Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Research Article

In Vitro and In Vivo Neutralizing Activity of Uvaria chamae Leaves Fractions on the Venom of Naja nigricollis in Albino Rat and Bovine Blood

Author(s): Ada Gabriel*, Mamman Mohammed, Mohammed G. Magaji, Yusuf P. Ofemile, Ameh P. Matthew and Isaac O. Akefe

Volume 14, Issue 4, 2020

Page: [295 - 311] Pages: 17

DOI: 10.2174/1872208314666200903152129

Price: $65

Abstract

Background: Snakebite envenomation is a global priority ranked top among other neglected tropical diseases. There is a folkloric claim that Uvaria chamae is beneficial for the management of snakebite and wounds in African ethnobotanical surveys. Besides, there are many registered patents asserting the health benefits of U. chamae.

Objective: This study aimed to investigate U. chamae’s potentials and identify candidates for the development of tools for the treatment and management of N. nigricollis envenomation.

Methods: Freshly collected U. chamae leaves were air-dried, powdered, and extracted in methanol. The median lethal dose of the extract was determined and further fractionated with n-hexane, n-butanol and ethyl acetate. Each fraction was tested for neutralizing effect against venom-induced haemolytic, fibrinolytic, hemorrhagic, and cytotoxic activities.

Results: U. chamae fractions significantly (p<0.05) neutralized the haemolytic activity of N. nigricollis venom in n-butanol; 31.40%, n-hexane; 33%, aqueous residue; 39.60% and ethyl acetate; 40.70% at the concentration of 100mg/ml of each fraction against 10mg/ml of the snake venom when compared to the positive control. The fibrinolytic activity of N. nigricollis venom was significantly (p<0.05) neutralized in n-hexane at 73.88%, n-butanol; 72.22% and aqueous residue; 72.22% by the fractions of U. chamae. In addition, haemorrhagic activity of N. nigricollis venom was significantly (p<0.05) neutralized by U. chamae fractions at the concentrations of 100mg/ml, 200mg/ml and 400mg/ml except for n-butanol and aqueous residues at 400 mg/ml.

Conclusion: U. chamae leaves fractions possess a high level of protection against N. nigricollis venoms-induced lethality and thus validate the pharmacological rationale for its usage in the management of N. nigricollis envenomation.

Keywords: Albino rat, venom, Naja nigricollis, snakebite, bovine blood, Uvaria chamae.

Graphical Abstract

[1]
Habib AG. Public health aspects of snakebite care in West Africa: perspectives from Nigeria. J Venom Anim Toxins Incl Trop Dis 2013; 19(1): 27.
[http://dx.doi.org/10.1186/1678-9199-19-27] [PMID: 24134780]
[2]
Potet J, Smith J, McIver L. Reviewing evidence of the clinical effectiveness of commercially available antivenoms in sub-Saharan Africa identifies the need for a multi-centre, multiantivenom clinical trial. PLoS Negl Trop Dis 2019; 13(6)e0007551
[3]
Gutierrez JM, Warreil DA, David JW, Jensen S, Brown N, Calvete JJ, et al. The need for full intergration of snake bite envenoming within a global strategy to combat the neglected tropical diseases: the way forward. PLoS Negl Trop Dis 2013; 7(6)e2162
[4]
Williams HF, Vaiyapuri R, Gajjeraman P, Hutchinson G, Gibbins JM, Bicknell AB, et al. Challenges in diagnosing and treating snakebites in a rural population of Tamil Nadu, India: the views of clinicians. Toxicon 2017; 130: 44-6.
[http://dx.doi.org/10.1016/j.toxicon.2017.02.025] [PMID: 28238804]
[5]
Theakston RDG, Laing GD, Freire L, Lascano AF, Touzet JM, Vallejo F, et al. Treatment of snakebites by bothrops species and Lachesis mula in Ecuador: laboratory screening of candidates antivenoms. Trans R Soc Trop Med Hyg 2003; 89: 550-4.
[http://dx.doi.org/10.1016/0035-9203(95)90105-1]
[6]
Arya V. Plants used in reptile bites with emphasis on Snakebite. In: Rasamruta. 2004; 7:8:: pp. 232-43.
[7]
Gutiérrez JM, Juan JC, Habib AG, Robert AH, David JW, David AW. Snakebite envenoming. Natl Rev 2017; 3(1): 1-21.
[8]
Ruha AM, Kleinschmidt KC, Greene S, et al. Toxic snakebite study group. The epidemiology, clinical course, and management of snakebites in the North America. J Med Toxicol 2017; 13(4): 309-20.
[http://dx.doi.org/10.1007/s13181-017-0633-5] [PMID: 28975491]
[9]
Habib AG, Gebi UI, Onyemelukwe GC. Snake bite in Nigeria. Afr J Med Med Sci 2001; 30(3): 171-8.
[PMID: 14510123]
[10]
Visser LE, Kyei-Faried S, Belcher DW, Geelhoed DW, van Leeuwen JS, van Roosmalen J. Failure of a new antivenom to treat Echis ocellatus snake bite in rural Ghana: the importance of quality surveillance. Trans R Soc Trop Med Hyg 2008; 102(5): 445-50.
[http://dx.doi.org/10.1016/j.trstmh.2007.11.006] [PMID: 18190937]
[11]
Gutiérrez JM, Theakston RDG, Warrell DA. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med 2006; 3(6)e150
[http://dx.doi.org/10.1371/journal.pmed.0030150] [PMID: 16729843]
[12]
Broadley DG. The herpetofaunas of the islands off the coast of South Mozambique. Armodia Zimbabwe 1990; 9(35): 469-93.
[13]
Chippaux JP. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach. Toxicon 2011; 57(4): 586-99.
[http://dx.doi.org/10.1016/j.toxicon.2010.12.022] [PMID: 21223975]
[14]
Finney L. World Health Organization highlights critical need for life saving antivenoms WHO newsletters 2010; 25(7): 10-5.
[15]
Leonard O. Working on management of snake bites WHO Myanmar newslatter 2010.
[16]
Warrell DA. Snake bite. Lancet 2010; 375(9708): 77-88.
[http://dx.doi.org/10.1016/S0140-6736(09)61754-2] [PMID: 20109866]
[17]
Cordeiro FA, Perini TG, Bregge-Silva CM, Cremonez C,S, Rodrigues R, Boldrini-França J, et al. A new phospholipase A2 from Lachesis muta rhombeata: purification, biochemical and comparative characterization with crotoxin B. Protein Pept Lett 2015; 22(9): 816-27.
[http://dx.doi.org/10.2174/0929866522666150706112431] [PMID: 26145564]
[18]
Fuly AL, Calil-Elias S, Zingali RB, Guimarães JA, Melo PA. Myotoxic activity of an acidic phospholipase A2 isolated from Lachesis muta (Bushmaster) snake venom. Toxicon 2000; 38(7): 961-72.
[http://dx.doi.org/10.1016/S0041-0101(99)00208-1] [PMID: 10728833]
[19]
Mahanta M, Mukherjee AK. Neutralisation of lethality, myotoxicity and toxic enzymes of Naja kaouthia venom by Mimosa pudica root extracts. J Ethnopharmacol 2001; 75(1): 55-60.
[http://dx.doi.org/10.1016/S0378-8741(00)00373-1] [PMID: 11282444]
[20]
Lalloo DG, Theakston RD, Warrell DA. The African challenge. Lancet 2002; 359(9316): 1527.
[http://dx.doi.org/10.1016/S0140-6736(02)08456-8] [PMID: 11988287]
[21]
Chippaux JP. [Ophidian envenomations and emergencies in Sub-Saharan Africa] Bull Soc Pathol Exot 2005; 98(4): 263-8.
[PMID: 16402571]
[22]
Stock RP, Massougbodji A, Alagón A, Chippaux JP. Bringing antivenoms to sub-Saharan Africa Nat Biotechnol 2007; 25(2): 173-7.
[http://dx.doi.org/10.1038/nbt0207-173] [PMID: 17287747]
[23]
Nwanguma BC, Achebe AC, Ezeanyika LUS, Eze LC. Toxicity of oxidized fats II: tissue levels of lipid peroxides in rats fed a thermally oxidized corn oil diet. Food Chem Toxicol 1999; 37(4): 413-6.
[http://dx.doi.org/10.1016/S0278-6915(99)00023-X] [PMID: 10418956]
[24]
Matthew PA, Mamman M, Yusuf PO, Magaji GM, Gabriel A, Akefe OI. Detoxifying action of aqueous extracts of Mucuna pruriens seed and Mimosa pudica root against venoms of Naja nigricollis and Bitis arietans. Recent Pat Biotechnol 2020; 14: 134.
[http://dx.doi.org/10.2174/1872208313666191025110019]
[25]
Gomes A, Saha A, Chatterjee I, Chakravarty AK. Viper and cobra venom neutralization by beta-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae). Phytomedicine 2007; 14(9): 637-43.
[http://dx.doi.org/10.1016/j.phymed.2006.12.020] [PMID: 17293096]
[26]
Iwu MM. Handbook of Africa medicinal plants Ogadijo. United States: CRC Press 1993; pp. 18-22.
[27]
Emordi JE, Agbaje EO, Oreagba IA, Iribhogbe OI. Preliminary phytochemical screening and evaluation of hypoglycemic properties of the root extract of Uvaria chamae. Bangladesh J Pharmacol Soc 2015; 10: 326-31.
[http://dx.doi.org/10.3329/bjp.v10i2.22287]
[28]
Basil NI. Antioxidant activity of Cnestis ferruginea and Uvaria chamae seed extracts. Br J Pharm Res 2017; 16(1): 1-8.
[http://dx.doi.org/10.9734/BJPR/2017/32924]
[29]
Macfarlane RG. Russell’s viper venom, 1934-64. Br J Haematol 1967; 13(4): 437-51.
[http://dx.doi.org/10.1111/j.1365-2141.1967.tb00754.x] [PMID: 6067638]
[30]
Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol 1983; 54(4): 275-87.
[http://dx.doi.org/10.1007/BF01234480] [PMID: 6667118]
[31]
Theakston RDG, Reid HA. Development of simple standard assay procedures for the characterization of snake venom. Bull World Health Organ 1983; 61(6): 949-56.
[PMID: 6609011]
[32]
Omori-Satoh T, Sadahiro S, Ohsaka A, Murata R. Purification and characterization of an antihemorrhagic factor in the serum of Trimeresurus flavoviridis, a crotalid. Biochim Biophys Acta 1972; 285(2): 414-26.
[http://dx.doi.org/10.1016/0005-2795(72)90328-5] [PMID: 4659650]
[33]
Furtado MFD, Santos MC, Kamiguti AS. Age-related biological activity of South America rattle snake (Crotallus durissus terrificus) venom. J Venom Anim Toxins Incl Trop Dis 2003; 9(2): 1678-9199.
[http://dx.doi.org/10.1590/S1678-91992003000200005]
[34]
Gomes A, De P. Hannahpep: A novel fibrinolytic peptide from the Indian King Cobra (Ophiophagus hannah) venom. Biochem Biophys Res Commun 1999; 266(2): 488-91.
[http://dx.doi.org/10.1006/bbrc.1999.1818] [PMID: 10600529]
[35]
Slaoui M, Bauchet AL, Fiette L. Tissue sampling and processing for histopathology evaluation. Methods Mol Biol 2017; 1641: 101-14.
[http://dx.doi.org/10.1007/978-1-4939-7172-5_4] [PMID: 28748459]
[36]
Donatus EO, Friday I. Phytochemical composition and biological activities of Uvarie chamae and Clerodendron splendens. E-J Chem 2009; 6(27): 553-60.
[37]
Evans EC, Gaiere Y. Effect of solvent extraction on phytochemical composition of selective Nigerian medicinal plants. Scientia Agricultuae 2017; 20(1): 23-31.
[38]
Olumese FE, Onoagbe OI, Eze GI, Omoruyi FO. Sub-chronic toxicity study of ethanolic extract of Uvaria chamae root in rats. Trop J Pharm Res 2018; 17(5): 831-6.
[http://dx.doi.org/10.4314/tjpr.v17i5.12]
[39]
Omale J, Ebiloma UG, Idoko G. Uvaria chamae Plant extract neutralizes some biological effects of Naja nigricollis snake venom in rats. Br J Pharmacol Toxicol 2013; 4(2): 41-50.
[http://dx.doi.org/10.19026/bjpt.4.5376]
[40]
Lamidi IY, Hudu MG, Akefe IO, Sani A, Sabo IS. Sub-chronic administration of flavonoid fraction Daflon improve lead-induced alterations in delta-aminolevulinic acid dehydratase activity, erythrocytic parameters, and erythrocyte osmotic fragility in Wistar rats. Comp Clin Pathol 2020; 29: 955-63.
[http://dx.doi.org/10.1007/s00580-020-03144-6]
[41]
Omajali BJ, Husaini JS. Journal of Pharmacology and Toxicology 2011; 2: 7.
[42]
Akefe IO, Ayo JO, Sinkalu VO. Kaempferol and zinc gluconate mitigate neurobehavioral deficits and oxidative stress induced by noise exposure in Wistar rats. PLoS One 2020; 15(7)e0236251
[http://dx.doi.org/10.1371/journal.pone.0236251] [PMID: 32692754]
[43]
Ghasemzadeh A, Ghasemzadeh N. Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plants Res 2011; 5(31): 6697-703.
[http://dx.doi.org/10.5897/JMPR11.1404]
[44]
Kitagawa S, Fujisawa H, Sakurai H. Scavenging effects of dihydric and polyhydric phenols on superoxide anion radicals, studied by electron spin resonance spectrometry. Chem Pharm Bull 1992; 40: 304-7.
[http://dx.doi.org/10.1248/cpb.40.304]
[45]
Sanchez EF, Flores-Ortiz RJ, Alvarenga VG, Eble JA. Direct fibrinolytic snake venom metalloproteinases affecting hemostasis: structural, biochemical features and therapeutic potential. Toxins (Basel) 2017; 9(12): 392.
[http://dx.doi.org/10.3390/toxins9120392] [PMID: 29206190]
[46]
Okwu DE. Phytochemicals, vitamins and mineral contents of two Nigerian medicinal plants. Int J Mol Med Adv Sci 2005; 1(4): 375-81.
[47]
Claude A, Mohamed R, Achrof K, Hleihel W, Claude J. Effect of the Montivipera bornmuelleri snake venom on human blood: coagulation disorders and haemolytic activities. J Hepatol 2014; 1(1): 4-5.
[PMID: 24103858]
[48]
Celedon GI, Gonalez G, Lissi E, Cerda T, Martinez D, Soto C, et al. Effect of calcium on the haemolytic activity of Stichodactyla helianthus. Toxicon 2009; 54: 845-50.
[http://dx.doi.org/10.1016/j.toxicon.2009.06.017] [PMID: 19559039]
[49]
Amakoha RA, Ubwa S, Otokpa T, Shenge G. Phytochemical composition and biological activities of Uvaria chamae. Urology 2002; 54(6): 1001-201.
[50]
Kini RM, Rao VS, Joseph JS. Procoagulant proteins from snake venoms. Haemostasis 2001; 31(3-6): 218-24.
[PMID: 11910188]
[51]
Denson KW, Russell FE, Almagro D, Bishop RC. Characterization of the coagulant activity of some snake venoms. Toxicon 1972; 10(6): 557-62.
[http://dx.doi.org/10.1016/0041-0101(72)90116-X] [PMID: 4665359]
[52]
Nasidi A. Snakebites a serious Public Health problem for Nigeria and Africa WHO Consultative meeting on rabies and envenomings: A neglected Public health Issue. Geneva: Switzeland 2007.
[53]
Gasanov SE, Aripov TF, Salakhutdinov BA. [Intermembrane exchange of lipids induced by cobra venom cytotoxins]. Biofizika 1990; 35(6): 958-62.
[PMID: 1965687]
[54]
Dubovskii PV, Konshina AG, Efremov RG. Cobra cardiotoxins: membrane interactions and pharmacological potential. Curr Med Chem 2014; 21(3): 270-87.
[http://dx.doi.org/10.2174/09298673113206660315] [PMID: 24180277]
[55]
Iddon D, Theakston RDG, Ownby CL. A study of the pathogenesis of local skin necrosis induced by Naja nigricollis (spitting cobra) venom using simple histological staining techniques. Toxicon 1987; 25(6): 665-72.
[http://dx.doi.org/10.1016/0041-0101(87)90113-9] [PMID: 2442855]
[56]
Hayretdag S, Gürkan M. Morphological and histological effects of copper sulfate on the larval development of green toad, Bufo viridis. Turk J Zool 2012; 36: 231-40.
[57]
Koh DCA, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci 2006; 63(24): 3030-41.
[http://dx.doi.org/10.1007/s00018-006-6315-0] [PMID: 17103111]
[58]
Emordi JE, Agbaje EO, Oreagba IA, Iribhogbe OI. Antidiabetic and hypolipidemic activities of hydroethanolic root extract of Uvaria chamae in streptozotocin induced diabetic albino rats. BMC Complement Altern Med 2016; 16(1): 468.
[http://dx.doi.org/10.1186/s12906-016-1450-0] [PMID: 27846886]
[59]
Emeka EJ, Oluwatoyin AE, Adekunle OI, Ignis IO. Preliminary phytochemical screening and evaluation of hypoglycemic properties of the root extract of Uvaria chamae. Bangladesh J Pharmacol 2015; 10(2): 326-31.
[http://dx.doi.org/10.3329/bjp.v10i2.22287]
[60]
Adelodun VO, Elusiyan CA, Olorunmola FO, Adewoyin FB, Omisore NO, Adepiti AO, et al. Evaluation of antitrypanosomal and anti-inflammatory activities of selected Nigerian medicinal plants in mice. Afr J Tradit Complement Altern Med 2013; 10(6): 469-76.
[http://dx.doi.org/10.4314/ajtcam.v10i6.13] [PMID: 24311871]
[61]
Okwuosa OM, Chukwura EI, Chukwuma GO, Okwuosa CN, Enweani IB, Agbakoba NR, et al. Phytochemical and antifungal activities of Uvaria. chamae leaves and roots, Spondias mombin leaves and bark and Combretum racemosum leaves. Afr J Med Med Sci 2012; 41(Suppl.): 99-103.
[PMID: 23678643]
[62]
Okokon JE, Ita BN, Udokpoh AE. The in-vivo antimalarial activities of Uvaria chamae and Hippocratea africana. Ann Trop Med Parasitol 2006; 100(7): 585-90.
[http://dx.doi.org/10.1179/136485906X118512] [PMID: 16989684]
[63]
Okwu DE, Iroabuchi F. Phytochemical composition and biological activities of Uvaria chamae and clerodendoron splendens. E-J Chem 2009; 6(2): 553-60.
[http://dx.doi.org/10.1155/2009/190346]
[64]
Oluremi B, Osungunna M, Omafuma O. Comparative assessment of antibacterial activity of Uvaria chamae parts. Afr J Microbiol Res 2010; 4(13): 1391-4.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy