Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Latex Proteins from Plumeria pudica with Therapeutic Potential on Acetaminophen-Induced Liver Injury

Author(s): Bruna da Silva Souza, Ana Clara Silva Sales, Francisca Dayane Soares da Silva, Thalis Ferreira de Souza, Cleverson Diniz Teixeira de Freitas, Daniel Fernando Pereira Vasconcelos and Jefferson Soares de Oliveira*

Volume 20, Issue 19, 2020

Page: [2011 - 2018] Pages: 8

DOI: 10.2174/1389557520666200821121903

Price: $65

Abstract

Liver disease is global health problem. Paracetamol (APAP) is used as an analgesic drug and is considered safe at therapeutic doses, but at higher doses, it causes acute liver injury. N-acetyl-p- Benzoquinone Imine (NAPQI) is a reactive toxic metabolite produced by biotransformation of APAP. NAPQI damages the liver by oxidative stress and the formation of protein adducts. The glutathione precursor N-acetylcysteine (NAC) is the only approved antidote against APAP hepatotoxicity, but it has limited hepatoprotective effects. The search for new drugs and novel therapeutic intervention strategies increasingly includes testing plant extracts and other natural products. Plumeria pudica (Jacq., 1760) is a plant that produces latex containing molecules with therapeutic potential. Proteins obtained from this latex (LPPp), a well-defined mixture of chitinases, proteinases proteinase inhibitors have shown anti-inflammatory, antinociceptive, antidiarrheal effects as well as a protective effect against ulcerative colitis. These studies have demonstrated that LPPp acts on parameters such as Glutathione (GSH) and Malondialdehyde (MDA) concentration, Superoxide Dismutase (SOD) activity, Myeloperoxidase (MPO) activity, and TNF- α IL1-β levels. Since oxidative stress and inflammation have been reported to affect the initiation and progression of liver injury caused by APAP, it is suggested that LPPp can act on aspects related to paracetamol hepatoxicity. This article brings new insights into the potential of the laticifer proteins extracted from the latex of P. pudica and opens new perspectives for the treatment of this type of liver disease with LPPp.

Keywords: Latex, Laticifer proteins, Acetaminophen, Hepatotoxicity, Hepatoprotective, P. pudica.

Graphical Abstract

[1]
El-Bakry, H.A.; El-Sherif, G.; Rostom, R.M. Therapeutic dose of green tea extract provokes liver damage and exacerbates paracetamol-induced hepatotoxicity in rats through oxidative stress and caspase 3-dependent apoptosis. Biomed. Pharmacother., 2017, 96, 798-811.
[http://dx.doi.org/10.1016/j.biopha.2017.10.055] [PMID: 29078257]
[2]
Xu, M.J.; Feng, D.; Wu, H.; Wang, H.; Chan, Y.; Kolls, J.; Borregaard, N.; Porse, B.; Berger, T.; Mak, T.W.; Cowland, J.B.; Kong, X.; Gao, B. Liver is the major source of elevated serum lipocalin-2 levels after bacterial infection or partial hepatectomy: A critical role for IL-6/STAT3. Hepatology, 2015, 61(2), 692-702.
[http://dx.doi.org/10.1002/hep.27447] [PMID: 25234944]
[3]
Ippolito, D.L. AbdulHameed, M.D.M.; Tawa, G.J.; Baer, C.E.; Permenter, M.G.; McDyre, B.C.; Dennis, W.E.; Boyle, M.H.; Hobbs, C.A.; Streicker, M.A.; Snowden, B.S.; Lewis, J.A.; Wallqvist, A.; Stallings, J.D. Gene expression patterns associated with histopathology in toxic liver fibrosis. Toxicol. Sci., 2016, 149(1), 67-88.
[http://dx.doi.org/10.1093/toxsci/kfv214] [PMID: 26396155]
[4]
Chen, M.; Suzuki, A.; Borlak, J.; Andrade, R.J.; Lucena, M.I. Drug-induced liver injury: Interactions between drug properties and host factors. J. Hepatol., 2015, 63(2), 503-514.
[http://dx.doi.org/10.1016/j.jhep.2015.04.016] [PMID: 25912521]
[5]
Nagatome, M.; Kondo, Y.; Kadowaki, D.; Saishyo, Y.; Irikura, M.; Irie, T.; Ishitsuka, Y. Ethyl pyruvate attenuates acetaminophen-induced liver injury and prevents cellular injury induced by N-acetyl-p-benzoquinone imine. Heliyon, 2018, 4(2)e00521
[http://dx.doi.org/10.1016/j.heliyon.2018.e00521] [PMID: 29560444]
[6]
Bhushan, B.; Apte, U. Liver Regeneration after acetaminophen Hepatotoxicity: Mechanisms and therapeutic opportunities. Am. J. Pathol., 2019, 189(4), 719-729.
[http://dx.doi.org/10.1016/j.ajpath.2018.12.006] [PMID: 30653954]
[7]
Fisher, E.S.; Curry, S.C. Evaluation and treatment of acetaminophen toxicity. Adv. Pharmacol., 2019, 85, 263-272.
[http://dx.doi.org/10.1016/bs.apha.2018.12.004] [PMID: 31307590]
[8]
Roh, T.; De, U.; Lim, S.K.; Kim, M.K.; Choi, S.M.; Lim, D.S.; Yoon, S.; Kacew, S.; Kim, H.S.; Lee, B.M. Detoxifying effect of pyridoxine on acetaminophen-induced hepatotoxicity via suppressing oxidative stress injury. Food Chem. Toxicol., 2018, 114, 11-22.
[http://dx.doi.org/10.1016/j.fct.2018.02.017] [PMID: 29438775]
[9]
Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol., 2014, 20(25), 8082-8091.
[http://dx.doi.org/10.3748/wjg.v20.i25.8082] [PMID: 25009380]
[10]
El Morsy, E.M.; Kamel, R.; Kamel, R. Protective effect of artichoke leaf extract against paracetamol-induced hepatotoxicity in rats. Pharm. Biol., 2015, 53(2), 167-173.
[http://dx.doi.org/10.3109/13880209.2014.913066] [PMID: 25243875]
[11]
Hodgman, M.J.; Garrard, A.R. A review of acetaminophen poisoning. Crit. Care Clin., 2012, 28(4), 499-516.
[http://dx.doi.org/10.1016/j.ccc.2012.07.006] [PMID: 22998987]
[12]
Ahmad, M.M.; Rezk, N.A.; Fawzy, A.; Sabry, M. Protective effects of curcumin and silymarin against paracetamol induced hepatotoxicity in adult male albino rats. Gene, 2019, 712143966
[http://dx.doi.org/10.1016/j.gene.2019.143966] [PMID: 31279711]
[13]
Anantha, K.C.D.; Siva, R.C.; Manohar, R.A. Hepatoprotective effect of biherbal ethanolic extract against paracetamol-induced hepatic damage in albino rats. J. Ayurveda Integr. Med., 2012, 3(4), 198-203.
[http://dx.doi.org/10.4103/0975-9476.104436] [PMID: 23326091]
[14]
Chellappan, D.K.; Ganasen, S.; Batumalai, S.; Candasamy, M.; Krishnappa, P.; Dua, K.; Chellian, J.; Gupta, G. The protective action of the aqueous extract of auricularia polytricha in paracetamol induced hepatotoxicity in rats. Recent Pat. Drug Deliv. Formul., 2016, 10(1), 72-76.
[http://dx.doi.org/10.2174/1872211309666151030110015 ] [PMID: 26517821]
[15]
Guan, Y.S.; He, Q. Plants consumption and liver health. Evid. Based Complement. Alternat. Med., 2015.2015824185
[http://dx.doi.org/10.1155/2015/824185] [PMID: 26221179]
[16]
Devprakash, D.; Tembare, R.; Gurav, S.; Senthil Kumar, G.P.; Mani, T. An review of phytochemical constituents & pharmacological activity of Plumeria species. Int. J. Curr. Pharm. Res., 2012, 4(1), 1-6.
[17]
Choudhary, M.; Kumar, V.; Singh, S. Phytochemical and Pharmacological activity of Genus Plumeria: An updated review. Int. J. Biol. Adv. Res., 2014, 5(6), 266-271.
[18]
Fernandes, H.B.; Machado, D.L.; Dias, J.M. Laticifer proteins from Plumeria pudica inhibit the inflammatory and nociceptive responses by decreasing the action of inflammatory mediators and pro-inflammatory cytokines. Rev. Bras. Farmacogn., 2015, 25, 269-277.
[http://dx.doi.org/10.1016/j.bjp.2015.05.003]
[19]
Santana, L.A.B.; Aragão, D.P.; Araújo, T.S.L.; Sousa, N.A.; Souza, L.K.M.; Oliveira, L.E.S.; Pereira, A.C.T.D.C.; Ferreira, G.P.; Oliveira, N.V.M.; Souza, B.D.S.; Sousa, F.B.M.; Ramos, M.V.; Freitas, C.D.T.; Medeiros, J.R.; Oliveira, J.S. Antidiarrheal effects of water-soluble proteins from Plumeria pudica latex in mice. Biomed. Pharmacother., 2018, 97, 1147-1154.
[http://dx.doi.org/10.1016/j.biopha.2017.11.019] [PMID: 29136953]
[20]
Oliveira, N.V.M.; Souza, B.D.S.; Moita, L.A.; Oliveira, L.E.S.; Brito, F.C.; Magalhães, D.A.; Batista, J.A.; Sousa, S.G.; Brito, T.V.; Sousa, F.B.M.; Alves, E.H.P.; Vasconcelos, D.F.P.; Freitas, C.D.T.; Ramos, M.V.; Barbosa, A.L.D.R.; Oliveira, J.S. Proteins from Plumeria pudica latex exhibit protective effect in acetic acid induced colitis in mice by inhibition of pro-inflammatory mechanisms and oxidative stress. Life Sci., 2019, 231116535
[http://dx.doi.org/10.1016/j.lfs.2019.06.010] [PMID: 31175857]
[21]
Oliveira, R.S.B.; Figueiredo, I.S.T.; Freitas, L.B.; Pinheiro, R.S.; Brito, G.A.; Alencar, N.M.N.; Ramos, M.V.; Ralph, M.T.; Lima-Filho, J.V. Inflammation induced by phytomodulatory proteins from the latex of Calotropis procera (Asclepiadaceae) protects against Salmonella infection in a murine model of typhoid fever. Inflamm. Res., 2012, 61(7), 689-698.
[http://dx.doi.org/10.1007/s00011-012-0460-8] [PMID: 22487850]
[22]
Matos, M.P.V.; Oliveira, R.S.B.; Alencar, N.M.N.; Figueiredo, I.S.T.; Oliveira, J.S.; Amaral, B.J.S.; Nishi, B.C.; Ramos, M.V. Ethnopharmacologicaluse and pharmacological activity of latex from Himatanthus drasticus (Mart.). Plumel. Int. J. Ind. Med. Pl., 2013, 29, 1123-1131.
[23]
Jucá, T.L.; Ramos, M.V.; Moreno, F.B.M.B.; Viana de Matos, M.P.; Marinho-Filho, J.D.B.; Moreira, R.A.; de Oliveira Monteiro-Moreira, A.C. Insights on the phytochemical profile (cyclopeptides) and biological activities of Calotropis procera latex organic fractions. Scientif. World J., 2013, 2013615454
[http://dx.doi.org/10.1155/2013/615454] [PMID: 24348174]
[24]
Goyal, R.K.; Goyal, G.; Goyal, S.; Mittal, S. Pharmacognostical evaluation of bark of Plumeria alba Linn. Int. J. Nat. Prod. Sci., 2012, 1, 178.
[25]
Shinde, P.R.; Patil, P.S.; Bairagi, V.A. Phytopharmacological Review of Plumeria species. Sch. Acad. J. Pharm., 2014, 3(2), 217-227.
[26]
Sarkar, J.; Pal, S.; Bhattacharya, S.; Biswas, M. in vitro antileishmanial activity of plumeria pudica leaf extracts on leishmania donovani promastigotes. Am-Euras. J. Sci. Res., 2013, 8(2), 68-71.
[27]
Atheaya, E.; Deodhar, K.A. Comparative analysis of leaf traits in two species of Plumeria. Int. J. Life Sci. (Kathmandu), 2015, A4(Special Issue), 42-46.
[28]
Chatterjee, A.; Satyesh, C.P. The Treatise of Indian Medicinal plants; National institute of science communication: New Delhi, 1997, 5, p. 114..
[29]
Vijayalakshmi, A.; Ravichandiran, V.; Velraj, M.; Hemalatha, S.; Sudharani, G.; Jayakumari, S. Anti-anaphylactic and anti-inflammatory activities of a bioactive alkaloid from the root bark of Plumeria acutifolia Poir. Asian Pac. J. Trop. Biomed., 2011, 1(5), 401-405.
[http://dx.doi.org/10.1016/S2221-1691(11)60088-9 ] [PMID: 23569801]
[30]
Radhika, B. Pharmacognostic Evaluation of the Leaves of Plumeria pudica. J. Nat. Prod. Plant. Res., 2017, 7(2), 40-45.
[31]
Soares de Oliveira, J.; Pereira Bezerra, D.; Teixeira de Freitas, C.D.; Delano Barreto Marinho Filho, J.; Odorico de Moraes, M.; Pessoa, C.; Costa-Lotufo, L.V.C.; Ramos, M.V. In vitro cytotoxicity against different human cancer cell lines of laticifer proteins of Calotropis procera (Ait.) R. Br. Toxicol. In Vitro, 2007, 21(8), 1563-1573. http://10.1016/j.tiv.2007.05.007 PMID: 17604595.
[32]
Ramos, M.V.; Viana, C.A.; Silva, A.F.; Freitas, C.D.; Figueiredo, I.S.; Oliveira, R.S.B.; Alencar, N.M.N.; Lima-Filho, J.V.M.; Kumar, V.L. Proteins derived from latex of C. procera maintain coagulation homeostasis in septic mice and exhibit thrombin- and plasmin-like activities. Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(5), 455-463.
[http://dx.doi.org/10.1007/s00210-012-0733-3] [PMID: 22315016]
[33]
Nascimento, D.C.O.; Ralph, M.T.; Batista, J.E.C.; Silva, D.M.F.; Gomes-Filho, M.A.; Alencar, N.M.; Leal, N.C.; Ramos, M.V.; Lima-Filho, J.V. Latex protein extracts from Calotropis procera with immunomodulatory properties protect against experimental infections with Listeria monocytogenes. Phytomedicine, 2016, 23(7), 745-753.
[http://dx.doi.org/10.1016/j.phymed.2016.03.012] [PMID: 27235713]
[34]
Rathnavelu, V.; Alitheen, N.B.; Sohila, S.; Kanagesan, S.; Ramesh, R. Potential role of bromelain in clinical and therapeutic applications. Biomed. Rep., 2016, 5(3), 283-288.
[http://dx.doi.org/10.3892/br.2016.720] [PMID: 27602208]
[35]
Di Rosa, M.; Distefano, G.; Zorena, K.; Malaguarnera, L. Chitinases and immunity: Ancestral molecules with new functions. Immunobiology, 2016, 221(3), 399-411.
[http://dx.doi.org/10.1016/j.imbio.2015.11.014] [PMID: 26686909]
[36]
Hiemstra, P.S. Novel roles of protease inhibitors in infection and inflammation. Biochem. Soc. Trans., 2002, 30(2), 116-120.
[http://dx.doi.org/10.1042/bst0300116] [PMID: 12023837]
[37]
Vergnolle, N. Protease inhibition as new therapeutic strategy for GI diseases. Gut, 2016, 65(7), 1215-1224.
[http://dx.doi.org/10.1136/gutjnl-2015-309147] [PMID: 27196587]
[38]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J., 2016, 15(1), 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[39]
Yoon, E.; Babar, A.; Choudhary, M.; Kutner, M.; Pyrsopoulos, N. Acetaminophen-induced hepatotoxicity: A comprehensive update. J. Clin. Transl. Hepatol., 2016, 4(2), 131-142.
[PMID: 27350943]
[40]
Al-Brakati, A.Y.; Fouda, M.S.; Tharwat, A.M.; Elmahallawy, E.K.; Kassab, R.B.; Abdel Moneim, A.E. The protective efficacy of soursop fruit extract against hepatic injury associated with acetaminophen exposure is mediated through antioxidant, anti-inflammatory, and anti-apoptotic activities. Environ. Sci. Pollut. Res. Int., 2019, 26(13), 13539-13550.
[http://dx.doi.org/10.1007/s11356-019-04935-3] [PMID: 30915694]
[41]
Juma, K.K.; Joseph, J.N.N.; David, M.N. A review of biochemical, hematological and histological modulations in acetaminophen induced hepatoxicity and the potential of Urtica dioica in the regeneration of the liver. J. Drug Metab. Toxicol., 2015, 6(3), 182.
[42]
McGill, M.R.; Jaeschke, H. Metabolism and disposition of acetaminophen: Recent advances in relation to hepatotoxicity and diagnosis. Pharm. Res., 2013, 30(9), 2174-2187.
[http://dx.doi.org/10.1007/s11095-013-1007-6] [PMID: 23462933]
[43]
Woolbright, B.L.; Jaeschke, H. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. J. Hepatol., 2017, 66(4), 836-848.
[http://dx.doi.org/10.1016/j.jhep.2016.11.017] [PMID: 27913221]
[44]
Huang, W.; Wang, Y.; Jiang, X.; Sun, Y.; Zhao, Z.; Li, S. Protective Effect of Flavonoids from Ziziphus jujube cv. Jinsixiaozao against Acetaminophen-Induced Liver Injury by Inhibiting Oxidative Stress and Inflammation in Mice. Molecules, 2017, 22(10), 1781.
[http://dx.doi.org/10.3390/molecules22101781]
[45]
Coen, M. Metabolic phenotyping applied to pre-clinical and clinical studies of acetaminophen metabolism and hepatotoxicity. Drug Metab. Rev., 2015, 47(1), 29-44.
[http://dx.doi.org/10.3109/03602532.2014.982865 ] [PMID: 25533740]
[46]
Shahid, M.; Subhan, F. Comparative histopathology of acetaminophen induced hepatotoxicity in animal models of mice and rats. Pharmacol. Online, 2014, 3(33), 32-43.
[47]
Jaeschke, H.; McGill, M.R. Cytochrome P450-derived versus mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicol. Lett., 2015, 235(3), 216-217.
[http://dx.doi.org/10.1016/j.toxlet.2015.04.002] [PMID: 25858113]
[48]
Jaeschke, H.; McGill, M.R.; Ramachandran, A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev., 2012, 44(1), 88-106.
[http://dx.doi.org/10.3109/03602532.2011.602688] [PMID: 22229890]
[49]
Ding, Y.; Li, Q.; Xu, Y.; Chen, Y.; Deng, Y.; Zhi, F.; Qian, K. Attenuating oxidative stress by paeonol protected against acetaminophen-induced hepatotoxicity in mice. PLoS One, 2016, 11(5)e0154375
[http://dx.doi.org/10.1371/journal.pone.0154375] [PMID: 27144271]
[50]
Wu, H.; Zhang, G.; Huang, L.; Pang, H.; Zhang, N.; Chen, Y.; Wang, G. Hepatoprotective effect of polyphenol-enriched fraction from folium microcos on oxidative stress and apoptosis in acetaminophen-induced liver injury in mice. Oxid. Med. Cell. Longev., 2017, 20173631565
[http://dx.doi.org/10.1155/2017/3631565] [PMID: 28626497]
[51]
Adams, D.H.; Ju, C.; Ramaiah, S.K.; Uetrecht, J.; Jaeschke, H. Mechanisms of immune-mediated liver injury. Toxicol. Sci., 2010, 115(2), 307-321.
[http://dx.doi.org/10.1093/toxsci/kfq009] [PMID: 20071422]
[52]
Jaeschke, H.; Xie, Y.; McGill, M.R. Acetaminophen-induced liver injury: From animal models to humans. J. Clin. Transl. Hepatol., 2014, 2(3), 153-161.
[PMID: 26355817]
[53]
Antoniades, C.G.; Quaglia, A.; Taams, L.S.; Mitry, R.R.; Hussain, M.; Abeles, R.; Possamai, L.A.; Bruce, M.; McPhail, M.; Starling, C.; Wagner, B.; Barnardo, A.; Pomplun, S.; Auzinger, G.; Bernal, W.; Heaton, N.; Vergani, D.; Thursz, M.R.; Wendon, J. Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology, 2012, 56(2), 735-746.
[http://dx.doi.org/10.1002/hep.25657] [PMID: 22334567]
[54]
Krenkel, O.; Mossanen, J.C.; Tacke, F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg. Nutr., 2014, 3(6), 331-343.
[PMID: 25568858]
[55]
Seif, H.S.A. Physiological changes due to hepatotoxicity and the protective role of some medicinal plants. Beni-Suef Univ. J. Basic Appl. Sci., 2016, 5(2), 134-146.
[56]
Bernal, W.; Lee, W.M.; Wendon, J.; Larsen, F.S.; Williams, R. Acute liver failure: A curable disease by 2024? J. Hepatol., 2015, 62(1)(Suppl.), S112-S120.
[http://dx.doi.org/10.1016/j.jhep.2014.12.016] [PMID: 25920080]
[57]
Lee, W.M. Acetaminophen (APAP) hepatotoxicity-Isn’t it time for APAP to go away? J. Hepatol., 2017, 67(6), 1324-1331.
[http://dx.doi.org/10.1016/j.jhep.2017.07.005] [PMID: 28734939]
[58]
Reuben, A.; Tillman, H.; Fontana, R.J.; Davern, T.; McGuire, B.; Stravitz, R.T.; Durkalski, V.; Larson, A.M.; Liou, I.; Fix, O.; Schilsky, M.; McCashland, T.; Hay, J.E.; Murray, N.; Shaikh, O.S.; Ganger, D.; Zaman, A.; Han, S.B.; Chung, R.T.; Smith, A.; Brown, R.; Crippin, J.; Harrison, M.E.; Koch, D.; Munoz, S.; Reddy, K.R.; Rossaro, L.; Satyanarayana, R.; Hassanein, T.; Hanje, A.J.; Olson, J.; Subramanian, R.; Karvellas, C.; Hameed, B.; Sherker, A.H.; Robuck, P.; Lee, W.M. Outcomes in adults with acute liver failure between 1998 and 2013: An observational cohort study. Ann. Intern. Med., 2016, 164(11), 724-732.
[http://dx.doi.org/10.7326/M15-2211] [PMID: 27043883]
[59]
Shehab, N.G.; Abu-Gharbieh, E.; Bayoumi, F.A. Impact of phenolic composition on hepatoprotective and antioxidant effects of four desert medicinal plants. BMC Complement. Altern. Med., 2015, 15(1), 401.
[http://dx.doi.org/10.1186/s12906-015-0919-6] [PMID: 26552870]
[60]
Saito, C.; Zwingmann, C.; Jaeschke, H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology, 2010, 51(1), 246-254.
[http://dx.doi.org/10.1002/hep.23267] [PMID: 19821517]
[61]
Boonruamkaew, P.; Chonpathompikunlert, P.; Nagasaki, Y. Redox nanoparticle therapeutics for acetaminophen-induced hepatotoxicity in mice. Oxid. Med. Cell. Longev., 2016, 20164984597
[http://dx.doi.org/10.1155/2016/4984597] [PMID: 27073589]
[62]
Bateman, D.N.; Dear, J.W.; Thanacoody, H.K.; Thomas, S.H.; Eddleston, M.; Sandilands, E.A.; Coyle, J.; Cooper, J.G.; Rodriguez, A.; Butcher, I.; Lewis, S.C.; Vliegenthart, A.D.; Veiraiah, A.; Webb, D.J.; Gray, A. Reduction of adverse effects from intravenous acetylcysteine treatment for paracetamol poisoning: A randomised controlled trial. Lancet, 2014, 383(9918), 697-704.
[http://dx.doi.org/10.1016/S0140-6736(13)62062-0 ] [PMID: 24290406]
[63]
Larson, A.M. Acetaminophen hepatotoxicity. Clin. Liver Dis., 2007, 11(3), 525-548. vi. http://10.1016/j.cld.2007.06.006 PMID: 17723918.
[64]
Du, K.; Farhood, A.; Jaeschke, H. Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Arch. Toxicol., 2017, 91(2), 761-773.
[http://dx.doi.org/10.1007/s00204-016-1692-0] [PMID: 27002509]
[65]
Lahouar, L.; El-Bok, S.; Achour, L. Therapeutic potential of young green barley leaves in prevention and treatment of chronic diseases: an overview. Am. J. Chin. Med., 2015, 43(7), 1311-1329.
[http://dx.doi.org/10.1142/S0192415X15500743] [PMID: 26477798]
[66]
Patra, J.K.; Das, S.K.; Thatoi, H. Phytochemical profiling and bioactivity of a mangrove plant, Sonneratia apetala, from Odisha Coast of India. Chin. J. Integr. Med., 2015, 21(4), 274-285.
[http://dx.doi.org/10.1007/s11655-014-1854-y] [PMID: 25253550]
[67]
Sánchez-Valle, V.; Chávez-Tapia, N.C.; Uribe, M.; Méndez-Sánchez, N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr. Med. Chem., 2012, 19(28), 4850-4860.
[http://dx.doi.org/10.2174/092986712803341520] [PMID: 22709007]
[68]
Yan, M.; Huo, Y.; Yin, S.; Hu, H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol., 2018, 17, 274-283.
[http://dx.doi.org/10.1016/j.redox.2018.04.019] [PMID: 29753208]
[69]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[70]
Zhang, J.Y.; Song, S.D.; Pang, Q.; Zhang, R.Y.; Wan, Y.; Yuan, D.W.; Wu, Q.F.; Liu, C. Hydrogen-rich water protects against acetaminophen-induced hepatotoxicity in mice. World J. Gastroenterol., 2015, 21(14), 4195-4209.
[http://dx.doi.org/10.3748/wjg.v21.i14.4195] [PMID: 25892869]
[71]
Jiang, W.P.; Huang, S.S.; Matsuda, Y.; Saito, H.; Uramaru, N.; Ho, H.Y.; Wu, J.B.; Huang, G.J. Protective effects of tormentic acid, a major component of suspension cultures of Eriobotrya japonica cells, on acetaminophen-induced hepatotoxicity in mice. Molecules, 2017, 22(5), 830.
[http://dx.doi.org/10.3390/molecules22050830] [PMID: 28524081]
[72]
Ajiboye, T.O.; Ahmad, F.M.; Daisi, A.O.; Yahaya, A.A.; Ibitoye, O.B.; Muritala, H.F.; Sunmonu, T.O. Hepatoprotective potential of Phyllanthus muellarianus leaf extract: studies on hepatic, oxidative stress and inflammatory biomarkers. Pharm. Biol., 2017, 55(1), 1662-1670.
[http://dx.doi.org/10.1080/13880209.2017.1317819 ] [PMID: 28447517]
[73]
Liu, J.; Luo, D.; Wu, Y.; Gao, C.; Lin, G.; Chen, J.; Wu, X.; Zhang, Q.; Cai, J.; Su, Z. The protective effect of Sonneratia apetala fruit extract on acetaminophen-induced liver injury in mice. Evid. Based Complement. Alternat. Med., 2019, 20196919834
[http://dx.doi.org/10.1155/2019/6919834] [PMID: 31320915]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy