Review Article

姜黄素治疗非小细胞肺癌的最新进展:多效性状和纳米载体辅助递送的推动力

卷 28, 期 16, 2021

发表于: 24 August, 2020

页: [3061 - 3106] 页: 46

弟呕挨: 10.2174/0929867327666200824110332

价格: $65

摘要

非小细胞肺癌 (NSCLC) 的特点是 5 年生存率极低,为 18%,在被诊断的第一年内,超过一半的患者被治愈。生物医学工程和分子表征的进步通过对改变的基因表达和受损的细胞反应进行胆怯的筛查,减少了 NSCLC 的诊断。虽然靶向化疗仍然是非小细胞肺癌并发症的主要选择,但延迟诊断和并发多药耐药仍然是恢复正常的潜在障碍,最终导致复发。通过姜黄素的多效性和增强的肿瘤细胞内化化疗药物同时拦截明显表达的病理标志物,姜黄素给药在本文中呈现出良性解决方案。对 NSCLC 细胞系和相关异种移植模型的研究表明,由于通过与姜黄素共同递送增强化疗药物细胞内化,肿瘤进展持续下降。这为筛选临床受试者中的相应有效性提供了最佳准备。姜黄素可以 (i) 单独递送至 NSCLC 细胞,(ii) 与化疗药物在化学计量上最佳组合,(iii) 通过纳米载体,以及 (iv) 纳米载体共同递送姜黄素和化疗药物。纳米载体保护封装的药物免受意外和非特异性溢出。所有纳米载体的一个一致特征是它们的适度药物相互作用,从而不会篡改天然结构表达。有了这样的见解,本文重点关注隐含的 NSCLC 治疗机制,即-a-viz、游离姜黄素、纳米载体递送姜黄素、姜黄素 + 化疗药物和纳米载体辅助姜黄素 + 化疗药物递送。

关键词: 非小细胞肺癌 (NSCLC)、多药耐药、化疗、姜黄素、多效作用、多酚化合物。

[1]
Ridge, C.A.; McErlean, A.M.; Ginsberg, M.S. Epidemiology of lung cancer. Semin. Intervent. Radiol., 2013, 30(2), 93-98.
[http://dx.doi.org/10.1055/s-0033-1342949] [PMID: 24436524]
[2]
Cruz, C.S.D.; Tanoue, L.T.; Matthay, R.A. Lung cancer: epidemiology, etiology, and prevention. Clin. Chest Med., 2011, 32(4), 605-644.
[http://dx.doi.org/10.1016/j.ccm.2011.09.001] [PMID: 22054876]
[3]
Kumar, V.; Abbas, A.; Aster, J.; Robbins, P.A. Basic Pathology, 9th ed; Elsevier/Saunders: Philadelphia, 2013.
[4]
Fong, K.M.; Bowman, R.; Abraham, R.; Windsor, M.; Pratt, G.; Fielding, D.; Armstrong, J.; Zimmerman, P. Queensland Integrated Lung Cancer Outcomes Project (QILCOP): 2000-2003. Lung Cancer, 49(Suppl. 2), S201.
[http://dx.doi.org/10.1016/S0169-5002(05)80820-7]
[5]
Kini, S.R. Large cell undifferentiated carcinoma.Color Atlas of Pulmonary Cytopathology; Springer: New York, 2002, pp. 117-122.
[6]
Fernandez, F.G.; Battafarano, R.J. Large-cell neuroendocrine carcinoma of the lung. Cancer Contr., 2006, 13(4), 270-275.
[http://dx.doi.org/10.1177/107327480601300404] [PMID: 17075564]
[7]
Ellis, P.M.; Vandermeer, R. Delays in the diagnosis of lung cancer. J. Thorac. Dis., 2011, 3(3), 183-188.
[http://dx.doi.org/10.3978/j.issn.2072-1439.2011.01.01] [PMID: 22263086]
[8]
Zappa, C.; Mousa, S.A. Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[9]
Jones, G.S.; Baldwin, D.R. Recent advances in the management of lung cancer. Clin. Med. (Lond.), 2018, 18(Suppl. 2), s41-s46.
[http://dx.doi.org/10.7861/clinmedicine.18-2-s41] [PMID: 29700092]
[10]
Ming, X.; Feng, Y.; Yang, C.; Wang, W.; Wang, P.; Deng, J. Radiation-induced heart disease in lung cancer radiotherapy: a dosimetric update. Medicine (Baltimore), 2016, 95(41), e5051.
[http://dx.doi.org/10.1097/md.0000000000005051] [PMID: 27741117]
[11]
Parashar, B.; Arora, S.; Wernicke, A.G. Radiation therapy for early stage lung cancer. Semin. Intervent. Radiol., 2013, 30(2), 185-190.
[http://dx.doi.org/10.1055/s-0033-1342960] [PMID: 24436535]
[12]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei), 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[13]
Ramalingam, S.; Belani, C. Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist, 2008, 13(Suppl. 1), 5-13.
[http://dx.doi.org/10.1634/theoncologist.13-s1-5] [PMID: 18263769]
[14]
Masters, G.A.; Temin, S.; Azzoli, C.G.; Giaccone, G.; Baker, S., Jr; Brahmer, J.R.; Ellis, P.M.; Gajra, A.; Rackear, N.; Schiller, J.H.; Smith, T.J.; Strawn, J.R.; Trent, D.; Johnson, D.H. American Society of Clinical Oncology Clinical Practice. Systemic therapy for Stage IV nonsmall- cell lung cancer: american society of clinical oncology clinical practice guideline update J. Clin. Oncol., 2015, 33(30), 3488-3515.
[http://dx.doi.org/10.1200/jco.2015.62.1342] [PMID: 26324367]
[15]
Yin, H.; Guo, R.; Xu, Y.; Zheng, Y.; Hou, Z.; Dai, X.; Zhang, Z.; Zheng, D.; Xu, H. Synergistic antitumor efficiency of docetaxel and curcumin against lung cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2012, 44(2), 147-153.
[http://dx.doi.org/10.1093/abbs/gmr106] [PMID: 22126905]
[16]
Tan, B.L.; Norhaizan, M.E. Curcumin combination chemotherapy: the implication and efficacy in cancer. Molecules, 2019, 24(14), 2527.
[http://dx.doi.org/10.3390/molecules24142527] [PMID: 31295906]
[17]
Wei, Y.; Pu, X.; Zhao, L. Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy (review). Oncol. Rep., 2017, 37(6), 3159-3166.
[http://dx.doi.org/10.3892/or.2017.5593] [PMID: 28440434]
[18]
Wang, B.L.; Shen, Y.M.; Zhang, Q.W.; Li, Y.L.; Luo, M.; Liu, Z.; Li, Y.; Qian, Z.Y.; Gao, X.; Shi, H.S. Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. Int. J. Nanomedicine, 2013, 8, 3521-3531.
[http://dx.doi.org/10.2147/ijn.s45250] [PMID: 24101869]
[19]
Kolev, T.M.; Velcheva, E.A.; Stamboliyska, B.A.; Spiteller, M. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int. J. Quantum Chem., 2005, 102(6), 1069-1079.
[http://dx.doi.org/10.1002/qua.20469]
[20]
Jayaprakasha, G.K.; Rao, L.J.; Sakariah, K.K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem., 2006, 98(4), 720-724.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.037]
[21]
Shen, Y.; Han, C.; Chen, X.; Hou, X.; Long, Z. Simultaneous determination of three Curcuminoids in Curcuma wenyujin Y.H.chen et C.Ling. by liquid chromatography-tandem mass spectrometry combined with pressurized liquid extraction. J. Pharm. Biomed. Anal., 2013, 81-82, 146-150.
[http://dx.doi.org/10.1016/j.jpba.2013.03.027] [PMID: 23648558]
[22]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[23]
Wright, J.S. Predicting the antioxidant activity of curcumin and curcuminoids. J. Mol. Struct. Theochem, 2002, 591(1-3), 207-217.
[http://dx.doi.org/10.1016/S0166-1280(02)00242-7]
[24]
Brouet, I.; Ohshima, H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem. Biophys. Res. Commun., 1995, 206(2), 533-540.
[http://dx.doi.org/10.1006/bbrc.1995.1076] [PMID: 7530002]
[25]
Shishodia, S.; Amin, H.M.; Lai, R.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol., 2005, 70(5), 700-713.
[http://dx.doi.org/10.1016/j.bcp.2005.04.043] [PMID: 16023083]
[26]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[27]
Malik, P.; Mukherjee, T.K. Structure-function elucidation of antioxidative and prooxidative activities of the polyphenolic compound curcumin. Zhongguo Shengwuzhipinxue Zazhi, 2014, 2014(1), 1-8.
[http://dx.doi.org/10.1155/2014/396708]
[28]
Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[29]
Barclay, L.R.C.; Vinqvist, M.R.; Mukai, K.; Goto, H.; Hashimoto, Y.; Tokunaga, A.; Uno, H. On the antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity. Org. Lett., 2000, 2(18), 2841-2843.
[http://dx.doi.org/10.1021/ol000173t] [PMID: 10964379]
[30]
Shehzad, A.; Khan, S.; Shehzad, O.; Lee, Y.S. Curcumin therapeutic promises and bioavailability in colorectal cancer. Drugs Today (Barc), 2010, 46(7), 523-532.
[http://dx.doi.org/10.1358/dot.2010.46.7.1509560] [PMID: 20683505]
[31]
Goodpasture, C.E.; Arrighi, F.E. Effects of food seasonings on the cell cycle and chromosome morphology of mammalian cells in vitro with special reference to turmeric. Food Cosmet. Toxicol., 1976, 14(1), 9-14.
[http://dx.doi.org/10.1016/s0015-6264(76)80356-2] [PMID: 943364]
[32]
Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; Pirmohamed, M.; Gescher, A.J.; Steward, W.P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res., 2004, 10(20), 6847-6854.
[http://dx.doi.org/10.1158/1078-0432.ccr-04-0744] [PMID: 15501961]
[33]
Cianfruglia, L.; Minnelli, C.; Laudadio, E.; Scirè, A.; Armeni, T. Side effects of curcumin: epigenetic and antiproliferative implications for normal dermal fibroblast and breast cancer cells. Antioxidants, 2019, 8(9), 382.
[http://dx.doi.org/10.3390/antiox8090382] [PMID: 31505772]
[34]
Cao, J.; Jia, L.; Zhou, H.M.; Liu, Y.; Zhong, L.F. Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol. Sci., 2006, 91(2), 476-483.
[http://dx.doi.org/10.1093/toxsci/kfj153] [PMID: 16537656]
[35]
Fang, J.; Lu, J.; Holmgren, A. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J. Biol. Chem., 2005, 280(26), 25284-25290.
[http://dx.doi.org/10.1074/jbc.m414645200] [PMID: 15879598]
[36]
National toxicology Program. NTP toxicology and carcinogenesis studies of turmeric oleoresin (CAS No. 8024-37-1) (Major component 79%-85% curcumin, Cas No. 458-37-7) in F344/N rats and B6C3F1 mice (feed studies). Natl. Toxicol. Program Tech. Rep. Ser., 1993, 427, 1-275.
[PMID: 12616304]
[37]
Giri, A.K.; Das, S.K.; Talukder, G.; Sharma, A. Sister chromatid exchange and chromosome aberrations induced by curcumin and tartrazine on mammalian cells in vivo. Cytobios, 1990, 62(249), 111-117.
[PMID: 2209081]
[38]
Blasiak, J.; Trzeciak, A.; Kowalik, J. Curcumin damages DNA in human gastric mucosa cells and lymphocytes. J. Environ. Pathol. Toxicol. Oncol., 1999, 18(4), 271-276.
[PMID: 15281237]
[39]
Bielak-Zmijewska, A.; Sikora-Polaczek, M.; Nieznanski, K.; Mosieniak, G.; Kolano, A.; Maleszewski, M.; Styrna, J.; Sikora, E. Curcumin disrupts meiotic and mitotic divisions via spindle impairment and inhibition of CDK1 activity. Cell Prolif., 2010, 43(4), 354-364.
[http://dx.doi.org/10.1111/j.1365-2184.2010.00684.x] [PMID: 20590660]
[40]
Scirè, A.; Cianfruglia, L.; Minnelli, C.; Bartolini, D.; Torquato, P.; Principato, G.; Galli, F.; Armeni, T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors, 2019, 45(2), 152-168.
[http://dx.doi.org/10.1002/biof.1476] [PMID: 30561781]
[41]
Korwek, Z.; Bielak-Zmijewska, A.; Mosieniak, G.; Alster, O.; Moreno-Villanueva, M.; Burkle, A.; Sikora, E. DNA damage-independent apoptosis induced by curcumin in normal resting human T cells and leukaemic Jurkat cells. Mutagenesis, 2013, 28(4), 411-416.
[http://dx.doi.org/10.1093/mutage/get017] [PMID: 23486648]
[42]
Piwocka, K.; Jaruga, E.; Skierski, J.; Gradzka, I.; Sikora, E. Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells. Free Radic. Biol. Med., 2001, 31(5), 670-678.
[http://dx.doi.org/10.1016/s0891-5849(01)00629-3] [PMID: 11522452]
[43]
Mackawy, E.L.; Sharaf, H.A. Cytogenetical and histochemical studies on curcumin in male rats. WIT Press, 2006, 10, 169-180.
[http://dx.doi.org/10.2495/ETOX060171]
[44]
Barzegar, A.; Moosavi-Movahedi, A.A. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One, 2011, 6(10), e26012.
[http://dx.doi.org/10.1371/journal.pone.0026012] [PMID: 22016801]
[45]
Butu, M.; Rodino, S.; Butu, A.; Butnariu, M. Screening of bioflavonoid and antioxidant activity of Lens culinaris Medikus. Dig. J. Nanomater. Biostruct., 2014, 9(2), 519-529.
[46]
Coronel, J.; Pinos, I.; Amengual, J. Beta-carotene in obesity research: technical considerations and current status of the field. Nutrients, 2019, 11(4), 842.
[http://dx.doi.org/10.3390/nu11040842] [PMID: 31013923]
[47]
Esatbeyoglu, T.; Huebbe, P.; Insa, M.A. DawnChin, E.; Wagner, A.E.; Rimbach, G. Curcumin - From molecule to biological function. Angew. Chem. Int. Ed. Engl., 2012, 51(22), 5308-5332.
[http://dx.doi.org/10.1002/anie.201107724] [PMID: 22566106]
[48]
Paulucci, V.P.; Couto, R.O.; Teixeira, C.C.C.; Freitas, L.A.P. Optimization of the extraction of curcumin from Curcuma longa rhizomes. Braz. J. Pharmacogn., 2013, 23(1), 94-100.
[http://dx.doi.org/10.1590/S0102-695X2012005000117]
[49]
Li, M.; Ngadi, M.O.; Ma, Y. Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food Chem., 2014, 165, 29-34.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.115] [PMID: 25038645]
[50]
Priyadarsini, K.I. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[51]
Butnariu, M.; Rodino, S.; Petrache, P.; Negoescu, C.; Butu, M. Determination and quantification of maize zeaxanthin stability. Dig. J. Nanomater. Biostruct., 2014, 9(2), 745-755.
[52]
Butnariu, M.; Sarac, I.; Samfira, I. Spectrophotometric and chromatographic strategies for exploring of the nanostructure pharmaceutical formulations which contains testosterone undecanoate. Sci. Rep., 2020, 10(1), 3569.
[http://dx.doi.org/10.1038/s41598-020-60657-4] [PMID: 32107451]
[53]
Pramasivam, M.; Poi, R.; Banarjee, H.; Bandopadhyay, A. High performance thin layer chromatography method for quantitative determination of curcuminoids in Curcuma longa. Food Chem., 2009, 113(2), 640-644.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.051]
[54]
Ali, A.; Haque, A.; Saleem, K. Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column. Anal. Methods, 2014, 6(8), 2526-2536.
[http://dx.doi.org/10.1039/C3AY41987H]
[55]
Lee, K.J.; Kim, Y.S.; Jung, P.M.; Ma, J.Y. Optimizations of the conditions for the analysis of curcumin and a related compound in Curcuma longa with mobile-phase composition and column temperature via RP-HPLC. Asian J. Chem., 2013, 25(11), 6306-6310.
[http://dx.doi.org/10.14233/ajchem.2013.14471]]
[56]
Lee, K.J.; Kim, Y.S.; Ma, J.Y. Separation and identification of curcuminoids from Asian turmeric (Curcuma longa L.) using RP-HPLC and LC-MS. Asian J. Chem., 2013, 25(2), 909-912.
[http://dx.doi.org/10.14233/ajchem.2013.13129]]
[57]
Sun, X.; Gao, C.; Cao, W.; Yang, X.; Wang, E. Capillary electrophoresis with amperometric detection of curcumin in Chinese herbal medicine pretreated by solid-phase extraction. J. Chromatogr. A, 2002, 962(1-2), 117-125.
[http://dx.doi.org/10.1016/s0021-9673(02)00509-5] [PMID: 12198956]
[58]
Pentea, M.; Butu, M.; Samfira, I.; Cristina, R.T.; Butnariu, M. Extraction and analytical study of Salvinorin from leaves of Salvia divinorum. Dig. J. Nanomater. Biostruct., 2015, 10(1), 291-297.
[59]
Butu, M.; Butnariu, M.; Rodino, S.; Butu, A. Study of zingiberene from Lycopersicon esculentum fruit by mass spectrometry. Dig. J. Nanomater. Biostruct., 2014, 9(3), 935-941.
[60]
Butnariu, M.; Sarac, I.; Pentea, M.; Samfira, I.; Negrea, A.; Motoc, M.; Buzato, A.R.; Ciopec, M. Approach for analyse stability of lutein from Tropaeolum majus. Rev. Chim. (Bucharest), 2016, 67(3), 503-506.
[61]
Nhujak, T.; Saisuwan, W.; Srisa-art, M.; Petsom, A. Microemulsion electrokinetic chromatography for separation and analysis of curcuminoids in turmeric samples. J. Sep. Sci., 2006, 29(5), 666-676.
[http://dx.doi.org/10.1002/jssc.200500333] [PMID: 16605086]
[62]
Samafira, I.; Rodino, S.; Petrache, P.; Cristina, R.T.; Butu, M.; Butnariu, M. Characterization and identity confirmation of essential oils by mid infrared absorption spectrophotometry. Dig. J. Nanomater. Biostruct., 2015, 10(2), 557-566.
[63]
Barbat, C.; Rodino, S.; Petrache, P.; Butu, M.; Butnariu, M. Microencapsulation of the allelochemical compounds and study of their release from different products. Dig. J. Nanomater. Biostruct., 2013, 8(3), 945-953.
[64]
Selamat, S.A.; Chung, B.S.; Girard, L.; Zhang, W.; Zhang, Y.; Campan, M.; Siegmund, K.D.; Koss, M.N.; Hagen, J.A.; Lam, W.L.; Lam, S.; Gazdar, A.F.; Laird-Offringa, I.A. Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res., 2012, 22(7), 1197-1211.
[http://dx.doi.org/10.1101/gr.132662.111] [PMID: 22613842]
[65]
Győrffy, B.; Surowiak, P.; Budczies, J.; Lánczky, A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One, 2013, 8(12), e82241.
[http://dx.doi.org/10.1371/journal.pone.0082241] [PMID: 24367507]
[66]
Hou, J.; Aerts, J.; den Hamer, B.; van Ijcken, W.; den Bakker, M.; Riegman, P.; van der Leest, C.; van der Spek, P.; Foekens, J.A.; Hoogsteden, H.C.; Grosveld, F.; Philipsen, S. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One, 2010, 5(4), e10312.
[http://dx.doi.org/10.1371/journal.pone.0010312] [PMID: 20421987]
[67]
Siddiqui, F.A.; Prakasam, G.; Chattopadhyay, S.; Rehman, A.U.; Padder, R.A.; Ansari, M.A.; Irshad, R.; Mangalhara, K.; Bamezai, R.N.K.; Husain, M.; Ali, S.M.; Iqbal, M.A. Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci. Rep., 2018, 8(1), 8323.
[http://dx.doi.org/10.1038/s41598-018-25524-3] [PMID: 29844464]
[68]
Liberti, M.V.; Locasale, J.W. The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[69]
Lee, J. Im, Y.-H.; Jung, H.H.; Kim, J.H.; Park, J.O; Kim, K.; Kim, W.S.; Ahn, J.S.; Jung, C.W.; Park, Y.S.; Kang, W.K.; Park, K. Curcumin inhibits interferon-α induced NF-κB and COX-2 in human A549 non-small cell lung cancer cells. Biochem. Biophys. Res. Commun., 2005, 334, 313-318.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.093] [PMID: 16005433]
[70]
Sundararaj, S.C.; Al-Sabbagh, M.; Rabek, C.L.; Dziubla, T.D.; Thomas, M.V.; Puleo, D.A. Comparison of sequential drug release in vitro and in vivo. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(7), 1302-1310.
[http://dx.doi.org/10.1002/jbm.b.33472] [PMID: 26111338]
[71]
Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 524-539.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[72]
Adiwidjaja, J.; McLachlan, A.J.; Boddy, A.V. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin. Drug Metab. Toxicol., 2017, 13(9), 953-972.
[http://dx.doi.org/10.1080/17425255.2017.1360279] [PMID: 28776444]
[73]
Salehi, M.; Movahedpour, A.; Tayarani, A.; Shabaninejad, Z.; Pourhanifeh, M.H.; Mortezapour, E.; Nickdasti, A.; Mottaghi, R.; Davoodabadi, A.; Khan, H.; Savardashtaki, A.; Mirzaei, H. Therapeutic potentials of curcumin in the treatment of non-small-cell lung carcinoma. Phytother. Res., 2020, 34(10), 2557-2576.
[http://dx.doi.org/10.1002/ptr.6704] [PMID: 32307773]
[74]
Shang, S.; Hua, F.; Hu, Z.W. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget, 2017, 8(20), 33972-33989.
[http://dx.doi.org/10.18632/oncotarget.15687] [PMID: 28430641]
[75]
Pai, S.G.; Carneiro, B.A.; Mota, J.M.; Costa, R.; Leite, C.A.; Barroso-Sousa, R.; Kaplan, J.B.; Chae, Y.K.; Giles, F.J. Wnt/beta-catenin pathway: modulating anticancer immune response. J. Hematol. Oncol., 2017, 10(1), 101.
[http://dx.doi.org/10.1186/s13045-017-0471-6] [PMID: 28476164]
[76]
Maiuthed, A.; Chantarawong, W.; Chanvorachote, P. Lung cancer stem cells and cancer stem cell-targeting natural compounds. Anticancer Res., 2018, 38(7), 3797-3809.
[http://dx.doi.org/10.21873/anticanres.12663] [PMID: 29970499]
[77]
Thiery, J.P. Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol., 2003, 15(6), 740-746.
[http://dx.doi.org/10.1016/j.ceb.2003.10.006] [PMID: 14644200]
[78]
Lu, Y.; Wei, C.; Xi, Z. Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/β-catenin pathway. In Vitro Cell. Dev. Biol. Anim., 2014, 50(9), 840-850.
[http://dx.doi.org/10.1007/s11626-014-9779-5] [PMID: 24938356]
[79]
Wu, L.; Guo, L.; Liang, Y.; Liu, X.; Jiang, L.; Wang, L. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol. Rep., 2015, 34(6), 3311-3317.
[http://dx.doi.org/10.3892/or.2015.4279] [PMID: 26397387]
[80]
Baharuddin, P.; Satar, N.; Fakiruddin, K.S.; Zakaria, N.; Lim, M.N.; Yusoff, N.M.; Zakaria, Z.; Yahaya, B.H. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines. Oncol. Rep., 2016, 35(1), 13-25.
[http://dx.doi.org/10.3892/or.2015.4371] [PMID: 26531053]
[81]
Mirza, S.; Vasaiya, A.; Vora, H.; Jain, N.; Rawal, R. Curcumin targets circulating cancer stem cells by inhibiting self-renewal efficacy in non-small cell lung carcinoma. Anticancer. Agents Med. Chem., 2017, 17(6), 859-864.
[http://dx.doi.org/10.2174/1871520616666160923102549] [PMID: 27671306]
[82]
Zhu, J.Y.; Yang, X.; Chen, Y.; Jiang, Y.; Wang, S.J.; Li, Y.; Wang, X.Q.; Meng, Y.; Zhu, M.M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.F.; Li, X.T.; Geng, S.S.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β-catenin and sonic hedgehog pathways. Phytother. Res., 2017, 31(4), 680-688.
[http://dx.doi.org/10.1002/ptr.5791] [PMID: 28198062]
[83]
Li, X.; Ma, S.; Yang, P.; Sun, B.; Zhang, Y.; Sun, Y.; Hao, M.; Mou, R.; Jia, Y. Anticancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. Oncol. Lett., 2018, 16(5), 6756-6762.
[http://dx.doi.org/10.3892/ol.2018.9488] [PMID: 30405819]
[84]
Yu, J.S.; Cui, W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development, 2016, 143(17), 3050-3060.
[http://dx.doi.org/10.1242/dev.137075] [PMID: 27578176]
[85]
Wang, M.; Jiang, S.; Zhou, L.; Yu, F.; Ding, H.; Li, P.; Zhou, M.; Wang, K. Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. Int. J. Biol. Sci., 2019, 15(6), 1200-1214.
[http://dx.doi.org/10.7150/ijbs.33710] [PMID: 31223280]
[86]
Morris, R.; Kershaw, N.J.; Babon, J.J. The molecular details of cytokine signaling via the JAK.STAT pathway. Protein Sci., 2018, 27(12), 1984-2009.
[http://dx.doi.org/10.1002/pro.3519] [PMID: 30267440]
[87]
Villarino, A.V.; Kanno, Y.; O’Shea, J.J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol., 2017, 18(4), 374-384.
[http://dx.doi.org/10.1038/ni.3691] [PMID: 28323260]
[88]
Xu, X.; Zhu, Y. Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway. Am. J. Transl. Res., 2017, 9(8), 3633-3641.
[PMID: 28861154]
[89]
Chaturvedi, M.M.; Sung, B.; Yadav, V.R.; Kannappan, R.; Aggarwal, B.B. NF-κB addiction and its role in cancer: ‘one size does not fit all’. Oncogene, 2011, 30(14), 1615-1630.
[http://dx.doi.org/10.1038/onc.2010.566] [PMID: 21170083]
[90]
Ahn, K.S.; Sethi, G.; Aggarwal, B.B. Nuclear factor-kappa B: from clone to clinic. Curr. Mol. Med., 2007, 7(7), 619-637.
[http://dx.doi.org/10.2174/156652407782564363] [PMID: 18045141]
[91]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[92]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[93]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[94]
Shishodia, S.; Singh, T.; Chaturvedi, M.M. Modulation of transcription factors by curcumin. Adv. Exp. Med. Biol., 2007, 595, 127-148.
[http://dx.doi.org/10.1007/978-0-387-46401-5_4] [PMID: 17569208]
[95]
Bhaumik, S.; Anjum, R.; Rangaraj, N.; Pardhasaradhi, B.V.V.; Khar, A. Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett., 1999, 456(2), 311-314.
[http://dx.doi.org/10.1016/s0014-5793(99)00969-2] [PMID: 10456330]
[96]
Khar, A.; Ali, A.M.; Pardhasaradhi, B.V.V.; Varalakshmi, C.H.; Anjum, R.; Kumari, A.L. Induction of stress response renders human tumor cell lines resistant to curcumin-mediated apoptosis: role of reactive oxygen intermediates. Cell Stress Chaperones, 2001, 6(4), 368-376.
[http://dx.doi.org/10.1379/1466-1268(2001)006%3C0368:iosrrh%3E2.0.co;2] [PMID: 11795474]
[97]
Li, Y.; Zhang, S.; Geng, J.X.; Hu, X.Y. Curcumin inhibits human non-small cell lung cancer A549 cell proliferation through regulation of Bcl-2/Bax and cytochrome C. Asian Pac. J. Cancer Prev., 2013, 14(8), 4599-4602.
[http://dx.doi.org/10.7314/apjcp.2013.14.8.4599] [PMID: 24083709]
[98]
Anto, R.J.; Mukhopadhyay, A.; Denning, K.; Aggarwal, B.B. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 2002, 23(1), 143-150.
[http://dx.doi.org/10.1093/carcin/23.1.143] [PMID: 11756235]
[99]
Chang, A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer, 2011, 71(1), 3-10.
[http://dx.doi.org/10.1016/j.lungcan.2010.08.022] [PMID: 20951465]
[100]
Chen, H.W.; Lee, J.Y.; Huang, J.Y.; Wang, C.C.; Chen, W.J.; Su, S.F.; Huang, C.W.; Ho, C.C.; Chen, J.J.; Tsai, M.F.; Yu, S.L.; Yang, P.C. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res., 2008, 68(18), 7428-7438.
[http://dx.doi.org/10.1158/0008-5472.can-07-6734] [PMID: 18794131]
[101]
Guz, M.; Rivero-Müller, A.; Okoń, E.; Stenzel-Bembenek, A.; Polberg, K.; Słomka, M.; Stepulak, A. MicroRNAs-role in lung cancer. Dis. Markers, 2014, 2014, 218169.
[http://dx.doi.org/10.1155/2014/218169] [PMID: 24744457]
[102]
Zhang, W.; Bai, W.; Zhang, W. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clin. Transl. Oncol., 2014, 16(8), 708-713.
[http://dx.doi.org/10.1155/2014/218169] [PMID: 24293118]
[103]
Jin, H.; Qiao, F.; Wang, Y.; Xu, Y.; Shang, Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol. Rep., 2015, 34(5), 2782-2789.
[http://dx.doi.org/10.3892/or.2015.4258] [PMID: 26351877]
[104]
Zhan, J.W.; Jiao, D.M.; Wang, Y.; Song, J.; Wu, J.H.; Wu, L.J.; Chen, Q.Y.; Ma, S.L. Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti-lung cancer cell invasion. Thorac. Cancer, 2017, 8(5), 461-470.
[http://dx.doi.org/10.1111/1759-7714.12467] [PMID: 28660665]
[105]
Liu, W.L.; Chang, J.M.; Chong, I.W.; Hung, Y.L.; Chen, Y.H.; Huang, W.T.; Kuo, H.F.; Hsieh, C.C.; Liu, P.L. Curcumin inhibits LIN-28A through the activation of miRNA-98 in the lung cancer cell line A549. Molecules, 2017, 22(6), 929.
[http://dx.doi.org/10.3390/molecules22060929] [PMID: 28587210]
[106]
Zhang, J.; Du, Y.; Wu, C.; Ren, X.; Ti, X.; Shi, J.; Zhao, F.; Yin, H. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol. Rep., 2010, 24(5), 1217-1223.
[http://dx.doi.org/10.3892/or_00000975] [PMID: 20878113]
[107]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy: cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[108]
Wang, A.; Wang, J.; Zhang, S.; Zhang, H.; Xu, Z.; Li, X. Curcumin inhibits the development of non-small cell lung cancer by inhibiting autophagy and apoptosis. Exp. Ther. Med., 2017, 14(5), 5075-5080.
[http://dx.doi.org/10.3892/etm.2017.5172] [PMID: 29201217]
[109]
Liu, F.; Gao, S.; Yang, Y.; Zhao, X.; Fan, Y.; Ma, W.; Yang, D.; Yang, A.; Yu, Y. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549. Oncol. Lett., 2017, 14(3), 2775-2782.
[http://dx.doi.org/10.3892/ol.2017.6565] [PMID: 28928819]
[110]
Liu, F.; Gao, S.; Yang, Y.; Zhao, X.; Fan, Y.; Ma, W.; Yang, D.; Yang, A.; Yu, Y. Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol. Rep., 2018, 39(3), 1523-1531.
[http://dx.doi.org/10.3892/or.2018.6188] [PMID: 29328421]
[111]
Chen, Q.; Men, Y.; Wang, H.; Chen, R.; Han, X.; Liu, J. Curcumin inhibits proliferation and migration of A549 lung cancer cells through activation of ERK1/2 pathway induced autophagy. Nat. Prod. Comm., 2019, 14(6), 1-7.
[http://dx.doi.org/10.1177/2F193.4578X.19848179]
[112]
Chen, Q.Y.; Jiao, D.M.; Wang, L.F.; Wang, L.; Hu, H.Z.; Song, J.; Yan, J.; Wu, L.J.; Shi, J.G. Curcumin inhibits proliferation-migration of NSCLC by steering crosstalk between a Wnt signaling pathway and an adherens junction via EGR-1. Mol. Biosyst., 2015, 11(3), 859-868.
[http://dx.doi.org/10.1039/c4mb00336e] [PMID: 25578635]
[113]
Zhou, G.Z.; Wang, Q.Q.; Wang, P.B.; Wang, Z.C.; Sun, G.C. One novel curcumin derivative ZYX01 induces autophagy of human non-small lung cancer cells A549 through AMPK/ULK1/Beclin-1 signaling pathway. Cell. Mol. Biol., 2019, 65(2), 1-6.
[PMID: 30860465]
[114]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[115]
Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; Kosaka, T.; Holmes, A.J.; Rogers, A.M.; Cappuzzo, F.; Mok, T.; Lee, C.; Johnson, B.E.; Cantley, L.C.; Jänne, P.A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007, 316(5827), 1039-1043.
[http://dx.doi.org/10.1126/science.1141478] [PMID: 17463250]
[116]
Turke, A.B.; Zejnullahu, K.; Wu, Y.L.; Song, Y.; Dias-Santagata, D.; Lifshits, E.; Toschi, L.; Rogers, A.; Mok, T.; Sequist, L.; Lindeman, N.I.; Murphy, C.; Akhavanfard, S.; Yeap, B.Y.; Xiao, Y.; Capelletti, M.; Iafrate, A.J.; Lee, C.; Christensen, J.G.; Engelman, J.A.; Jänne, P.A. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell, 2010, 17(1), 77-88.
[http://dx.doi.org/10.1016/j.ccr.2009.11.022] [PMID: 20129249]
[117]
Pao, W.; Wang, T.Y.; Riely, G.J.; Miller, V.A.; Pan, Q.; Ladanyi, M.; Zakowski, M.F.; Heelan, R.T.; Kris, M.G.; Varmus, H.E. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med., 2005, 2(1), e17.
[http://dx.doi.org/10.1371/journal.pmed.0020017] [PMID: 15696205]
[118]
Robinson, D.R.; Wu, Y.M.; Lonigro, R.J.; Vats, P.; Cobain, E.; Everett, J.; Cao, X.; Rabban, E.; Kumar-Sinha, C.; Raymond, V.; Schuetze, S.; Alva, A.; Siddiqui, J.; Chugh, R.; Worden, F.; Zalupski, M.M.; Innis, J.; Mody, R.J.; Tomlins, S.A.; Lucas, D.; Baker, L.H.; Ramnath, N.; Schott, A.F.; Hayes, D.F.; Vijai, J.; Offit, K.; Stoffel, E.M.; Roberts, J.S.; Smith, D.C.; Kunju, L.P.; Talpaz, M.; Cieślik, M.; Chinnaiyan, A.M. Integrative clinical genomics of metastatic cancer. Nature, 2017, 548(7667), 297-303.
[http://dx.doi.org/10.1038/nature23306] [PMID: 28783718]
[119]
Wu, S.H.; Hang, L.W.; Yang, J.S.; Chen, H.Y.; Lin, H.Y.; Chiang, J.H.; Lu, C.C.; Yang, J.L.; Lai, T.Y.; Ko, Y.C.; Chung, J.G. Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade- and mitochondria-dependent pathways. Anticancer Res., 2010, 30(6), 2125-2133.
[PMID: 20651361]
[120]
Xia, Y.Q.; Wei, X-Y.; Li, W-L.; Kanchana, K.; Xu, C.C.; Chen, D.H.; Chou, P.H.; Jin, R.; Wu, J.Z.; Liang, G. Curcumin analogue A501 induces G2/M arrest and apoptosis in non-small cell lung cancer cells. Asian Pac. J. Cancer Prev., 2014, 15(16), 6893-6898.
[http://dx.doi.org/10.7314/apjcp.2014.15.16.6893] [PMID: 25169542]
[121]
Liao, H.; Wang, Z.; Deng, Z.; Ren, H.; Li, X. Curcumin inhibits lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway. Int. J. Clin. Exp. Med., 2015, 8(6), 8948-8957.
[PMID: 26309547]
[122]
Yu, C.C.; Yang, M.D.; Lin, H.Y.; Huang, A.C.; Lin, J.P.; Kuo, C.L.; Liu, K.C.; Liu, H.C.; Yang, S.T.; Chung, J.G.J.; Kuo, C.; Liu, K.; Liu, H.; Yang, S.; Chung, J. Bisdemethoxycurcumin (BDMC) alters gene expression associated cell cycle, cell migration and invasion and tumor progression in human lung cancer NCI-H460 Cells. In Vivo, 2015, 29(6), 711-728.
[PMID: 26546528]
[123]
Datta, R.; Halder, S.K.; Zhang, B. Role of TGF-β signaling in curcumin-mediated inhibition of tumorigenicity of human lung cancer cells. J. Cancer Res. Clin. Oncol., 2013, 139(4), 563-572.
[http://dx.doi.org/10.1007/s00432-012-1352-6] [PMID: 23224523]
[124]
Tsai, J.; Liu, P.; Chen, Y.; Chou, S.; Cheng, Y.; Hwang, J.J.; Chong, I.W. Curcumin inhibits non-small cell lung cancer cells metastasis through the adiponectin/NF-κb/MMPs signaling pathway. PLoS One, 2015, 10(12), e0144462.
[http://dx.doi.org/10.1371/journal.pone.0144462] [PMID: 26656720]
[125]
(a)Zhou, G.; Sun, G.; Zhou, Y.; Wang, Q. Transcriptomic analysis of human non-small lung cancer cells A549 treated by one synthetic curcumin derivative MHMD. Cell. Mol. Biol., 2017, 63(9), 35-39.
[http://dx.doi.org/10.14715/cmb/2017.63.9.7] [PMID: 28980920]
(b)Zhou, G-Z.; Cao, F-K.; Chang, J-M.; Sun, G-C.; Chen, X-B. Mechanism of curcumin analog MHMD-induced cell death in A549 lung cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2014, 18(20), 3134-3138.
[PMID: 25392116]
(c)Zhou, G.Z.; Cao, F.K.; Du, S.W. The apoptotic pathways in the curcumin analog MHMD-induced lung cancer cell death and the essential role of actin polymerization during apoptosis. Biomed. Pharmacother., 2015, 71, 128-134.
[http://dx.doi.org/10.1016/j.biopha.2015.02.025] [PMID: 25960227]
(d)Zhou, G.Z.; Li, A.F.; Sun, Y.H.; Sun, G.C. A novel synthetic curcumin derivative MHMM-41 induces ROS-mediated apoptosis and migration blocking of human lung cancer cells A549. Biomed. Pharmacother., 2018, 103, 391-398.
[http://dx.doi.org/10.1016/j.biopha.2018.04.086] [PMID: 29674274]
[126]
Radhakrishna Pillai, G.; Srivastava, A.S.; Hassanein, T.I.; Chauhan, D.P.; Carrier, E. Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett., 2004, 208(2), 163-170.
[http://dx.doi.org/10.1016/j.canlet.2004.01.008] [PMID: 15142674]
[127]
Tang, L.; Liu, J.; Zhu, L.; Chen, Q.; Meng, Z.; Sun, L.; Hu, J.; Ni, Z.; Wang, X. Curcumin inhibits growth of human NCI-H292 lung squamous cell carcinoma cells by increasing FOXA2 expression. Front. Pharmacol., 2018, 9, 60.
[http://dx.doi.org/10.3389/fphar.2018.00060] [PMID: 29456509]
[128]
Liang, B.; Shao, Y.; Long, F.; Jiang, S.J. Predicting diagnostic gene biomarkers for non-small-cell lung cancer. Biomed Res. Int., 2016, 2016, 3952494.
[http://dx.doi.org/10.1155/2016/3952494] [PMID: 27579312]
[129]
Bersaas, A.; Arnoldussen, Y.J.; Sjøberg, M.; Haugen, A.; Mollerup, S. Epithelial-mesenchymal transition and FOXA genes during tobacco smoke carcinogen induced transformation of human bronchial epithelial cells. Toxicol. In Vitro, 2016, 35, 55-65.
[http://dx.doi.org/10.1016/j.tiv.2016.04.012] [PMID: 27221058]
[130]
(a)Zhou, G.Z.; Shi, Y.Y.; Wei, L.L.; Sun, G.C. Autophagy induction and antiproliferative effect of a novel curcumin derivative MOMI-1 on the human lung cancer cells A549. J. Biochem. Mol. Toxicol, 2019, 33(4), e22280.
[http://dx.doi.org/10.1002/jbt.22280] [PMID: 30485594]
(b)Zhou, G.Z.; Xu, S.L.; Sun, G.C.; Chen, X.B. Novel curcumin analogue IHCH exhibits potent anti-proliferative effects by inducing autophagy in A549 lung cancer cells. Mol. Med. Rep., 2014, 10(1), 441-446.
[http://dx.doi.org/10.3892/mmr.2014.2183] [PMID: 24788478]
(c)Zhou, G.Z.; Sun, G.C.; Zhang, S.N. The interplay between autophagy and apoptosis induced by one synthetic curcumin derivative hydrazinobenzoylcurcumin in A549 lung cancer cells. J. Biochem. Mol. Toxicol., 2015, 29(6), 267-273.
[http://dx.doi.org/10.1002/jbt.21694] [PMID: 25683568]
(d)Zhou, G.Z.; Sun, G.; Zhang, S.N. Curcumin derivative HBC induces autophagy through activating AMPK signal in A549 cancer cells. Mol. Cell. Toxicol., 2015, 11(1), 29-34.
[http://dx.doi.org/10.1007/s13273-015-0004-8]
[131]
Wang, C.; Song, X.; Shang, M.; Zou, W.; Zhang, M.; Wei, H.; Shao, H. Curcumin exerts cytotoxicity dependent on reactive oxygen species accumulation in non-small-cell lung cancer cells. Future Oncol., 2019, 15(11), 1243-1253.
[http://dx.doi.org/10.2217/fon-2018-0708] [PMID: 30843426]
[132]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[133]
Rout, G.K.; Shin, H.S.; Gouda, S.; Sahoo, S.; Das, G.; Fraceto, L.F.; Patra, J.K. Current advances in nanocarriers for biomedical research and their applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 2), 1053-1062.
[http://dx.doi.org/10.1080/21691401.2018.1478843] [PMID: 29879850]
[134]
Lomis, N.; Westfall, S.; Farahdel, L.; Malhotra, M.; Shum-Tim, D.; Prakash, S. Human serum albumin nanoparticles for use in cancer drug delivery: process optimization and in vitro characterization. Nanomaterials (Basel), 2016, 6(6), 116-123.
[http://dx.doi.org/10.3390/nano6060116] [PMID: 28335244]
[135]
Malik, P.; Inwati, G.K.; Mukherjee, T.K.; Singh, S.; Singh, M. Green silver nanoparticle and Tween-20 modulated pro-oxidant to antioxidant curcumin transformation in aqueous CTAB stabilized peanut oil emulsions. J. Mol. Liq., 2019, 291, 111252.
[http://dx.doi.org/10.1016/j.molliq.2019.111252]
[136]
Huang, W.T.; Larsson, M.; Wang, Y.J.; Chiou, S.H.; Lin, H.Y.; Liu, D.M. Demethoxycurcumin-carrying chitosan-antibody core-shell nanoparticles with multitherapeutic efficacy toward malignant A549 lung tumor: from in vitro characterization to in vivo evaluation. Mol. Pharm., 2015, 12(4), 1242-1249.
[http://dx.doi.org/10.1021/mp500747w] [PMID: 25760774]
[137]
Jiang, S.; Zhu, R.; He, X.; Wang, J.; Wang, M.; Qian, Y.; Wang, S. Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles. Int. J. Nanomedicine, 2016, 12, 167-178.
[http://dx.doi.org/10.2147/ijn.s123107] [PMID: 28053531]
[138]
Ranjan, A.P.; Mukerjee, A.; Gdowski, A.; Helson, L.; Bouchard, A.; Majeed, M.; Vishwanatha, J.K. Curcumin-ER prolonged subcutaneous delivery for the treatment of non-small cell lung cancer. J. Biomed. Nanotechnol., 2016, 12(4), 679-688.
[http://dx.doi.org/10.1166/jbn.2016.2207] [PMID: 27301194]
[139]
Sun, L.; Wan, K.; Hu, X.; Zhang, Y.; Yan, Z.; Feng, J.; Zhang, J. Functional nanoemulsion-hybrid lipid nanocarriers enhance the bioavailability and anti-cancer activity of lipophilic diferuloylmethane. Nanotechnology, 2016, 27(8), 085102.
[http://dx.doi.org/10.1088/0957-4484/27/8/085102] [PMID: 26808001]
[140]
Malekmohammadi, S.; Hadadzadeh, H.; Farrokhpour, H.; Amirghofran, Z. Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: a new nanoplatform for curcumin pH-controlled and targeted delivery. Soft Matter, 2018, 14(12), 2400-2410.
[http://dx.doi.org/10.1039/c7sm02248d] [PMID: 29512668]
[141]
Muddineti, O.S.; Shah, A.; Rompicharla, S.V.K.; Ghosh, B.; Biswas, S. Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. Int. J. Biol. Macromol, 2018, 118(Pt A), 857-863.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.114] [PMID: 29953893]
[142]
Zhang, T.; Chen, Y.; Ge, Y.; Hu, Y.; Li, M.; Jin, Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B, 2018, 8(3), 440-448.
[http://dx.doi.org/10.1016/j.apsb.2018.03.004] [PMID: 29881683]
[143]
Guerrero, S.; Inostroza-Riquelme, M.; Contreras-Orellana, P.; Diaz-Garcia, V.; Lara, P.; Vivanco-Palma, A.; Cárdenas, A.; Miranda, V.; Robert, P.; Leyton, L.; Kogan, M.J.; Quest, A.F.G.; Oyarzun-Ampuero, F. Curcumin-loaded nanoemulsion: a new safe and effective formulation to prevent tumor reincidence and metastasis. Nanoscale, 2018, 10(47), 22612-22622.
[http://dx.doi.org/10.1039/c8nr06173d] [PMID: 30484463]
[144]
Lv, Y.; Zhao, X.; Zhu, L.; Li, S.; Xiao, Q.; He, W.; Yin, L. Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis. Theranostics, 2018, 8(10), 2830-2845.
[http://dx.doi.org/10.7150/thno.23209] [PMID: 29774078]
[145]
Gonzalez-Avila, G.; Sommer, B.; Mendoza-Posada, D.A.; Ramos, C.; Garcia-Hernandez, A.A.; Falfan-Valencia, R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit. Rev. Oncol. Hematol., 2019, 137, 57-83.
[http://dx.doi.org/10.1016/j.critrevonc.2019.02.010] [PMID: 31014516]
[146]
Tsai, J.H.; Yang, J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev., 2013, 27(20), 2192-2206.
[http://dx.doi.org/10.1101/gad.225334.113] [PMID: 24142872]
[147]
(a)Cannito, S.; Novo, E.; di Bonzo, L.V.; Busletta, C.; Colombatto, S.; Parola, M. Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid. RedoxSignal., 2010, 12(12), 1383-1430.
[http://dx.doi.org/10.1089/ars.2009.2737] [PMID: 19903090]
(b)Balendiran, G.K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22(6), 343-352.
[http://dx.doi.org/10.1002/cbf.1149] [PMID: 15386533]
[148]
Jiang, J.; Wang, K.; Chen, Y.; Chen, H.; Nice, E.C.; Huang, C. Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct. Target. Ther., 2017, 2, 17036.
[http://dx.doi.org/10.1038/sigtrans.2017.36] [PMID: 29263924]
[149]
Goel, A.; Aggarwal, B.B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr. Cancer, 2010, 62(7), 919-930.
[http://dx.doi.org/10.1080/01635581.2010.509835] [PMID: 20924967]
[150]
Hashemi, M.; Ebrahimian, M. Recent advances in nanoformulations for co-delivery of curcumin and chemotherapeutic drugs. Nanomed. J., 2017, 4(1), 1-7.
[http://dx.doi.org/10.22038/nmj.2017.8046]]
[151]
Yan, G.; Li, A.; Zhang, A.; Sun, Y.; Liu, J. Polymer-based nanocarriers for co-delivery and combination of diverse therapies against cancers. Nanomaterials (Basel), 2018, 8(2), 85.
[http://dx.doi.org/10.3390/nano8020085] [PMID: 29401694]
[152]
Kang, J.H.; Kang, H.S.; Kim, I.K.; Lee, H.Y.; Ha, J.H.; Yeo, C.D.; Kang, H.H.; Moon, H.S.; Lee, S.H. Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin. Exp. Biol. Med. (Maywood), 2015, 240(11), 1416-1425.
[http://dx.doi.org/10.1177/1535370215571881] [PMID: 25716014]
[153]
(a)Lee, J.Y.; Lee, Y.M.; Chang, G.C.; Yu, S.L.; Hsieh, W.Y.; Chen, J.J.; Chen, H.W.; Yang, P.C. Curcumin induces EGFR degradation in lung adenocarcinoma and modulates p38 activation in intestine: the versatile adjuvant for gefitinib therapy. PLoS One, 2011, 6(8), e23756.
[http://dx.doi.org/10.1371/journal.pone.0023756] [PMID: 21858220]
(b)Jin, X.; Wang, J.; Shen, H.; Ran, R.; Xu, K.; Zhang, W.; Tong, X.; Feng, L. Curcumin co-treatment ameliorates resistance to gefitinib in drug- resistant NCI-H1975 lung cancer cells. J. Tradit. Chin. Med., 2017, 37(3), 355-360.
[PMID: 31682378]
(c)Chen, P.; Huang, H.P.; Wang, Y.; Jin, J.; Long, W.G.; Chen, K.; Zhao, X.H.; Chen, C.G.; Li, J. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. J. Exp. Clin. Cancer Res., 2019, 38(1), 254.
[http://dx.doi.org/10.1186/s13046-019-1234-8] [PMID: 31196210]
(d)Lee, T.; Seo, E.; Lee, J.; Jun, J. Synergistic anticancer effects of curcumin and hinokitiol on gefitinib resistant non-small cell lung cancer cells. Nat. Prod. Commun., 2018, 13, 1667-1671.
[http://dx.doi.org/10.1177/2F1934/578X1801.301223]
[154]
Muthoosamy, K.; Abubakar, I.B.; Bai, R.G.; Loh, H.S.; Manickam, S. Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Sci. Rep., 2016, 6, 32808.
[http://dx.doi.org/10.1038/srep32808] [PMID: 27597657]
[155]
Sen, S.; Sharma, H.; Singh, N. Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem. Biophys. Res. Commun., 2005, 331(4), 1245-1252.
[http://dx.doi.org/10.1016/j.bbrc.2005.04.044] [PMID: 15883009]
[156]
(a)Ko, J.C.; Tsai, M.S.; Weng, S.H.; Kuo, Y.H.; Chiu, Y.F.; Lin, Y.W. Curcumin enhances the mitomycin Cinduced cytotoxicity via downregulation of MKK1/2- ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells. Toxicol. Appl. Pharmacol, 2011, 255(3), 327-338.
[http://dx.doi.org/10.1016/j.taap.2011.07.012] [PMID: 21810436]
(b)Weng, S.H.; Tsai, M.S.; Chiu, Y.F.; Kuo, Y.H.; Chen, H.J.; Lin, Y.W. Enhancement of mitomycin C-induced cytotoxicity by curcumin results from down-regulation of MKK1/2-ERK1/2-mediated thymidine phosphorylase expression. Basic Clin. Pharmacol. Toxicol., 2012, 110(3), 298-306.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00806.x] [PMID: 21973306]
[157]
Lev-Ari, S.; Starr, A.; Katzburg, S.; Berkovich, L.; Rimmon, A.; Ben-Yosef, R.; Vexler, A.; Ron, I.; Earon, G. Curcumin induces apoptosis and inhibits growth of orthotopic human non-small cell lung cancer xenografts. J. Nutr. Biochem., 2014, 25(8), 843-850.
[http://dx.doi.org/10.1016/j.jnutbio.2014.03.014] [PMID: 24835302]
[158]
(a)Wang, H.J.; Yang, Z.X.; Dai, X.T.; Chen, Y.F.; Yang, H.P.; Zhou, X.D. Bisdemethoxycurcumin sensitizes cisplatin- resistant lung cancer cells to chemotherapy by inhibition of CA916798 and PI3K/AKT signaling. Apoptosis, 2017, 22(9), 1157-1168.
[http://dx.doi.org/10.1007/s10495-017-1395-x] [PMID: 28677094]
(b)Lin, C.; Hung, C.; Wang, C.C.N.; Lin, H.; Huang, S.; Sheu, M. Demethoxycurcumin sensitizes the response of non-small cell lung cancer to cisplatin through downregulation of TP and ERCC1-related pathways. Phytomed., 2018, 53, 28-36.
[http://dx.doi.org/10.1016/j.phymed.2018.08.005] [PMID: 30668408]
[159]
Zhang, W.; Shi, H.; Chen, C.; Ren, K.; Xu, Y.; Liu, X.; He, L. Curcumin enhances cisplatin sensitivity of human NSCLC cell lines through influencing Cu-Sp1-CTR1 regulatory loop. Phytomedicine, 2018, 48, 51-61.
[http://dx.doi.org/10.1016/j.phymed.2018.04.058] [PMID: 30195880]
[160]
Chen, X.; Xie, C.; Fan, X.X.; Jiang, Z-B.; Wong, V.K-W.; Xu, J-H.; Yao, X-J.; Liu, L.; Leung, E.L-H. Novel direct AMPK activator suppresses non-small cell lung cancer through inhibition of lipid metabolism. Oncotarget, 2017, 8(56), 96089-96102.
[http://dx.doi.org/10.18632/oncotarget.21716] [PMID: 29221189]
[161]
Wang, L.; Peng, W.; Wu, T.; Deng, P.; Zhao, Y.L. Increased glutamine anabolism sensitizes non-small cell lung cancer to gefitinib treatment. Cell Death Discov., 2018, 4, 24.
[http://dx.doi.org/10.1038/s41420-018-0086-x] [PMID: 30109143]
[162]
Weaver, B.A. How taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.E14-04-0916] [PMID: 25213191]
[163]
Gratton, S.E.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 1613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[164]
Sun, T.; Zhao, Q.; Zhang, C.; Cao, L.; Song, M.; Maimela, N.R.; Liu, S.; Wang, J.; Gao, Q.; Qin, G.; Wang, L.; Zhang, Y. Screening common signaling pathways associated with drug resistance in non-small cell lung cancer via gene expression profile analysis. Cancer Med., 2019, 8(6), 3059-3071.
[http://dx.doi.org/10.1002/cam4.2190] [PMID: 31025554]
[165]
Zhao, Y.; Butler, E.B.; Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis., 2013, 4(3), e532.
[http://dx.doi.org/10.1038/cddis.2013.60] [PMID: 23470539]
[166]
Cao, X.; Fang, L.; Gibbs, S.; Huang, Y.; Dai, Z.; Wen, P.; Zheng, X.; Sadee, W.; Sun, D. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother. Pharmacol., 2007, 59(4), 495-505.
[http://dx.doi.org/10.1007/s00280-006-0291-9] [PMID: 16906425]
[167]
El Mjiyad, N.; Caro-Maldonado, A.; Ramírez-Peinado, S.; Muñoz-Pinedo, C. Sugar-free approaches to cancer cell killing. Oncogene, 2011, 30(3), 253-264.
[http://dx.doi.org/10.1038/onc.2010.466] [PMID: 20972457]
[168]
Geschwind, J.F.; Georgiades, C.S.; Ko, Y.H.; Pedersen, P.L. Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev. Anticancer Ther., 2004, 4(3), 449-457.
[http://dx.doi.org/10.1586/14737140.4.3.449] [PMID: 15161443]
[169]
McBrayer, S.K.; Cheng, J.C.; Singhal, S.; Krett, N.L.; Rosen, S.T.; Shanmugam, M. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8 and GLUT11: implications for glucose transporter-directed therapy. Blood, 2012, 119(20), 4686-4697.
[http://dx.doi.org/10.1182/blood-2011-09-377846] [PMID: 22452979]
[170]
Miao, P.; Sheng, S.; Sun, X.; Liu, J.; Huang, G. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life, 2013, 65(11), 904-910.
[http://dx.doi.org/10.1002/iub.1216] [PMID: 24265197]
[171]
Tong, J.; Xie, G.; He, J.; Li, J.; Pan, F.; Liang, H. Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer. J. Biomed. Biotechnol., 2011, 2011, 740564.
[http://dx.doi.org/10.1155/2011/740564] [PMID: 21403907]
[172]
Puig, T.; Aguilar, H.; Cufí, S.; Oliveras, G.; Turrado, C.; Ortega-Gutiérrez, S.; Benhamú, B.; López-Rodríguez, M.L.; Urruticoechea, A.; Colomer, R. A novel inhibitor of fatty acid synthase shows activity against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines. Breast Cancer Res., 2011, 13(6), R131.
[http://dx.doi.org/10.1186/bcr3077] [PMID: 22177475]
[173]
Seltzer, M.J.; Bennett, B.D.; Joshi, A.D.; Gao, P.; Thomas, A.G.; Ferraris, D.V.; Tsukamoto, T.; Rojas, C.J.; Slusher, B.S.; Rabinowitz, J.D.; Dang, C.V.; Riggins, G.J. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res., 2010, 70(22), 8981-8987.
[http://dx.doi.org/10.1158/0008-5472.can-10-1666] [PMID: 21045145]
[174]
Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting and drug delivery. ACS Nano, 2008, 2(5), 889-896.
[http://dx.doi.org/10.1021/nn800072t] [PMID: 19206485]
[175]
Arias, J.L.; Reddy, L.H.; Othman, M.; Gillet, B.; Desmaële, D.; Zouhiri, F.; Dosio, F.; Gref, R.; Couvreur, P. Squalene based nanocomposites: a new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano, 2011, 5(2), 1513-1521.
[http://dx.doi.org/10.1021/nn1034197] [PMID: 21275408]
[176]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3, 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[177]
Zhang, M.; Liu, E.; Cui, Y.; Huang, Y. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol. Med., 2017, 14(3), 212-227.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0054] [PMID: 28884039]
[178]
Hu, L.; Pang, S.; Hu, Q.; Gu, D.; Kong, D.; Xiong, X.; Su, J. Enhanced antitumor efficacy of folate targeted nanoparticles co-loaded with docetaxel and curcumin. Biomed. Pharmacother., 2015, 75, 26-32.
[http://dx.doi.org/10.1016/j.biopha.2015.08.036] [PMID: 26463628]
[179]
Hong, Y.; Che, S.; Hui, B.; Yang, Y.; Wang, X.; Zhang, X.; Qiang, Y.; Ma, H. Lung cancer therapy using doxorubicin and curcumin combination: targeted prodrug based, pH sensitive nanomedicine. Biomed. Pharmacother., 2019, 112, 108614.
[http://dx.doi.org/10.1016/j.biopha.2019.108614] [PMID: 30798129]
[180]
Malik, P.; Mukherjee, T.K. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int. J. Pharm., 2018, 553(1-2), 483-509.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.048] [PMID: 30394284]
[181]
Tong, X.; Jiang, P.; Li, Y.; Guo, L.; Zhang, H.M.; Zhang, B.K.; Yan, M. Combined treatment with triptolide and tyrosine kinase inhibitors synergistically enhances apoptosis in non-small cell lung cancer H1975 cells but not H1299 cells through EGFR/Akt pathway. Chem. Pharm. Bull. (Tokyo), 2019, 67(8), 864-871.
[http://dx.doi.org/10.1248/cpb.c19-00300] [PMID: 31142691]
[182]
Chugh, R.; Sangwan, V.; Patil, S.P.; Dudeja, V.; Dawra, R.K.; Banerjee, S.; Schumacher, R.J.; Blazar, B.R.; Georg, G.I.; Vickers, S.M.; Saluja, A.K. A preclinical evaluation of Minnelide as a therapeutic agent against pancreatic cancer. Sci. Transl. Med., 2012, 4(156), 156ra139.
[http://dx.doi.org/10.1126/scitranslmed.3004334] [PMID: 23076356]
[183]
Willenbacher, E.; Khan, S.Z.; Mujica, S.C.A.; Trapani, D.; Hussain, S.; Wolf, D.; Willenbacher, W.; Spizzo, G.; Seeber, A. Curcumin: new insights into an ancient ingredient against cancer. Int. J. Mol. Sci., 2019, 20(8), 1808.
[http://dx.doi.org/10.3390/ijms20081808] [PMID: 31013694]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy