with mass spectrometry. Biochem. Res. Int., 2016, 1049462.
[http://dx.doi.org/10.1155/2016/1049462] [PMID: 27144024]
[57]
Gorg, A.; Drews, O. Lu¨ ck, C.; Weiland, F.; Weiss, W. 2-DE with IPGs. Electrophoresis, 2009, 30, 1-11.
[58]
Chevallet, M.; Luche, S.; Rabilloud, T. Silver staining of proteins in polyacrylamide gels. Nat. Protoc., 2006, 1(4), 1852-1858.
[http://dx.doi.org/10.1038/nprot.2006.288] [PMID: 17487168]
[59]
Rabilloud, T. Mechanisms of protein silver staining in polyacrylamide gels: a 10-year synthesis. Electrophoresis, 1990, 11(10), 785-794.
[http://dx.doi.org/10.1002/elps.1150111003] [PMID: 1706657]
[60]
Sarwar, N.; Jamil, F.F.; Riffat, P. Accumulation of phytoalexins and phenylalanine ammonia lyase in chickpea after inoculation with Ascochyta rabiei and their role in defence mechanism. Pak. J. Bot., 2001, 33, 373-382.
[61]
Balasundram, N.; Sundram, K.; Samman, S.S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem., 2006, 99(1), 191-203.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.042]
[62]
Macar, T.K.; Macar, O.; Mart, D.İ. Variability in some biochemical and nutritional characteristics in desi and turkish kabuli chickpea (Cicer arietinum L.) types. Celal Bayar University Journal of Science, 2017, 13(3), 677-680.
[63]
Wisessing, A.; Choowongkomon, K. Amylase inhibitors of plants: structures, functions and applications. Funct. Plant Sci. Biotechnol., 2012, 6, 31-41.
[64]
Ryan, C.A. Protease inhibitors in plants: genes for improving defenses against insect and pathogens. Annu. Rev. Phytopathol., 1990, 28, 425-449.
[http://dx.doi.org/10.1146/annurev.py.28.090190.002233]
[65]
Casaretto, J.A.; Corcuera, L.J. Plant proteinase inhibitors: a defensive response against insects. Biol. Res., 1995, 28(4), 239-249.
[PMID: 9251755]
[66]
McManus, M.T.; Ryan, S.; Liang, W.A. The functions of proteinase inhibitors in seeds. Seed Symposium, 1999.
[67]
Priya, S.; Kumar, S.; Kaur, N.; Gupta, A.K. Specificity of a-amylase and trypsin inhibitor proteins in wheat against insect pests. N. Z. J. Crop Hortic. Sci., 2013, 41(1), 4956.
[http://dx.doi.org/10.1080/01140671.2012.722112]
[68]
Boulter, D.; Gatehouse, A.M.R.; Hilder, V. Use of cowpea trypsin inhibitor (CpTI) to protect plants against insect predation. Biotechnol. Adv., 1989, 7(4), 489-497.
[http://dx.doi.org/10.1016/0734-9750(89)90720-9] [PMID: 14542987]
[69]
Morton, R.L.; Schroeder, H.E.; Bateman, K.S.; Chrispeels, M.J.; Armstrong, E.; Higgins, T.J.V. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc. Natl. Acad. Sci. USA, 2000, 97(8), 3820-3825.
[http://dx.doi.org/10.1073/pnas.070054597] [PMID: 10759552]
[70]
Patankar, A.G.; Harsulkar, A.M.; Giri, A.P.; Gupta, V.S.; Sainani, M.N.; Ranjekar, P.K.; Deshpande, V.V. Diversity in inhibitors of trypsin and Helicoverpa armigera gut proteinases in chickpea (Cicer arietinum) and its wild relatives. Theor. Appl. Genet., 1999, 99(3-4), 719-726.
[http://dx.doi.org/10.1007/s001220051289] [PMID: 22665210]
[71]
Sharma, H.C.; Pampapathy, G.; Lanka, S.K.; Ridsdill-Smith, T.J. Exploitation of wild Cicer reticulatum germplasm for resistance to Helicoverpa armigera. J. Econ. Entomol., 2005, 98(6), 2246-2253.
[http://dx.doi.org/10.1093/jee/98.6.2246] [PMID: 16539156]
[72]
Singh, K.B.; Weigand, S. Identification of resistant sources in Cicer species to Liriomyza cicerina. Genet. Resour. Crop Evol., 1994, 41(2), 75-79.
[http://dx.doi.org/10.1007/BF00053051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy