Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Nanosuspension as an Efficient Carrier for Improved Ocular Permeation of Voriconazole

Author(s): Tang Qin, Zhu Dai*, Xiaodi Xu, Zilin Zhang, Xiangyu You, Hongmei Sun, Mingxing Liu and Hongda Zhu*

Volume 22, Issue 2, 2021

Published on: 20 August, 2020

Page: [245 - 253] Pages: 9

DOI: 10.2174/1389201021999200820154918

Price: $65

Abstract

Background: The present limitations related to the ocular administration of antifungal drugs for the treatment of fungal keratitis include poor ocular bioavailability, limited retention time, and low ocular tissue penetration.

Methods: This study aimed to prepare a novel ophthalmic voriconazole-loaded nanosuspension based on Eudragit RS 100. Pharmasolve® was explored as a corneal permeation enhancer in voriconazole ophthalmic formulation using in vitro and in vivo experiments. Briefly, 1% voriconazole-loaded nanosuspension was prepared using the quasi-emulsion solvent evaporation process.

Results: Characterizations of the voriconazole-loaded nanosuspension by Zetasizer Nano ZS and Transmission Electron Microscope (TEM) showed a uniform spherical shape without any agglomeration. The well-discreted nanoparticle with a size of 138 ± 1.3 nm was achieved with high entrapment efficiency (98.6 ± 2.5%) and positive zeta potential in the range of 22.5-31.2mV, indicating excellent physical stability.

Discussion: Voriconazole-loaded nanosuspension containing the penetration enhancer displayed good permeability both in vitro and in vivo compared with the commercial voriconazole injection. The voriconazole-loaded nanosuspension exhibited good antifungal activity, significantly inhibiting the growth of Candida albicans at a lower concentration of voriconazole (2.5μg/mL, p < 0.05).

Conclusion: In conclusion, the voriconazole-loaded nanosuspension containing Pharmasolve® can be used as an effective ophthalmic formulation for the topical ocular delivery of voriconazole.

Keywords: Ophthalmic formulation, fungal keratitis, nanosuspension, voriconazole, Pharmasolve®, Eudragit RS100.

Graphical Abstract

[1]
Lakhani, P.; Patil, A.; Majumdar, S. Challenges in the polyene- and azole-based pharmacotherapy of ocular fungal infections. J. Ocul. Pharmacol. Ther., 2019, 35(1), 6-22.
[http://dx.doi.org/10.1089/jop.2018.0089] [PMID: 30481082]
[2]
Acharya, Y.; Acharya, B.; Karki, P. Fungal keratitis: Study of increasing trend and common determinants. Nepal J. Epidemiol., 2017, 7(2), 685-693.
[http://dx.doi.org/10.3126/nje.v7i2.17975] [PMID: 29181230]
[3]
Kalkanci, A.; Ozdek, S. Ocular fungal infections. Curr. Eye Res., 2011, 36(3), 179-189.
[http://dx.doi.org/10.3109/02713683.2010.533810] [PMID: 21158591]
[4]
Paramythiotou, E.; Frantzeskaki, F.; Flevari, A.; Armaganidis, A.; Dimopoulos, G. Invasive fungal infections in the ICU: How to approach, how to treat. Molecules, 2014, 19(1), 1085-1119.
[http://dx.doi.org/10.3390/molecules19011085] [PMID: 24445340]
[5]
Füredi, P.; Pápay, Z.E.; Kovács, K.; Kiss, B.D.; Ludányi, K.; Antal, I.; Klebovich, I. Development and characterization of the voriconazole loaded lipid-based nanoparticles. J. Pharm. Biomed. Anal., 2017, 132, 184-189.
[http://dx.doi.org/10.1016/j.jpba.2016.09.047] [PMID: 27750101]
[6]
Sahay, P.; Singhal, D.; Nagpal, R.; Maharana, P.K.; Farid, M.; Gelman, R.; Sinha, R.; Agarwal, T.; Titiyal, J.S.; Sharma, N. Pharmacologic therapy of mycotic keratitis. Surv. Ophthalmol., 2019, 64(3), 380-400.
[http://dx.doi.org/10.1016/j.survophthal.2019.02.007 ] [PMID: 30797882]
[7]
Djebli, N.; Khier, S.; Griguer, F.; Coutant, A.L.; Tavernier, A.; Fabre, G.; Leriche, C.; Fabre, D. ocular drug distribution after topical administration: Population pharmacokinetic model in rabbits. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(1), 59-68.
[http://dx.doi.org/10.1007/s13318-016-0319-4] [PMID: 26820265]
[8]
Patil, A.; Lakhani, P.; Taskar, P.; Wu, K.W.; Sweeney, C.; Avula, B.; Wang, Y.H.; Khan, I.A.; Majumdar, S. formulation development, optimization, and in vitro-in vivo characterization of natamycin-loaded pegylated nano-lipid carriers for ocular applications. J. Pharm. Sci., 2018, 107(8), 2160-2171.
[http://dx.doi.org/10.1016/j.xphs.2018.04.014] [PMID: 29698725]
[9]
Kaur, I.P.; Rana, C.; Singh, H. Development of effective ocular preparations of antifungal agents. J. Ocul. Pharmacol. Ther., 2008, 24(5), 481-493.
[http://dx.doi.org/10.1089/jop.2008.0031] [PMID: 18788998]
[10]
Jiang, S.; Franco, Y.L.; Zhou, Y.; Chen, J. Nanotechnology in retinal drug delivery. Int. J. Ophthalmol., 2018, 11(6), 1038-1044.
[PMID: 29977820]
[11]
Löscher, M.; Hurst, J.; Strudel, L.; Spitzer, M.S.; Schnichels, S. Nanoparticles as drug delivery systems in ophthalmology. Ophthalmologe, 2018, 115(3), 184-189.
[http://dx.doi.org/10.1007/s00347-017-0596-6] [PMID: 29110121]
[12]
Das, S.; Suresh, P.K. Nanosuspension: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomedicine (Lond.), 2011, 7(2), 242-247.
[http://dx.doi.org/10.1016/j.nano.2010.07.003] [PMID: 20692375]
[13]
Malamatari, M.; Taylor, K.M.G.; Malamataris, S.; Douroumis, D.; Kachrimanis, K. Pharmaceutical nanocrystals: Production by wet milling and applications. Drug Discov. Today, 2018, 23(3), 534-547.
[http://dx.doi.org/10.1016/j.drudis.2018.01.016] [PMID: 29326082]
[14]
Pardhi, V.P.; Verma, T.; Flora, S.J.S.; Chandasana, H.; Shukla, R. Nanocrystals: An overview of fabrication, characterization and therapeutic applications in drug delivery. Curr. Pharm. Des., 2018, 24(43), 5129-5146.
[http://dx.doi.org/10.2174/1381612825666190215121148 ] [PMID: 30767737]
[15]
Li, X.; Pan, W.; Ju, C.; Liu, Z.; Pan, H.; Zhang, H.; Nie, S. Evaluation of Pharmasolve corneal permeability enhancement and its irritation on rabbit eyes. Drug Deliv., 2009, 16(4), 224-229.
[http://dx.doi.org/10.1080/10717540902850567] [PMID: 19514982]
[16]
Kumar, R.; Sinha, V.R. Evaluation of ocular irritation and bioavailability of voriconazole loaded microemulsion. Curr. Drug Deliv., 2017, 14(5), 718-724.
[http://dx.doi.org/10.2174/1567201813666160816105905 ] [PMID: 27538459]
[17]
Ameeduzzafar; Imam, S.S.; Abbas Bukhari, S.N.; Ahmad, J.; Ali, A. Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: In-vitro characterization, ocular tolerance and antibacterial activity. Int. J. Biol. Macromol., 2018, 108, 650-659.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.170] [PMID: 29199125]
[18]
Hironaka, K.; Inokuchi, Y.; Tozuka, Y.; Shimazawa, M.; Hara, H.; Takeuchi, H. Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J. Control. Release, 2009, 136(3), 247-253.
[http://dx.doi.org/10.1016/j.jconrel.2009.02.020]
[19]
Pignatello, R.; Bucolo, C.; Ferrara, P.; Maltese, A.; Puleo, A.; Puglisi, G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur. J. Pharm. Sci., 2002, 16(1-2), 53-61.
[http://dx.doi.org/10.1016/S0928-0987(02)00057-X ] [PMID: 12113891]
[20]
Pandya, N.T.; Jani, P.; Vanza, J.; Tandel, H. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension. Colloids Surf. B Biointerfaces, 2018, 165, 37-44.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.011] [PMID: 29453084]
[21]
Basaran, E.; Gencer, H.K.; Yenilmez, E.; Guven, U.M. Voriconazole incorporated polymeric nanoparticles for ocular application. Lat. Am. J. Pharm., 2017, 36(10), 1983-1994.
[22]
Sinha, B.; Mukherjee, B.; Pattnaik, G. Poly-lactide-co-glycolide nanoparticles containing voriconazole for pulmonary delivery: In vitro and in vivo study. Nanomedicine (Lond.), 2013, 9(1), 94-104.
[http://dx.doi.org/10.1016/j.nano.2012.04.005] [PMID: 22633899]
[23]
Wang, L.; Du, J.; Zhou, Y.; Wang, Y. Safety of nanosuspensions in drug delivery. Nanomedicine (Lond.), 2017, 13(2), 455-469.
[http://dx.doi.org/10.1016/j.nano.2016.08.007] [PMID: 27558350]
[24]
Arora, D.; Khurana, B.; Rath, G.; Nanda, S.; Goyal, A.K. Recent advances in nanosuspension technology for drug delivery. Curr. Pharm. Des., 2018, 24(21), 2403-2415.
[http://dx.doi.org/10.2174/1381612824666180522100251 ] [PMID: 29788880]
[25]
Kumar, R.; Sinha, V.R. Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf. B Biointerfaces, 2014, 117, 82-88.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.007] [PMID: 24632034]
[26]
Khare, A.; Singh, I.; Pawar, P.; Grover, K. Design and evaluation of voriconazole loaded solid lipid nanoparticles for ophthalmic application. J. Drug Deliv., 2016, 20166590361
[http://dx.doi.org/10.1155/2016/6590361] [PMID: 27293896]
[27]
Kumar, R.; Sinha, V.R. Solid lipid nanoparticle: An efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm., 2016, 42(12), 1956-1967.
[http://dx.doi.org/10.1080/03639045.2016.1185437 ] [PMID: 27143048]
[28]
Lee, H.J.; Oh, D.W.; Na, M.J.; Kim, D.W.; Yuk, D.Y.; Choi, H.C.; Lee, Y.B.; Han, K.; Park, C.W. Preparation and in vivo evaluation of lecithin-based microparticles for topical delivery of minoxidil. Arch. Pharm. Res., 2017, 40(8), 943-951.
[http://dx.doi.org/10.1007/s12272-017-0934-x] [PMID: 28770536]
[29]
Weon Cho, C.; Chul Shin, S. Enhanced controlled transdermal delivery of mexazolam using ethylene-vinyl acetate. Iran. J. Pharm. Res., 2012, 11(1), 3-12.
[PMID: 25317180]
[30]
Jouyban, A.; Fakhree, M.A.A.; Shayanfar, A. Review of pharmaceutical applications of N-methyl-2-pyrrolidone. J. Pharm. Pharm. Sci., 2010, 13(4), 524-535.
[http://dx.doi.org/10.18433/J3P306] [PMID: 21486529]
[31]
Chhonker, Y.S.; Prasad, Y.D.; Chandasana, H.; Vishvkarma, A.; Mitra, K.; Shukla, P.K.; Bhatta, R.S. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int. J. Biol. Macromol., 2015, 72, 1451-1458.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.014] [PMID: 25453292]
[32]
Pawar, P.; Kashyap, H.; Malhotra, S.; Sindhu, R. Hp-beta-CD-voriconazole in situ gelling system for ocular drug delivery: In vitro, stability, and antifungal activities assessment. BioM Res. Int., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/341218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy