Generic placeholder image

Current Mechanics and Advanced Materials

Editor-in-Chief

ISSN (Print): 2666-1845
ISSN (Online): 2666-1853

Research Article

A Multiscale Model to Study the Mechanical Properties of the Graphene, Boron Nitride and Silicon Carbide Hexagonal Nanosheets

Author(s): Yuzhou Sun*, Yingying Hu and Xinming Li

Volume 1, Issue 1, 2021

Published on: 02 September, 2020

Page: [66 - 73] Pages: 8

DOI: 10.2174/2666184501999200902143807

Abstract

Background: It is very important to precisely comprehend nanosheet’s mechanical properties for their future application, and the continuum-based methods play a vital role in this research domain. But, most of continuum models doesn’t provide a systematical theory, and just display certain property of nanostructures. The Cauchy-Born rule provides an alternative multiscale method, the resulted model is not only less accurate, and but also doesn’t describe the bending effect.

Methods: A nanosheet is viewed as a higher-order gradient continuum planar sheet, and the strain energy density is thus a function of both the first- and second-order deformation gradient. The higher- order Cauchy-Born rule is used to approximate the bond vectors in the representative cell, the multiscale model is established by minimizing the cell energy, and the structural and mechanical properties are thus obtained.

Results: The obtained bond lengths are respectively 0.14507 nm, 0.14489 nm, 0.1816 nm for the graphene, boron nitride and silicon carbide hexagonal nanosheets. The elastic constants, including Young’s modulus, shear modulus, Poisson’s ratio and bending rigidity, are calculated by analyzing the physical meaning of the first- and second-order strain gradients. The developed model can also be used to study the nonlinear behavior of nanosheets under some simple loading situations, such as the uniform tension, torsion and bending. The stress-strain relationship of nanosheets is presented for the uniform tension/compression, and the three types of nannosheets exhibit better compressive resistance far greater than tensile resistance.

Conclusion: A reasonable multiscale model is established for the nanosheets by using the higherorder Cauchy-Born rule that provides a good interlinking between the microscale and continuum descriptions. It is proved that all three types of nannosheets shows the isotropic mechanical property. The current model can be used to establish a global nonlinear numerical modeling method in which the bending rigidity is the basic elastic constants same as the elastic modulus and Poisson’s ratio.

Keywords: Bending rigidity, grapheme, hexagonal nanosheet, higher-order theory, mechanical property, multiscale model.

Graphical Abstract

[1]
M-P. Ginebra, T. Traykova, and J.A. Planell, "Calcium phosphate cements as bone drug delivery systems: a review", J. Control. Release, vol. 113, no. 2, pp. 102-110, 2006.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.007] [PMID: 16740332]
[2]
A.H.Z. Kalkhoran, S.M. Naghib, O. Vahidi, and M. Rahmanian, "Synthesis and characterization of graphene-grafted gelatin nanocomposite hydrogels as emerging drug delivery systems", Biomed. Phys. Eng. Express, vol. 4, 2018.055017.
[http://dx.doi.org/10.1088/2057-1976/aad745]
[3]
D.G. Arkfeld, and E. Rubenstein, "Quest for the Holy Grail to cure arthritis and osteoporosis: emphasis on bone drug delivery systems", Adv. Drug Deliv. Rev., vol. 57, no. 7, pp. 939-944, 2005.
[http://dx.doi.org/10.1016/j.addr.2005.02.001] [PMID: 15876396]
[4]
E. Kalantari, and S.M. Naghib, "A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic", Mater. Sci. Eng. C, vol. 98, pp. 1087-1096, 2019.
[http://dx.doi.org/10.1016/j.msec.2018.12.140] [PMID: 30812992]
[5]
E. Kalantari, S.M. Naghib, N.J. Iravani, R. Esmaeili, M.R. Naimi-Jamal, and M. Mozafari, "Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO4) for biomedical application: Synthesis, characterization, and biological studies", Mater. Sci. Eng. C, vol. 105, .2019.109912
[http://dx.doi.org/10.1016/j.msec.2019.109912] [PMID: 31546348]
[6]
M. Peacock, "Calcium metabolism in health and disease", Clin. J. Am. Soc. Nephrol., vol. 5, pp. S23-S30, 2010.
[http://dx.doi.org/10.2215/CJN.05910809] [PMID: 20089499]
[7]
S. Khoshniat, A. Bourgine, M. Julien, P. Weiss, J. Guicheux, and L. Beck, "The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals", Cell. Mol. Life Sci., vol. 68, no. 2, pp. 205-218, 2011.
[http://dx.doi.org/10.1007/s00018-010-0527-z] [PMID: 20848155]
[8]
M. Goretti Penido, and U.S. Alon, "Phosphate homeostasis and its role in bone health", Pediatr. Nephrol., vol. 27, no. 11, pp. 2039-2048, 2012.
[http://dx.doi.org/10.1007/s00467-012-2175-z] [PMID: 22552885]
[9]
S. Hjerten, O. Levin, and A. Tiselius, "Protein chromatography on calcium phosphate columns", Arch. Biochem. Biophys., vol. 65, no. 1, pp. 132-155, 1956.
[http://dx.doi.org/10.1016/0003-9861(56)90183-7] [PMID: 13373414]
[10]
M.R. Urist, Y.K. Huo, A.G. Brownell, W.M. Hohl, J. Buyske, A. Lietze, P. Tempst, M. Hunkapiller, and R.J. DeLange, "Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography", Proc. Natl. Acad. Sci. USA, vol. 81, no. 2, pp. 371-375, 1984.
[http://dx.doi.org/10.1073/pnas.81.2.371] [PMID: 6320184]
[11]
W.E. Brown, "A new calcium phosphate setting cement", J. Dent. Res., vol. 63, p. 672, 1983.
[12]
A. Seyfoori, S.A.S. Ebrahimi, S. Omidian, and S.M. Naghib, "Multifunctional magnetic ZnFe2O4-hydroxyapatite nanocomposite particles for local anti-cancer drug delivery and bacterial infection inhibition: an in vitro study", J. Taiwan Institute Chem. Eng., vol. 96, pp. 503-508, 2019.
[http://dx.doi.org/10.1016/j.jtice.2018.10.018]
[13]
M. Ansari, S.M. Naghib, F. Moztarzadeh, and A. Salati, "Synthesis and characterisation of hydroxyapatite-calcium hydroxide for dental composites", Ceram. Silik., vol. 55, pp. 123-126, 2011.
[14]
X. Cui, T. Liang, C. Liu, Y. Yuan, and J. Qian, "Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells", Mater. Sci. Eng. C, vol. 67, pp. 453-460, 2016.
[http://dx.doi.org/10.1016/j.msec.2016.05.034] [PMID: 27287142]
[15]
B. Li, B. Guo, H. Fan, and X. Zhang, "Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro", Appl. Surf. Sci., vol. 255, pp. 357-360, 2008.
[http://dx.doi.org/10.1016/j.apsusc.2008.06.114]
[16]
J. Sudimack, and R.J. Lee, "Targeted drug delivery via the folate receptor", Adv. Drug Deliv. Rev., vol. 41, no. 2, pp. 147-162, 2000.
[http://dx.doi.org/10.1016/S0169-409X(99)00062-9] [PMID: 10699311]
[17]
J.L. Vivero-Escoto, I.I. Slowing, C-W. Wu, and V.S.Y. Lin, "Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere", J. Am. Chem. Soc., vol. 131, no. 10, pp. 3462-3463, 2009.
[http://dx.doi.org/10.1021/ja900025f] [PMID: 19275256]
[18]
I.I. Slowing, B.G. Trewyn, S. Giri, and V.Y. Lin, "Mesoporous silica nanoparticles for drug delivery and biosensing applications", Adv. Funct. Mater., vol. 17, pp. 1225-1236, 2007.
[http://dx.doi.org/10.1002/adfm.200601191]
[19]
F.H. Chen, Q. Gao, and J.Z. Ni, "The grafting and release behavior of doxorubincin from Fe(3)O(4)@SiO(2) core-shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery", Nanotechnology, vol. 19, no. 16, .2008.165103
[http://dx.doi.org/10.1088/0957-4484/19/16/165103] [PMID: 21825634]
[20]
E. Kalantari, S.M. Naghib, M.R. Naimi-Jamal, A. Aliahmadi, N.J. Iravani, and M. Mozafari, "Nanostructured monticellite for tissue engineering applications-Part I: Microstructural and physicochemical characteristics", Ceram. Int., vol. 44, pp. 12731-12738, 2018.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.076]
[21]
E. Kalantari, S.M. Naghib, N.J. Iravani, A. Aliahmadi, M.R. Naimi-Jamal, and M. Mozafari, "Nanostructured monticellite for tissue engineering applications-Part II: Molecular and biological characteristics", Ceram. Int., vol. 44, pp. 14704-14711, 2018.
[http://dx.doi.org/10.1016/j.ceramint.2018.05.098]
[22]
J.A. Ritter, A.D. Ebner, K.D. Daniel, and K.L. Stewart, "Application of high gradient magnetic separation principles to magnetic drug targeting", J. Magn. Magn. Mater., vol. 280, pp. 184-201, 2004.
[http://dx.doi.org/10.1016/j.jmmm.2004.03.012]
[23]
L.B. Sukhodub, L.F. Sukhodub, Y.I. Prylutskyy, N.Y. Strutynska, L.L. Vovchenko, V.M. Soroca, N.S. Slobodyanik, N.G. Tsierkezos, and U. Ritter, "Composite material based on hydroxyapatite and multi-walled carbon nanotubes filled by iron: preparation, properties and drug release ability", Mater. Sci. Eng. C, vol. 93, pp. 606-614, 2018.
[http://dx.doi.org/10.1016/j.msec.2018.08.019] [PMID: 30274092]
[24]
E. Kolanthai, P. Abinaya Sindu, K. Thanigai Arul, V. Sarath Chandra, E. Manikandan, and S. Narayana Kalkura, "Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery", J. Photochem. Photobiol. B, vol. 166, pp. 220-231, 2017.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.005] [PMID: 28012416]
[25]
A.J.G. Notholt, R.P. Sheldon, and D. Davidson, Phosphate deposits of the world: phosphate rock resources., vol. 2. New York: Cambridge University Press, 2005.
[26]
Y.N. Zanin, "The classification of calcium phosphates of phosphorites", Lithol. Miner. Resour., vol. 39, pp. 281-282, 2004.
[http://dx.doi.org/10.1023/B:LIMI.0000027613.56744.c8]
[27]
J. Elorza, H. Astibia, X. Murelaga, and X. Pereda-Suberbiola, "Francolite as a diagenetic mineral in dinosaur and other Upper Cretaceous reptile bones (Laño, Iberian Peninsula): microstructural, petrological and geochemical features", Cretac. Res., vol. 20, pp. 169-187, 1999.
[http://dx.doi.org/10.1006/cres.1999.0144]
[28]
A.R. Chakhmouradian, and L. Medici, "Clinohydroxylapatite: a new apatite-group mineral from northwestern Ontario (Canada), and new data on the extent of Na-S substitution in natural apatites", Eur. J. Mineral., vol. 18, pp. 105-112, 2006.
[http://dx.doi.org/10.1127/0935-1221/2006/0018-0105]
[29]
M. Mathew, and S. Takagi, "Structures of biological minerals in dental research", J. Res. Natl. Inst. Stand. Technol., vol. 106, no. 6, pp. 1035-1044, 2001.
[http://dx.doi.org/10.6028/jres.106.054] [PMID: 27500063]
[30]
C. Klein, "Brushite from the island of Mona (between Haiti and Puerto Rico)", Sitzber. K. Preuss. Aka., vol. 1901, pp. 720-725.
[31]
G.P. Merrill, "On the calcium phosphate in meteoric stones", In: American J. Sci., vol. 1917. pp. 322-324.
[32]
W.E. Ford, "A remarkable crystal of apatite from Mount Apatite, Auburn, Me", Am. J. Sci., vol. 44, pp. 245-246, 1917.
[http://dx.doi.org/10.2475/ajs.s4-44.261.245]
[33]
D.D. Hogarth, "The discovery of apatite on the Lievre River, Quebec", Mineral. Rec., vol. 5, pp. 178-182, 1974.
[34]
Y. Pan, and M.E. Fleet, "Compositions of the apatite-group minerals: substitution mechanisms and controlling factors", Rev. Mineral. Geochem., vol. 48, pp. 13-49, 2002.
[http://dx.doi.org/10.2138/rmg.2002.48.2]
[35]
T. White, C. Ferraris, J. Kim, and S. Madhavi, "Apatite-an adaptive framework structure", Rev. Mineral. Geochem., vol. 57, pp. 307-401, 2005.
[http://dx.doi.org/10.2138/rmg.2005.57.10]
[36]
J.M. Hughes, and J. Rakovan, "The crystal structure of apatite, Ca5 (PO4) 3 (F, OH, Cl)", Rev. Mineral. Geochem., vol. 48, pp. 1-12, 2002.
[http://dx.doi.org/10.2138/rmg.2002.48.1]
[37]
R.I. Martin, and P.W. Brown, "Phase equilibria among acid calcium phosphates", J. Am. Ceram. Soc., vol. 80, pp. 1263-1266, 1997.
[http://dx.doi.org/10.1111/j.1151-2916.1997.tb02973.x]
[38]
L. Wang, and G.H. Nancollas, "Calcium orthophosphates: crystallization and dissolution", Chem. Rev., vol. 108, no. 11, pp. 4628-4669, 2008.
[http://dx.doi.org/10.1021/cr0782574] [PMID: 18816145]
[39]
P.T. Kien, H. Dai Phu, N.V.V. Linh, T.N. Quyen, and N.T. Hoa, "Recent Trends in Hydroxyapatite (HA) Synthesis and the Synthesis Report of Nanostructure HA by Hydrothermal Reaction", Adv. Exp. Med. Biol., vol. 1077, pp. 343-354, 2018.
[http://dx.doi.org/10.1007/978-981-13-0947-2_18]
[40]
S. Pramanik, A.K. Agarwal, K.N. Rai, and A. Garg, "Development of high strength hydroxyapatite by solid-state-sintering process", Ceram. Int., vol. 33, pp. 419-426, 2007.
[http://dx.doi.org/10.1016/j.ceramint.2005.10.025]
[41]
A. Fihri, C. Len, R.S. Varma, and A. Solhy, "Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis", Coord. Chem. Rev., vol. 347, pp. 48-76, 2017.
[http://dx.doi.org/10.1016/j.ccr.2017.06.009]
[42]
Y. Zhang, and J. Lu, "A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent", Cryst. Growth Des., vol. 8, pp. 2101-2107, 2008.
[http://dx.doi.org/10.1021/cg060880e]
[43]
Y. Cai, D. Mei, T. Jiang, and J. Yao, "Synthesis of oriented hydroxyapatite crystals: effect of reaction conditions in the presence or absence of silk sericin", Mater. Lett., vol. 64, pp. 2676-2678, 2010.
[http://dx.doi.org/10.1016/j.matlet.2010.08.071]
[44]
G. Velu, and B. Gopal, "Preparation of nanohydroxyapatite by a sol-gel method using alginic acid as a complexing agent", J. Am. Ceram. Soc., vol. 92, pp. 2207-2211, 2009.
[http://dx.doi.org/10.1111/j.1551-2916.2009.03221.x]
[45]
M-F. Hsieh, L-H. Perng, T-S. Chin, and H-G. Perng, "Phase purity of sol-gel-derived hydroxyapatite ceramic", Biomaterials, vol. 22, no. 19, pp. 2601-2607, 2001.
[http://dx.doi.org/10.1016/S0142-9612(00)00448-8] [PMID: 11519779]
[46]
I-S. Kim, and P.N. Kumta, "Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder", In: Mater. Sci. Eng. B, vol. 111. 2004, pp. 232-236.
[47]
A. Ethirajan, U. Ziener, A. Chuvilin, U. Kaiser, H. Cölfen, and K. Landfester, "Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process", Adv. Funct. Mater., vol. 18, pp. 2221-2227, 2008.
[http://dx.doi.org/10.1002/adfm.200800048]
[48]
S.K. Saha, A. Banerjee, S. Banerjee, and S. Bose, "Synthesis of nanocrystalline hydroxyapatite using surfactant template systems: role of templates in controlling morphology", Mater. Sci. Eng. C, vol. 29, pp. 2294-2301, 2009.
[http://dx.doi.org/10.1016/j.msec.2009.05.019]
[49]
G. Guo, Y. Sun, Z. Wang, and H. Guo, "Preparation of hydroxyapatite nanoparticles by reverse microemulsion", Ceram. Int., vol. 31, pp. 869-872, 2005.
[http://dx.doi.org/10.1016/j.ceramint.2004.10.003]
[50]
C. Durucan, and P.W. Brown, "α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature", J. Mater. Sci. Mater. Med., vol. 11, no. 6, pp. 365-371, 2000.
[http://dx.doi.org/10.1023/A:1008934024440] [PMID: 15348018]
[51]
G. Zhang, J. Chen, S. Yang, Q. Yu, Z. Wang, and Q. Zhang, "Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method", Mater. Lett., vol. 65, pp. 572-574, 2011.
[http://dx.doi.org/10.1016/j.matlet.2010.10.078]
[52]
X. Guo, P. Xiao, J. Liu, and Z. Shen, "Fabrication of nanostructured hydroxyapatite via hydrothermal synthesis and spark plasma sintering", J. Am. Ceram. Soc., vol. 88, pp. 1026-1029, 2005.
[http://dx.doi.org/10.1111/j.1551-2916.2005.00198.x]
[53]
D. Tsiourvas, A. Tsetsekou, M.I. Kammenou, and N. Boukos, "Controlling the formation of hydroxyapatite nanorods with dendrimers", J. Am. Ceram. Soc., vol. 94, pp. 2023-2029, 2011.
[http://dx.doi.org/10.1111/j.1551-2916.2010.04342.x]
[54]
S.W. Myung, Y.M. Ko, and B.H. Kim, "Effect of plasma surface functionalization on preosteoblast cells spreading and adhesion on a biomimetic hydroxyapatite layer formed on a titanium surface", Appl. Surf. Sci., vol. 287, pp. 62-68, 2013.
[http://dx.doi.org/10.1016/j.apsusc.2013.09.064]
[55]
S.K. Ghosh, S.K. Roy, B. Kundu, S. Datta, and D. Basu, "Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions", Mater. Sci. Eng. B, vol. 176, pp. 14-21, 2011.
[http://dx.doi.org/10.1016/j.mseb.2010.08.006]
[56]
S. Sasikumar, and R. Vijayaraghavan, "Synthesis and characterization of bioceramic calcium phosphates by rapid combustion synthesis", J. Mater. Sci. Technol., vol. 26, pp. 1114-1118, 2010.
[http://dx.doi.org/10.1016/S1005-0302(11)60010-8]
[57]
M. Aizawa, T. Hanazawa, K. Itatani, F.S. Howell, and A. Kishioka, "Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique", J. Mater. Sci., vol. 34, pp. 2865-2873, 1999.
[http://dx.doi.org/10.1023/A:1004635418655]
[58]
A. Szcześ, L. Hołysz, and E. Chibowski, "Synthesis of hydroxyapatite for biomedical applications", Adv. Colloid Interface Sci., vol. 249, pp. 321-330, 2017.
[http://dx.doi.org/10.1016/j.cis.2017.04.007] [PMID: 28457501]
[59]
M. Gibaldi, and D.P. Pharmacokinetics, Drugs and the Pharmaceutical Sciences: A Series of Textbooks and Monographs., New York: Marcel Dekker, 1982.
[60]
C-F. Mu, J. Shen, J. Liang, H-S. Zheng, Y. Xiong, Y-H. Wei, and F. Li, "Targeted drug delivery for tumor therapy inside the bone marrow", Biomaterials, vol. 155, pp. 191-202, 2018.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.029] [PMID: 29182960]
[61]
S. Kozlu, A. Sahin, G. Ultav, F. Yerlikaya, S. Calis, and Y. Capan, "Development and in vitro evaluation of doxorubicin and celecoxib co-loaded bone targeted nanoparticles", J. Drug Deliv. Sci. Technol., vol. 45, pp. 213-219, 2018.
[http://dx.doi.org/10.1016/j.jddst.2018.02.004]
[62]
D. Li, Y. Zhu, and Z. Liang, "Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery", Mater. Res. Bull., vol. 48, pp. 2201-2204, 2013.
[http://dx.doi.org/10.1016/j.materresbull.2013.02.049]
[63]
R. Ramírez-Agudelo, K. Scheuermann, A. Gala-García, A.P.F. Monteiro, A.D. Pinzón-García, M.E. Cortés, and R.D. Sinisterra, "Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxy-apatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity", Mater. Sci. Eng. C, vol. 83, pp. 25-34, 2018.
[http://dx.doi.org/10.1016/j.msec.2017.08.012] [PMID: 29208285]
[64]
Y. Zhang, L. Zhang, Q. Ban, J. Li, C-H. Li, and Y-Q. Guan, "Preparation and characterization of hydroxyapatite nanoparticles carrying insulin and gallic acid for insulin oral delivery", Nanomedicine, vol. 14, no. 2, pp. 353-364, 2018.
[http://dx.doi.org/10.1016/j.nano.2017.11.012] [PMID: 29157980]
[65]
K.B. Farrell, A. Karpeisky, D.H. Thamm, and S. Zinnen, "Bisphosphonate conjugation for bone specific drug targeting", Bone Rep., vol. 3, no. 9, pp. 47-60, 2018.
[http://dx.doi.org/10.1016/j.bonr.2018.06.007]
[66]
N. Eliaz, and N. Metoki, "Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications", Materials (Basel), vol. 10, no. 4, p. 334, 2017.
[http://dx.doi.org/10.3390/ma10040334] [PMID: 28772697]
[67]
S. Bose, and S. Tarafder, "Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review", Acta Biomater., vol. 8, no. 4, pp. 1401-1421, 2012.
[http://dx.doi.org/10.1016/j.actbio.2011.11.017] [PMID: 22127225]
[68]
E.A. Ofudje, A. Rajendran, A.I. Adeogun, M.A. Idowu, S.O. Kareem, and D.K. Pattanayak, "Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications", Adv. Powder Technol., vol. 29, pp. 1-8, 2018.
[http://dx.doi.org/10.1016/j.apt.2017.09.008]
[69]
B. Gaihre, S. Uswatta, and A.C. Jayasuriya, "Nano-scale characterization of nano-hydroxyapatite incorporated chitosan particles for bone repair", Colloids Surf. B Biointerfaces, vol. 165, pp. 158-164, 2018.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.034] [PMID: 29477936]
[70]
S. Gooneh-Farahani, M.R. Naimi-Jamal, and S.M. Naghib, "Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review", Expert Opin. Drug Deliv., vol. 16, no. 1, pp. 79-99, 2019.
[http://dx.doi.org/10.1080/17425247.2019.1556257] [PMID: 30514124]
[71]
S. Banerjee, B. Bagchi, S. Bhandary, A. Kool, N.A. Hoque, P. Biswas, K. Pal, P. Thakur, K. Das, P. Karmakar, and S. Das, "Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite films for biomedical applications", Colloids Surf. B Biointerfaces, vol. 171, pp. 300-307, 2018.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.028] [PMID: 30048905]
[72]
B. Ren, X. Chen, S. Du, Y. Ma, H. Chen, G. Yuan, J. Li, D. Xiong, H. Tan, Z. Ling, Y. Chen, X. Hu, and X. Niu, "Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering", Int. J. Biol. Macromol., vol. 118, no. Pt A, pp. 1257-1266, 2018.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.200] [PMID: 30021396]
[73]
L.F. Sukhodub, L.B. Sukhodub, O. Litsis, and Y. Prylutskyy, "Synthesis and characterization of hydroxyapatite-alginate nanostructured composites for the controlled drug release", Mater. Chem. Phys., vol. 217, pp. 228-234, 2018.
[http://dx.doi.org/10.1016/j.matchemphys.2018.06.071]
[74]
V.P. Padmanabhan, R. Kulandaivelu, and S.N.T.S. Nellaiappan, "New core-shell hydroxyapatite/Gum-Acacia nanocomposites for drug delivery and tissue engineering applications", Mater. Sci. Eng. C, vol. 92, pp. 685-693, 2018.
[http://dx.doi.org/10.1016/j.msec.2018.07.018] [PMID: 30184795]
[75]
M. Farokhi, F. Mottaghitalab, S. Samani, M.A. Shokrgozar, S.C. Kundu, R.L. Reis, Y. Fatahi, and D.L. Kaplan, "Silk fibroin/hydroxyapatite composites for bone tissue engineering", Biotechnol. Adv., vol. 36, no. 1, pp. 68-91, 2018.
[http://dx.doi.org/10.1016/j.biotechadv.2017.10.001] [PMID: 28993220]
[76]
J. Zhang, E.I. Shishatskaya, T.G. Volova, L.F. da Silva, and G-Q. Chen, "Polyhydroxyalkanoates (PHA) for therapeutic applications", Mater. Sci. Eng. C, vol. 86, pp. 144-150, 2018.
[http://dx.doi.org/10.1016/j.msec.2017.12.035] [PMID: 29525089]
[77]
F. Song, X. Li, Q. Wang, L. Liao, and C. Zhang, "Nanocomposite hydrogels and their applications in drug delivery and tissue engineering", J. Biomed. Nanotechnol., vol. 11, no. 1, pp. 40-52, 2015.
[http://dx.doi.org/10.1166/jbn.2015.1962] [PMID: 26301299]
[78]
N. Poonia, V. Lather, and D. Pandita, "Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer", Drug Discov. Today, vol. 23, no. 2, pp. 315-332, 2018.
[http://dx.doi.org/10.1016/j.drudis.2017.10.022] [PMID: 29128658]
[79]
Z. Cao, N.N.M. Adnan, G. Wang, A. Rawal, R. Liu, K. Liang, L. Zhao, J.J. Gooding, and C. Boyer, "Conjugating layered double hydroxide nanoparticles with phosphonic acid terminated polyethylene glycol for improved particle stability", J. Colloid Interface Sci., vol. 521, pp. 242-251, 2018.
[http://dx.doi.org/10.1016/j.jcis.2018.03.006] [PMID: 29574343]
[80]
L. Chen, J.M. Mccrate, J.C. Lee, and H. Li, "The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells", Nanotechnology, vol. 22, no. 10, 2011.105708.
[http://dx.doi.org/10.1088/0957-4484/22/10/105708] [PMID: 21289408]
[81]
S. Bose, N. Sarkar, and D. Banerjee, "Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration", In: Mater. Today Chem., vol. 8. 2018, pp. 110-120.
[http://dx.doi.org/10.1016/j.mtchem.2018.03.005]
[82]
A. Pawar, S. Thakkar, and M. Misra, "A bird’s eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field", J. Control. Release, vol. 28, no. 286, pp. 179-200, 2018.
[83]
A. Sobczak-Kupiec, K. Pluta, A. Drabczyk, M. Włoś, and B. Tyliszczak, "Synthesis and characterization of ceramic-polymer composites containing bioactive synthetic hydroxyapatite for biomedical applications", Ceram. Int., vol. 44, pp. 13630-13638, 2018.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.199]
[84]
Y. Zhang, K. Dong, F. Wang, H. Wang, J. Wang, Z. Jiang, and S. Diao, "Three dimensional macroporous hydroxyapatite/chitosan foam-supported polymer micelles for enhanced oral delivery of poorly soluble drugs", Colloids Surf. B Biointerfaces, vol. 170, pp. 497-504, 2018.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.053] [PMID: 29960950]
[85]
F. Ye, H. Guo, H. Zhang, and X. He, "Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system", Acta Biomater., vol. 6, no. 6, pp. 2212-2218, 2010.
[http://dx.doi.org/10.1016/j.actbio.2009.12.014] [PMID: 20004747]
[86]
F. Chen, P. Huang, Y-J. Zhu, J. Wu, C-L. Zhang, and D-X. Cui, "The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods", Biomaterials, vol. 32, no. 34, pp. 9031-9039, 2011.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.032] [PMID: 21875748]
[87]
L-j. Chen, C. Tian, C.A.O. Jun, B-l. Liu, C-s. Shao, K-c. Zhou, and D. Zhang, "Effect of Tb/Mg doping on composition and physical properties of hydroxyapatite nanoparticles for gene vector application", Trans. Nonferrous Met. Soc. China, vol. 28, pp. 125-136, 2018.
[http://dx.doi.org/10.1016/S1003-6326(18)64645-X]
[88]
E. O’Neill, G. Awale, L. Daneshmandi, O. Umerah, and K.W.H. Lo, "The roles of ions on bone regeneration", Drug Discov. Today, vol. 23, no. 4, pp. 879-890, 2018.
[http://dx.doi.org/10.1016/j.drudis.2018.01.049] [PMID: 29407177]
[89]
N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, and M. Koç, "Review of magnesium-based biomaterials and their applications", In: Journal of magnesium and alloys, vol. 6. 2018, pp. 23-43.
[http://dx.doi.org/10.1016/j.jma.2018.02.003]
[90]
H. Kim, S. Mondal, B. Jang, P. Manivasagan, M.S. Moorthy, and J. Oh, "Biomimetic synthesis of metal-hydroxyapatite (Au-HAp, Ag-HAp, Au-Ag-HAp): structural analysis, spectroscopic characterization and biomedical application", Ceram. Int., vol. 44, pp. 20490-20500, 2018.
[http://dx.doi.org/10.1016/j.ceramint.2018.08.045]
[91]
H. Kim, S. Mondal, S. Bharathiraja, P. Manivasagan, M.S. Moorthy, and J. Oh, "Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application", Ceram. Int., vol. 44, pp. 6062-6071, 2018.
[http://dx.doi.org/10.1016/j.ceramint.2017.12.235]
[92]
A.A. Fathy, I.S. Butler, M.A. Elrahman, B.J. Jean-Claude, and S.I. Mostafa, "Anticancer evaluation and drug delivery of new palladium (II) complexes based on the chelate of alendronate onto hydroxyapatite nanoparticles", Inorg. Chim. Acta, vol. 473, pp. 44-50, 2018.
[http://dx.doi.org/10.1016/j.ica.2017.12.015]
[93]
M. Ramadas, G. Bharath, N. Ponpandian, and A.M. Ballamurugan, "Investigation on biophysical properties of Hydroxyapatite/Graphene oxide (HAp/GO) based binary nanocomposite for biomedical applications", Mater. Chem. Phys., vol. 199, pp. 179-184, 2017.
[http://dx.doi.org/10.1016/j.matchemphys.2017.07.001]
[94]
E. El-Meliegy, M. Mabrouk, G.M. Kamal, S.M. Awad, A.M. El-Tohamy, and M.I. El Gohary, "Anticancer drug carriers using dicalcium phosphate/dextran/CMCnanocomposite scaffolds", J. Drug Deliv. Sci. Technol., vol. 45, pp. 315-322, 2018.
[http://dx.doi.org/10.1016/j.jddst.2018.03.026]
[95]
A.P. Sherje, M. Jadhav, B.R. Dravyakar, and D. Kadam, "Dendrimers: A versatile nanocarrier for drug delivery and targeting", Int. J. Pharm., vol. 548, no. 1, pp. 707-720, 2018.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[96]
D. Placente, L.A. Benedini, M. Baldini, J.A. Laiuppa, G.E. Santillán, and P.V. Messina, "Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations", Int. J. Pharm., vol. 548, no. 1, pp. 559-570, 2018.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.036] [PMID: 30016671]
[97]
G. Gonzalez, A. Sagarzazu, A. Cordova, M.E. Gomes, J. Salas, L. Contreras, K. Noris-Suarez, and L. Lascano, "Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery", Microporous Mesoporous Mater., vol. 256, pp. 251-265, 2018.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.021]
[98]
D. Li, X. Huang, Y. Wu, J. Li, W. Cheng, J. He, H. Tian, and Y. Huang, "Preparation of pH-responsive mesoporous hydroxyapatite nanoparticles for intracellular controlled release of an anticancer drug", Biomater. Sci., vol. 4, no. 2, pp. 272-280, 2016.
[http://dx.doi.org/10.1039/C5BM00228A] [PMID: 26484364]
[99]
M.U. Munir, A. Ihsan, Y. Sarwar, S.Z. Bajwa, K. Bano, B. Tehseen, N. Zeb, I. Hussain, M.T. Ansari, M. Saeed, J. Li, M.Z. Iqbal, A. Wu, and W.S. Khan, "Hollow mesoporous hydroxyapatite nanostructures; smart nanocarriers with high drug loading and controlled releasing features", Int. J. Pharm., vol. 544, no. 1, pp. 112-120, 2018.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.029] [PMID: 29678543]
[100]
M. Parent, H. Baradari, E. Champion, C. Damia, and M. Viana-Trecant, "Design of calcium phosphate ceramics for drug delivery applications in bone diseases: a review of the parameters affecting the loading and release of the therapeutic substance", J. Control. Release, vol. 252, pp. 1-17, 2017.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.012] [PMID: 28232225]
[101]
Y-H. Yang, C-H. Liu, Y-H. Liang, F-H. Lin, and K.C.W. Wu, "Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery", J. Mater. Chem. B Mater. Biol. Med., vol. 1, pp. 2447-2450, 2013.
[http://dx.doi.org/10.1039/c3tb20365d]
[102]
N. Subhapradha, M. Abudhahir, A. Aathira, N. Srinivasan, and A. Moorthi, "Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering", Int. J. Biol. Macromol., vol. 110, pp. 65-73, 2018.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.146] [PMID: 29197570]
[103]
Q. Zhang, and Y. Hua, "Corrosion inhibition of aluminum in hydrochloric acid solution by alkylimidazolium ionic liquids", Mater. Chem. Phys., vol. 119, pp. 57-64, 2010.
[http://dx.doi.org/10.1016/j.matchemphys.2009.07.035]
[104]
E. Sistanipour, A. Meshkini, and H. Oveisi, "Catechin-conjugated mesoporous hydroxyapatite nanoparticle: a novel nano-antioxidant with enhanced osteogenic property", Colloids Surf. B Biointerfaces, vol. 169, pp. 329-339, 2018.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.046] [PMID: 29800908]
[105]
V. Martin, and A. Bettencourt, "Bone regeneration: biomaterials as local delivery systems with improved osteoinductive properties", Mater. Sci. Eng. C, vol. 82, pp. 363-371, 2018.
[http://dx.doi.org/10.1016/j.msec.2017.04.038] [PMID: 29025670]
[106]
S. Chen, R. Li, X. Li, and J. Xie, "Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine", Adv. Drug Deliv. Rev., vol. 132, pp. 188-213, 2018.
[http://dx.doi.org/10.1016/j.addr.2018.05.001] [PMID: 29729295]
[107]
R. Sridhar, R. Lakshminarayanan, K. Madhaiyan, V. Amutha Barathi, K.H.C. Lim, and S. Ramakrishna, "Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals", Chem. Soc. Rev., vol. 44, no. 3, pp. 790-814, 2015.
[http://dx.doi.org/10.1039/C4CS00226A] [PMID: 25408245]
[108]
M.G. Mokwena, C.A. Kruger, M-T. Ivan, and A. Heidi, "A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer", Photodiagn. Photodyn. Ther., vol. 22, pp. 147-154, 2018.
[http://dx.doi.org/10.1016/j.pdpdt.2018.03.006] [PMID: 29588217]
[109]
A.A. Lopera, A. Montoya, I.D. Vélez, S.M. Robledo, and C.P. Garcia, "Synthesis of calcium phosphate nanostructures by combustion in solution as a potential encapsulant system of drugs with photodynamic properties for the treatment of cutaneous leishmaniasis", Photodiagn. Photodyn. Ther., vol. 21, pp. 138-146, 2018.
[http://dx.doi.org/10.1016/j.pdpdt.2017.11.017] [PMID: 29198762]
[110]
M.T. Calejo, T. Ilmarinen, H. Skottman, and M. Kellomäki, "Breath figures in tissue engineering and drug delivery: state-of-the-art and future perspectives", Acta Biomater., vol. 66, pp. 44-66, 2018.
[http://dx.doi.org/10.1016/j.actbio.2017.11.043] [PMID: 29183847]
[111]
A.D. Trofimov, A.A. Ivanova, M.V. Zyuzin, and A.S. Timin, "Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: fresh outlook and future perspectives", Pharmaceutics, vol. 10, no. 4, p. 167, 2018.
[http://dx.doi.org/10.3390/pharmaceutics10040167] [PMID: 30257514]
[112]
S.H. Lim, H. Kathuria, J.J.Y. Tan, and L. Kang, "3D printed drug delivery and testing systems - a passing fad or the future?", Adv. Drug Deliv. Rev., vol. 132, pp. 139-168, 2018.
[http://dx.doi.org/10.1016/j.addr.2018.05.006] [PMID: 29778901]
[113]
M. Li, F. Zhang, Y. Su, J. Zhou, and W. Wang, "Nanoparticles designed to regulate tumor microenvironment for cancer therapy", Life Sci., vol. 201, pp. 37-44, 2018.
[http://dx.doi.org/10.1016/j.lfs.2018.03.044] [PMID: 29577880]
[114]
S.G. Rotman, D.W. Grijpma, R.G. Richards, T.F. Moriarty, D. Eglin, and O. Guillaume, "Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics", J. Control. Release, vol. 269, pp. 88-99, 2018.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.009] [PMID: 29127000]
[115]
N.P. Truong, M.R. Whittaker, C.W. Mak, and T.P. Davis, "The importance of nanoparticle shape in cancer drug delivery", Expert Opin. Drug Deliv., vol. 12, no. 1, pp. 129-142, 2015.
[http://dx.doi.org/10.1517/17425247.2014.950564] [PMID: 25138827]

© 2024 Bentham Science Publishers | Privacy Policy