Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Theoretical and Spectroscopic Characterization of API-Related Azoles in Solution and in Solid State

Author(s): Marta Marín-Luna*, Rosa M. Claramunt, José Elguero and Ibon Alkorta

Volume 26, Issue 38, 2020

Page: [4847 - 4857] Pages: 11

DOI: 10.2174/1381612826666200818212846

Price: $65

Abstract

Azoles are a family of five-membered azacyclic compounds with relevant biological and pharmacological activity. Different subclasses of azoles are defined depending on the atomic arrangement and the number of nitrogen atoms present in the ring: pyrazoles, indazoles, imidazoles, benzimidazoles, triazoles, benzotriazoles, tetrazoles and pentazoles. The complete characterization of their structure and the knowledge about their crystal packing and physical and chemical properties are of vital importance for the advancement in the design of new azole-containing drugs. In this review, we report the latest recent contributions to azole chemistry, in particular, those in which theoretical studies have been performed.

Keywords: Diazoles, triazoles, tetrazoles, benzazoles, API, GIAO, GIPAW.

[1]
Feher M, Schmidt JM. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 2003; 43(1): 218-27.
[http://dx.doi.org/10.1021/ci0200467 ] [PMID: 12546556]
[2]
Broughton HB, Watson IA. Selection of heterocycles for drug design. J Mol Graph Model 2004; 23(1): 51-8.
[http://dx.doi.org/10.1016/j.jmgm.2004.03.016 ] [PMID: 15331053]
[3]
Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 2014; 57(24): 10257-74.
[http://dx.doi.org/10.1021/jm501100b ] [PMID: 25255204]
[4]
Claramunt RM, Elguero J. Active Pharmaceutical IngredientsApplications of NMR Spectroscopy in the Solid State. Madrid: CSIC 2019.
[5]
Larina LI. Tautomerism and structure of azoles. Advances in Heterocyclic Chemistry. Elsevier Ltd 2018; 233-321.
[6]
Elguero J, Marzin C, Katritzky AR, Linda P. The Tautomerism of heterocycles. New York: Academic Press 1976.
[7]
Elguero J. Tautomerism: A historical perspective. Tautomerism. Weinheim, Germany: Wiley-VCH Verlag GmbH Co. KGaA 2016; 1-10.
[http://dx.doi.org/10.1002/9783527695713.ch1]
[8]
Minkin VI, Garnovskii AD, Elguero J, Katritzky AR, Denisko OV. The tautomerism of heterocycles: Five-membered rings with two or more heteroatomsadvances in heterocyclic chemistry. New York 2000; 157-323.
[9]
Taylor PJ, van der Zwan G, Antonov L. Tautomerism: Introduction, history, and recent developments in experimental and theoretical methods. Antonov L, editor Tautomerism. Weinheim, Germany: Wiley-VCH Verlag GmbH Co. KGaA 2013.
[10]
Sanchez-Muñoz L, Garrido Fernandez L, Muñoz Fraile F, Sanz Lazaro J. Applications of NMR Spectroscopy in the Solid State. Madrid: CSIC 2019.
[11]
Elguero J, Alkorta I, Claramunt RM, et al. Structure of NH-benzazoles (1H-benzimidazoles, 1H-- and 2H--indazoles, 1H-- and 2H--benzotriazoles). Chem Heterocycl Compd 2013; 49: 177-202.
[http://dx.doi.org/10.1007/s10593-013-1237-x]
[12]
Politzer P, Murray JS. Computational analysis of polyazoles and their N-oxides. Struct Chem 2017; 28: 1045-63.
[http://dx.doi.org/10.1007/s11224-016-0909-4]
[13]
Charpentier T. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. Solid State Nucl Magn Reson 2011; 40(1): 1-20.
[http://dx.doi.org/10.1016/j.ssnmr.2011.04.006 ] [PMID: 21612895]
[14]
Moreau F, da Silva I, Al Smail NH, et al. Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal-organic framework. Nat Commun 2017; 8: 14085.
[http://dx.doi.org/10.1038/ncomms14085 ] [PMID: 28176793]
[15]
van de Streek J, Neumann MA. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D). Acta Crystallogr B Struct Sci Cryst Eng Mater 2014; 70(Pt 6): 1020-32.
[http://dx.doi.org/10.1107/S2052520614022902 ] [PMID: 25449625]
[16]
Southern SA, Bryce DL. NMR Investigations of noncovalent carbon tetrel bonds. Computational assessment and initial experimental observation. J Phys Chem A 2015; 119(49): 11891-9.
[http://dx.doi.org/10.1021/acs.jpca.5b10848 ] [PMID: 26562616]
[17]
Hughes CE, Reddy GNM, Masiero S, Brown SP, Williams PA, Harris KDM. Determination of a complex crystal structure in the absence of single crystals: analysis of powder X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new 2′-deoxyguanosine structural motif. Chem Sci (Camb) 2017; 8(5): 3971-9.
[http://dx.doi.org/10.1039/C7SC00587C ] [PMID: 28553539]
[18]
Jimeno ML, Benito MT, Doyagüez EG, et al. A theoretical and experimental NMR study of BODIPY 493/503: difluoro2-[1-(3,5-dimethyl-2H-pyrrol-2-ylidene-N)ethyl]-3,5-dimethyl-1H -pyrrolato-Nboron. Magn Reson Chem 2016; 54: 684-8.
[http://dx.doi.org/10.1002/mrc.4438 ] [PMID: 27133002]
[19]
Nieto CI, Sanz D, Claramunt RM, et al. Molecular structure in the solid state by X-ray crystallography and SSNMR and in solution by NMR of two 1,4-diazepines. J Mol Struct 2018; 1155: 205-14.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.112]
[20]
Alkorta I, Elguero J, Font A, et al. An experimental and theoretical study of the structure of Lamotrigine in its neutral and protonated forms: evidence of Lamotrigine enantiomers. Tetrahedron 2014; 70: 2784-95.
[http://dx.doi.org/10.1016/j.tet.2014.02.075]
[21]
Nieto CI, Cabildo P, Claramunt RM, et al. The structure of β-diketones related to curcumin determined by X-ray crystallography, NMR (solution and solid state) and theoretical calculations. Struct Chem 2016; 27: 705-30.
[http://dx.doi.org/10.1007/s11224-015-0704-7]
[22]
Quesada-Moreno MM, Avilés-Moreno JR, López-González JJ, et al. Supramolecular organization of perfluorinated 1H-indazoles in the solid state using X-ray crystallography, SSNMR and sensitive (VCD) and non sensitive (MIR, FIR and Raman) to chirality vibrational spectroscopies. Phys Chem Chem Phys 2017; 19(2): 1632-43.
[http://dx.doi.org/10.1039/C6CP04940K ] [PMID: 27995257]
[23]
Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Kristallogr Cryst Mater 2005; 220: 567.
[http://dx.doi.org/10.1524/zkri.220.5.567.65075]
[24]
Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 2002; 14: 2717-44.
[http://dx.doi.org/10.1088/0953-8984/14/11/301]
[25]
Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. Wallingford, CT: Gaussian, Inc. 2009.
[26]
Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules 2015; 20(7): 13384-421.
[http://dx.doi.org/10.3390/molecules200713384 ] [PMID: 26205061]
[27]
Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011; 7(2): 146-57.
[http://dx.doi.org/10.2174/157340911795677602 ] [PMID: 21534921]
[28]
Crespo A, Rodriguez-Granillo A, Lim VT. Quantum-mechanics methodologies in drug discovery: applications of docking and scoring in lead optimization. Curr Top Med Chem 2017; 17(23): 2663-80.
[http://dx.doi.org/10.2174/1568026617666170707120609 ] [PMID: 28685695]
[29]
Vanommeslaeghe K, Guvench O, MacKerell AD Jr. Molecular mechanics. Curr Pharm Des 2014; 20(20): 3281-92.
[http://dx.doi.org/10.2174/13816128113199990600 ] [PMID: 23947650]
[30]
Papadatos G, Brown N. In silico applications of bioisosterism in contemporary medicinal chemistry practice. WIREs Comput Mol Sci 2013; 3: 339-54.
[http://dx.doi.org/10.1002/wcms.1148]
[31]
Ballatore C, Huryn DM, Smith AB III. Carboxylic acid (bio)isosteres in drug design. ChemMedChem 2013; 8(3): 385-95.
[http://dx.doi.org/10.1002/cmdc.201200585 ] [PMID: 23361977]
[32]
Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today 2017; 22(10): 1572-81.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014 ] [PMID: 28676407]
[33]
Chemama M, Fonvielle M, Arthur M, Valéry J-M, Etheve-Quelquejeu M. Synthesis of stable aminoacyl-tRNA analogues containing triazole as a bioisoster of esters. Chemistry 2009; 15(8): 1929-38.
[http://dx.doi.org/10.1002/chem.200801563 ] [PMID: 19035586]
[34]
Zala. Synthesis and biological evaluation of 2,4,5-triphenyl-1H-imidazole-1-yl Derivatives. J Appl Pharm Sci 2012; 2: 202-8.
[35]
Maity S, Ahmad S, Singh S, Baranwal G. Imidazole- A new profile of various pharmacological activities. Eur J Pharm Med Res 2017; 4: 322-4.
[36]
Hamada Y, Kiso Y. The application of bioisosteres in drug design for novel drug discovery: focusing on acid protease inhibitors. Expert Opin Drug Discov 2012; 7(10): 903-22.
[http://dx.doi.org/10.1517/17460441.2012.712513 ] [PMID: 22873630]
[37]
Sujatha K, Kalluraya BD, Joshi S. Synthetic studies on 3-aryloxyethyl-4-arylidene amino-5-mercapto-1,2,4-triazoles and biological evaluation as antifungal and antibacterial agents. Rasayan J Chem 2019; 12: 1405-17.
[http://dx.doi.org/10.31788/RJC.2019.1235200]
[38]
Holzer W, Castoldi L, Kyselova V, et al. Multinuclear NMR spectra and GIAO/DFT calculations of N-benzylazoles and N-benzylbenzazoles. Struct Chem 2019; 30: 1729-35.
[http://dx.doi.org/10.1007/s11224-019-01310-3]
[39]
Marín-Luna M, Alkorta I, Elguero J. A theoretical NMR study of selected benzazoles: Comparison of GIPAW and GIAO-PCM (DMSO) calculations. Magn Reson Chem 2018; 56(3): 164-71.
[http://dx.doi.org/10.1002/mrc.4674 ] [PMID: 29077221]
[40]
Bernstein J. Polymorphism - A perspective. Cryst Growth Des 2011; 11: 632-50.
[http://dx.doi.org/10.1021/cg1013335]
[41]
Elguero J. Polymorphism and desmotropy in heterocyclic crystal structures. Cryst Growth Des 2011; 11: 4731-8.
[http://dx.doi.org/10.1021/cg200970t]
[42]
Gavezzotti A. A solid-state chemist’s view of the crystal polymorphism of organic compounds. J Pharm Sci 2007; 96(9): 2232-41.
[http://dx.doi.org/10.1002/jps.20870 ] [PMID: 17568403]
[43]
Marín-Luna M, Claramunt RM, Nieto CI, Alkorta I, Elguero J, Reviriego F. A theoretical NMR study of polymorphism in crystal structures of azoles and benzazoles. Magn Reson Chem 2019; 57(6): 275-84.
[http://dx.doi.org/10.1002/mrc.4824 ] [PMID: 30604430]
[44]
Coispeau G, Elguero J. Reaction des hydrazines avec les composés difonctionnels-1,3 Synthèse de dérivés du pyrazole. Bull Soc Chem Fr 1970; 2717-36.
[45]
Elguero J, Silva A, Tomé A. Five-membered heterocycles: 1,2-azolespart 1 pyrazoles in: Alvarez-Builla J, Vaquero Jj, Barluenga J, Editors Modern Heterocyclic Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH Co. KGaA 2011.
[46]
Venkateswarlu V, Kour J, Kumar KAA, et al. Direct N-heterocyclization of hydrazines to access styrylated pyrazoles: synthesis of 1,3,5-trisubstituted pyrazoles and dihydropyrazoles. RSC Advances 2018; 8: 26523-7.
[http://dx.doi.org/10.1039/C8RA04550J]
[47]
Kumari S, Paliwal S, Chauhan R. Synthesis of pyrazole derivatives possessing anticancer activity: Current status. Synth Commun 2014; 44: 1521-78.
[http://dx.doi.org/10.1080/00397911.2013.828757]
[48]
Singh SP, Kumar D, Batra H, Naithani R, Rozas I, Elguero J. The reaction between hydrazines and β-dicarbonyl compounds: proposal for a mechanism. Can J Chem 2000; 78: 1109-20.
[http://dx.doi.org/10.1139/v00-104]
[49]
Fustero S, Simón-Fuentes A, Sanz-Cervera JF. Recent advances in the synthesis of pyrazoles. A review. Org Prep Proced Int 2009; 41: 253-90.
[http://dx.doi.org/10.1080/00304940903077832]
[50]
Elguero J, Goya P, Jagerovic N, Silva AMS. Pyrazoles as drugs: Facts and fantasies. Targets Heterocycl Syst 2002; 6: 52-98.
[51]
Pérez-Fernández R, Goya P, Elguero J. A review of recent progress (2002-2012) on the biological activitiesof pyrazoles. ARKIVOC 2013; 2014: 233-93.
[http://dx.doi.org/10.3998/ark.5550190.p008.131]
[52]
Silva VLM, Elguero J, Silva AMS. Current progress on antioxidants incorporating the pyrazole core. Eur J Med Chem 2018; 156: 394-429.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.007 ] [PMID: 30015075]
[53]
Karrouchi K, Radi S, Ramli Y, et al. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules 2018; 23(1): 134.
[http://dx.doi.org/10.3390/molecules23010134 ] [PMID: 29329257]
[54]
Claramunt RM, Bouissane L, Cabildo MP, et al. Synthesis and biological evaluation of curcuminoid pyrazoles as new therapeutic agents in inflammatory bowel disease: effect on matrix metalloproteinases. Bioorg Med Chem 2009; 17(3): 1290-6.
[http://dx.doi.org/10.1016/j.bmc.2008.12.029 ] [PMID: 19128977]
[55]
Nieto CI, Cabildo MP, Cornago MP, et al. Fluorination effects on nos inhibitory activity of pyrazoles related to curcumin. Molecules 2015; 20(9): 15643-65.
[http://dx.doi.org/10.3390/molecules200915643 ] [PMID: 26343623]
[56]
Martí-Centelles R, Falomir E, Carda M, Nieto CI, Cornago MP, Claramunt RM. Effects of curcuminoid pyrazoles on cancer cells and on the expression of telomerase related genes. Arch Pharm (Weinheim) 2016; 349(7): 532-8.
[http://dx.doi.org/10.1002/ardp.201600067 ] [PMID: 27270752]
[57]
Silva VLM, Silva AMS, Claramunt RM, et al. An example of polynomial expansion: The reaction of 3(5)-methyl-1H-pyrazole with chloroform and characterization of the four isomers. Molecules 2019; 24(3): 568.
[http://dx.doi.org/10.3390/molecules24030568 ] [PMID: 30720743]
[58]
Alkorta I, Claramunt RM, Diez-Barra E, Elguero J, de la Hoz A, Lopez C. The organic chemistry of poly(1H-pyrazol-1-yl)methanes. Coord Chem Rev 2017; 339: 153-82.
[http://dx.doi.org/10.1016/j.ccr.2017.03.011]
[59]
Silva VLM, Silva AMS, Claramunt RM, et al. A structural study of new tetrakis(1H-pyrazol-1-yl)methanes. Tetrahedron 2019; 75: 1-10.
[http://dx.doi.org/10.1016/j.tet.2019.130690]
[60]
Infantes L, Claramunt RM, Sanz D, Alkorta I, Elguero J. The structures of two scorpionates: thallium tetrakis(3-phenyl-1H-pyrazol-1-yl)borate and potassium tetrakis(3-cyclopropyl-1H-pyrazol-1-yl)borate. Acta Crystallogr C Struct Chem 2016; 72(Pt 11): 819-25.
[http://dx.doi.org/10.1107/S2053229616007385 ] [PMID: 27811418]
[61]
Infantes L, Moreno JM, Claramunt RM, Sanz D, Alkorta I, Elguero J. The structure of four thallium tris(1H-pyrazol-1-yl)hydroborates in the solid state by X-ray crystallography and in solution by NMR and DFT-GIAO calculations. Inorg Chim Acta 2018; 483: 402-10.
[http://dx.doi.org/10.1016/j.ica.2018.08.009]
[62]
Santini C, Pellei M. Applications of scorpionate ligands in enzyme modeling and biological studies. Curr Bioact Compd 2009; 5: 243-3.
[http://dx.doi.org/10.2174/157340709789816474]
[63]
Pellei M, Gandin V, Marchiò L, Marzano C, Bagnarelli L, Santini C. Syntheses and biological studies of Cu(II) complexes bearing bis(pyrazol-1-yl)- and bis(triazol-1-yl)-acetato heteroscorpionate ligands. Molecules 2019; 24(9): 1761.
[http://dx.doi.org/10.3390/molecules24091761 ] [PMID: 31067640]
[64]
Higdon J, Drake VJ. Curcumin An evidence-based approach to phytochemicals and other dietary factors. New York: Thieme Medical Publishers 2012.
[65]
Nieto CI, Cabildo MP, Cornago MP, et al. Synthesis, structure and biological activity of 3(5)-trifluoromethyl-1H-pyrazoles derived from hemicurcuminoids. J Mol Struct 2015; 1100: 518-29.
[http://dx.doi.org/10.1016/j.molstruc.2015.07.055]
[66]
Aggarwal R, Kumar V, Singh G, et al. An NMR and computational study of azolo[a]pyrimidines with special emphasis on pyrazolo[1,5-a]pyrimidines. J Heterocycl Chem 2015; 52: 336-45.
[http://dx.doi.org/10.1002/jhet.1955]
[67]
Claramunt RM, Santa Maria D, Alkorta I, Elguero J. The structure of n-phenyl-pyrazoles and indazoles: mononitro, dinitro, and trinitro derivatives. J Heterocycl Chem 2018; 55: 44-64.
[http://dx.doi.org/10.1002/jhet.3026]
[68]
Thomas R, Mary YS, Resmi KS, et al. Synthesis and spectroscopic study of two new pyrazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J Mol Struct 2019; 1181: 599-612.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.014]
[69]
Manju N, Kalluraya B. Asma, Kumar MS. Synthesis, computational and biological study of pyrazole derivatives. J Mol Struct 2019; 1193: 386-97.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.049]
[70]
Orabi EA, Orabi MAA, Mahross MH, Abdel-Hakim M. Computational investigation of the structure and antioxidant activity of some pyrazole and pyrazolone derivatives. J Saudi Chem Soc 2018; 22: 705-14.
[http://dx.doi.org/10.1016/j.jscs.2017.12.003]
[71]
Harit T, Dahmani M, Gaamouche S, et al. New bipyrazolic compounds: Synthesis, characterization, antibacterial activity and computational studies. J Mol Struct 2019; 1176: 110-6.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.073]
[72]
Gaikwad DD, Chapolikar AD, Devkate CG, et al. Synthesis of indazole motifs and their medicinal importance: an overview. Eur J Med Chem 2015; 90: 707-31.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.029 ] [PMID: 25506810]
[73]
Yet L. Five-membered ring systems: with more than one n atom.progress in heterocyclic chemistry. Elsevier 2012; 243-79.
[74]
Claramunt RM, López C, López A, et al. Synthesis and biological evaluation of indazole derivatives. Eur J Med Chem 2011; 46(4): 1439-47.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.027 ] [PMID: 21334118]
[75]
Claramunt RM, López C, Pérez-Medina C, et al. Fluorinated indazoles as novel selective inhibitors of nitric oxide synthase (NOS): synthesis and biological evaluation. Bioorg Med Chem 2009; 17(17): 6180-7.
[http://dx.doi.org/10.1016/j.bmc.2009.07.067 ] [PMID: 19679481]
[76]
Elguero J, Alkorta I, Claramunt RM, López C, Sanz D, María DS. Theoretical calculations of a model of NOS indazole inhibitors: interaction of aromatic compounds with Zn-porphyrins. Bioorg Med Chem 2009; 17(23): 8027-31.
[http://dx.doi.org/10.1016/j.bmc.2009.10.006 ] [PMID: 19857970]
[77]
Alkorta I, Elguero J, Pérez-Torralba M, López C, Claramunt RM. A theoretical and experimental study of the NMR spectra of 4,5,6,7-tetrafluorobenzazoles with special stress on PCM calculations of chemical shifts. Magn Reson Chem 2015; 53(5): 353-62.
[http://dx.doi.org/10.1002/mrc.4203 ] [PMID: 25615404]
[78]
García-Pérez D, López C, Claramunt RM, Alkorta I, Elguero J. 19F-NMR diastereotopic signals in two N-CHF2 derivatives of (4S,7R)-7,8,8-Trimethyl-4,5,6,7-tetrahydro-4,7-methano-2H-indazole. Molecules 2017; 22(11): 2003.
[http://dx.doi.org/10.3390/molecules22112003 ] [PMID: 29149081]
[79]
Santhi N, Prabhakaran B. Synthesis, spectroscopic characterizations and quantum chemical computational studies of 6-fluoro-N-(4-substitutedbenzylidene)-1H-indazol-3- amine. Der Pharma Chem 2016; 8: 44-55.
[80]
Rani N, Sharma A, Singh R. Trisubstituted imidazole synthesis: A review. Mini Rev Org Chem 2014; 12: 34-65.
[http://dx.doi.org/10.2174/1570193X11666141028235010]
[81]
Alvarez-Builla J, Vaquero JJ, Barluenga J, Eds. Modern heterocyclic chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH Co. KGaA 2011.
[http://dx.doi.org/10.1002/9783527637737]
[82]
Shalini K, Sharma P, Kumar N. Imidazole and its biological activities: A review. Chem Sin 2010; 1: 36-47.
[83]
Kumar M, Kumar D, Raj V. Studies on imidazole and its derivatives with particular emphasis on their chemical/biological applications as bioactive molecules/intermediated to bioactive molecule. Curr Synth Syst Biol 2017; 05: 1-10.
[http://dx.doi.org/10.4172/2332-0737.1000135]
[84]
Verma A, Joshi S, Singh D. Imidazole: Having versatile biological activities. J Chem 2013; 2013: 1-12.
[85]
Al-Wabli RI, Al-Ghamdi AR, Ghabbour HA, et al. Synthesis, x-ray single crystal structure, molecular docking and DFT computations on N-[(1E)-1-(2H-1,3-benzodioxol-5-yl)-3-(1H-imidazol-1-yl) propylidene]-hydroxylamine: A new potential antifungal agent precursor. Molecules 2017; 22(3): 1-17.
[http://dx.doi.org/10.3390/molecules22030373 ] [PMID: 28264518]
[86]
Ahmad MS, Khalid M, Shaheen MA, et al. Synthesis and XRD, FT-IR vibrational, UV-vis, and nonlinear optical exploration of novel tetra substituted imidazole derivatives: A synergistic experimental-computational analysis. J Phys Chem Solids 2018; 115: 265-76.
[http://dx.doi.org/10.1016/j.jpcs.2017.12.054]
[87]
Arockia doss M, Rajarajan G, Thanikachalam V, Selvanayagam S, Sridhar B. Synthesis, single crystal X-ray, spectroscopic (FT-IR, UV-vis, fluorescence, 1H &13C NMR), computational (DFT/B3LYP) studies of some imidazole based picrates. J Mol Struct 2018; 1158: 277-85.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.012]
[88]
Miao Y, Cross TA, Fu R. Differentiation of histidine tautomeric states using (15)N selectively filtered (13)C solid-state NMR spectroscopy. J Magn Reson 2014; 245: 105-9.
[http://dx.doi.org/10.1016/j.jmr.2014.06.005 ] [PMID: 25026459]
[89]
Zhao L, Smolarkiewicz I, Limbach H-H, et al. Imidazole-doped cellulose as membrane for fuel cells: structural and dynamic insights from solid-state NMR. J Phys Chem C 2016; 120: 19574-85.
[http://dx.doi.org/10.1021/acs.jpcc.6b07049]
[90]
Guzmán-Afonso C, Hong YL, Colaux H, et al. Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography. Nat Commun 2019; 10(1): 3537.
[http://dx.doi.org/10.1038/s41467-019-11469-2 ] [PMID: 31388004]
[91]
Smitha M, Mary YS, Hossain M, et al. Two novel imidazole derivatives - Combined experimental and computational study. J Mol Struct 2018; 1173: 221-39.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.110]
[92]
Daraji DG, Patel KD, Patel HD, Rajani DP. Synthesis, In vitro biological screening, and in silico computational studies of some novel imidazole-2-thiol derivatives. J Heterocycl Chem 2019; 56: 539-51.
[http://dx.doi.org/10.1002/jhet.3429]
[93]
Sheeja Mol GP, Aruldhas D, Hubert Joe I, et al. Structural activity, fungicidal activity and molecular dynamics simulation of certain triphenyl methyl imidazole derivatives by experimental and computational spectroscopic techniques. Spectrochim Acta A Mol Biomol Spectrosc 2019; 212: 105-20.
[http://dx.doi.org/10.1016/j.saa.2018.12.047 ] [PMID: 30616164]
[94]
Vargas JAR, Lopez AG, Piñol MC, Froeyen M. Molecular docking study on the interaction between 2-substituted-4,5-difuryl Imidazoles with different protein target for antileishmanial activity. J Appl Pharm Sci 2018; 8: 14-22.
[95]
Pinto J, Silva VLM, Silva AMS, et al. The structure of azines derived from C-formyl-1H-imidazoles in solution and in the solid state: tautomerism, configurational and conformational studies. Magn Reson Chem 2013; 51(4): 203-21.
[http://dx.doi.org/10.1002/mrc.3926 ] [PMID: 23390060]
[96]
Blanco F, Lloyd DG, Alkorta I, Elguero J. Neutral alkaline-metal and alkaline-earth-metal derivatives of imidazole and benzimidazole. J Phys Chem A 2014; 118(23): 4195-204.
[http://dx.doi.org/10.1021/jp502443h ] [PMID: 24844848]
[97]
Singh VK, Parle Am. The intriguing benzimidazole: A review. Int J Pharm Sci Res 2019; 10: 1540-52.
[98]
Manna SK, Das T, Samanta S. Polycyclic benzimidazole: Synthesis and photophysical properties. ChemistrySelect 2019; 4: 8781-90.
[http://dx.doi.org/10.1002/slct.201901941]
[99]
Jonušis M, Čikotienė I. Recent advances in the synthesis of benzimidazoles (microreview). Chem Heterocycl Compd 2016; 52: 776-8.
[http://dx.doi.org/10.1007/s10593-016-1963-y]
[100]
Purushottamachar P, Ramalingam SCO, Njar V. Development of benzimidazole compounds for cancer therapy. chemistry and applications of benzimidazole and its derivatives. IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.86691]
[101]
Bansal Y, Silakari O. The therapeutic journey of benzimidazoles: a review. Bioorg Med Chem 2012; 20(21): 6208-36.
[http://dx.doi.org/10.1016/j.bmc.2012.09.013 ] [PMID: 23031649]
[102]
Anand K, Wakode S. Development of drugs based on Benzimidazole Heterocycle: Recent advancement and insights. Int J Chem Stud 2017; 5: 350-62.
[103]
Hernandez-Folgado L, Stevenson LA, et al. Exploring the benzimidazole ring as a substitution for indole in cannabinoid allosteric modulators. Cannabis Cannabinoid Res 2016; 1: 196-201.
[http://dx.doi.org/10.1089/can.2016.0003]
[104]
Claramunt RM, López C, Alkorta I, Elguero J, Yang R, Schulman S. The tautomerism of Omeprazole in solution: a 1H and 13C NMR study. Magn Reson Chem 2004; 42(8): 712-4.
[http://dx.doi.org/10.1002/mrc.1409 ] [PMID: 15248261]
[105]
Claramunt R, López C, Elguero J. The structure of Omeprazole in the solid state: a 13C and 15N NMR/CPMAS study. ARKIVOC 2005; 2006: 5.
[http://dx.doi.org/10.3998/ark.5550190.0007.502]
[106]
Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The Cambridge structural database. Acta Crystallogr B Struct Sci Cryst Eng Mater 2016; 72(Pt 2): 171-9.
[http://dx.doi.org/10.1107/S2052520616003954 ] [PMID: 27048719]
[107]
Cabildo P, Claramunt RM, Zuñiga FJ, Alkorta I, Elguero J. Crystal and molecular structures of two 1H-2-substituted benzimidazoles. Z Kristallogr Cryst Mater 2015; 230: 427-38.
[http://dx.doi.org/10.1515/zkri-2015-0004]
[108]
Murthy PK, Smitha M, Sheena Mary Y, et al. Supramolecular architecture of 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole.3H2O: Synthesis, spectroscopic investigations, DFT computation, MD simulations and docking studies. J Mol Struct 2017; 1149: 602-12.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.038]
[109]
Zuñiga FJ, Cruz-Cabeza AJ, Aretxabaleta XM, et al. Conformational aspects of polymorphs and phases of 2-propyl-1H-benzimidazole. IUCrJ 2018; 5(Pt 6): 706-15.
[http://dx.doi.org/10.1107/S2052252518011685 ] [PMID: 30443355]
[110]
Quesada-Moreno MM, Cruz-Cabeza AJ, Avilés-Moreno JR, et al. The curious case of 2-propyl-1h-benzimidazole in the solid state: an experimental and theoretical study. J Phys Chem A 2017; 121(30): 5665-74.
[http://dx.doi.org/10.1021/acs.jpca.7b05220 ] [PMID: 28700240]
[111]
Anichina K, Mavrova A, Yancheva D, Tsenov J, Dimitrov R. Tautomerism and isomerism in some antitrichinellosis active benzimidazoles: Morphological study in polarized light, quantum chemical computations. J Mol Struct 2017; 1150: 179-87.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.073]
[112]
Kacprzak K, Skiera I, Piasecka M, Paryzek Z. Alkaloids and isoprenoids modification by copper(i)-catalyzed huisgen 1,3-dipolar cycloaddition (click chemistry): toward new functions and molecular architectures. Chem Rev 2016; 116(10): 5689-743.
[http://dx.doi.org/10.1021/acs.chemrev.5b00302 ] [PMID: 27115045]
[113]
Efimov IV. Recent methods for the synthesis of NH-1,2,3-triazoles. Chem Heterocycl Compd 2019; 55: 28-30.
[http://dx.doi.org/10.1007/s10593-019-02414-8]
[114]
Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 2011; 26(1): 1-21.
[http://dx.doi.org/10.3109/14756360903524304 ] [PMID: 20583859]
[115]
de Carvalho da Silva F, Ferreira VF, da Silva Magalhães Forezi L. Synthesis and biological profiles of 1,2,3-triazole scaffold. Curr Top Med Chem 2018; 18(17): 1426-7.
[http://dx.doi.org/10.2174/156802661817181107151553 ] [PMID: 30497357]
[116]
Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg Med Chem 2019; 27(16): 3511-31.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005 ] [PMID: 31300317]
[117]
Farrán MÁ, Bonet MÁ, Claramunt RM, Torralba MC, Alkorta I, Elguero J. The structures of 1,4-diaryl-5-trifluoromethyl-1H-1,2,3-triazoles related to J147, a drug for treating Alzheimer’s disease. Acta Crystallogr C Struct Chem 2018; 74(Pt 4): 513-22.
[http://dx.doi.org/10.1107/S2053229618004394 ] [PMID: 29620036]
[118]
Saeidian H, Sadighian H, Abdoli M, Sahandi M. Versatile and green synthesis, spectroscopic characterizations, crystal structure and DFT calculations of 1,2,3‒triazole‒based sulfonamides. J Mol Struct 2017; 1131: 73-8.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.027]
[119]
Aziz SG, Elroby SA, Alyoubi A, Osman OI, Hilal R. Experimental and theoretical assignment of the vibrational spectra of triazoles and benzotriazoles. Identification of IR marker bands and electric response properties. J Mol Model 2014; 20(3): 2078.
[http://dx.doi.org/10.1007/s00894-014-2078-y ] [PMID: 24562851]
[120]
Bonyad SR, Mirjafary Z, Saeidian H, Rouhani M. Efficient synthesis, spectroscopic characterization and DFT based studies of novel 1-amide 4-sulfonamide-1,2,3-triazole derivatives. J Mol Struct 2019; 1197: 164-70.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.032]
[121]
Schröder DC, Kracker O, Fröhr T, et al. 1,4-disubstituted 1H-1,2,3-triazole containing peptidotriazolamers: A new class of peptidomimetics with interesting foldamer properties. Front Chem 2019; 7: 155.
[http://dx.doi.org/10.3389/fchem.2019.00155 ] [PMID: 30972322]
[122]
Nouraie P, Moradi Dehaghi S, Foroumadi A. Coumarin-1,2,3-triazole hybrid derivatives: Green synthesis and DFT calculations. Synth Commun 2019; 49: 386-94.
[http://dx.doi.org/10.1080/00397911.2018.1557686]
[123]
Aarjane M, Slassi S, Tazi B, Maouloua M, Amine A. Novel series of acridone-1,2,3-triazole derivatives: microwave-assisted synthesis, DFT study and antibacterial activities. J Chem Sci 2019; 131: 1-11.
[http://dx.doi.org/10.1007/s12039-019-1653-2]
[124]
Erazua EA, Oyebamiji AK, Adeleke BB. DFT-QSAR and molecular docking studies on 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Phys Sci Int J 2019; 20: 1-10.
[http://dx.doi.org/10.9734/PSIJ/2018/46207]
[125]
Fei T, Du Y, Pang S. Theoretical design and prediction of properties for dinitromethyl, fluorodinitromethyl, and (difluoroamino)dinitromethyl derivatives of triazole and tetrazole. RSC Advances 2018; 8: 10215-27.
[http://dx.doi.org/10.1039/C8RA00699G]
[126]
Singh H, Singh A, Khurana JM. A combined experimental and theoretical approach for structural, spectroscopic, NLO, NBO, thermal and photophysical studies of new fluorescent 5-amino-1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazole-4-carbonitrile using density functional theory. J Mol Struct 2017; 1147: 725-34.
[http://dx.doi.org/10.1016/j.molstruc.2017.07.010]
[127]
Katritzky AR, Rachwal S. Synthesis of heterocycles mediated by benzotriazole. 1. Monocyclic systems. Chem Rev 2010; 110(3): 1564-610.
[http://dx.doi.org/10.1021/cr900204u ] [PMID: 19799386]
[128]
Katritzky AR, Rachwal S. Synthesis of heterocycles mediated by benzotriazole. 2. Bicyclic systems. Chem Rev 2011; 111(11): 7063-120.
[http://dx.doi.org/10.1021/cr200031r ] [PMID: 21894899]
[129]
Singh VK, Rishishwar P, Bhardwaj P, Alok S. Benzotriazole: A heterocyclic molecule with diversified pharmacological activities. Int J Pharm Sci Res 2017; 8: 446-56.
[130]
Dennis Hall C, Panda SS. The benzotriazole storyadvances in heterocyclic chemistry. Elsevier Ltd 2016; 119: 1-23.
[131]
Bajaj K, Sakhuja R. Benzotriazole: Much more than just synthetic heterocyclic chemistryCham: Springer International Publishing 2015; 235-83.
[http://dx.doi.org/10.1007/7081_2015_198]
[132]
Ren Y. Recent development of benzotriazole-based medicinal drugs. Med Chem (Los Angeles) 2014; 4: 640-62.
[http://dx.doi.org/10.4172/2161-0444.1000207]
[133]
Briguglio I, Piras S, Corona P, et al. Benzotriazole: An overview on its versatile biological behavior. Eur J Med Chem 2015; 97: 612-48.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.089 ] [PMID: 25293580]
[134]
Hameed S, Kanwal Seraj F, et al. Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: Structure-activity relationship, molecular docking, and kinetic studies. Eur J Med Chem 2019; 183: 111677.
[http://dx.doi.org/10.1016/j.ejmech.2019.111677 ] [PMID: 31514061]
[135]
Korcz M, Sączewski F, Bednarski PJ, Kornicka A. Synthesis, structure, chemical stability, and in vitro cytotoxic properties of novel quinoline-3-carbaldehyde hydrazones bearing a 1,2,4-triazole or benzotriazole moiety. Molecules 2018; 23(6): 1497.
[http://dx.doi.org/10.3390/molecules23061497 ] [PMID: 29925826]
[136]
Santa María D, Claramunt RM, Bobosik V, et al. Synthesis and structural study of 2-arylbenzotriazoles related to Tinuvins. Tetrahedron 2013; 69: 3027-38.
[http://dx.doi.org/10.1016/j.tet.2013.01.096]
[137]
Claramunt RM, María DS, Pinilla E, Torres MR, Elguero J. Structural studies of two Tinuvin P analogs: 2-(2,4-dimethylphenyl)-2H-benzotriazole and 2-phenyl-2H-benzotriazole. Molecules 2007; 12(9): 2201-14.
[http://dx.doi.org/10.3390/12092201 ] [PMID: 17962737]
[138]
Reis JS, Corrêa MA, Ribeiro CA, Dos Santos JL. Synthesis and evaluation of 1,3,5-triazine derivatives as sunscreens useful to prevent skin cancer. Bioorg Med Chem Lett 2019; 29(24): 126755.
[http://dx.doi.org/10.1016/j.bmcl.2019.126755 ] [PMID: 31732408]
[139]
Santa María D, Claramunt RM, Torralba MC, Torres MR, Alkorta I, Elguero J. The structure and properties of 5,6-dinitro-1H-benzotriazole. J Mol Struct 2016; 1113: 153-61.
[http://dx.doi.org/10.1016/j.molstruc.2016.02.020]
[140]
Santa María D, Claramunt RM, Alkorta I, Elguero J, Zúñiga FJ. The structure of 4,5,6,7-tetrafluoro-1H-benzotriazole in solid state and in solution. J Fluor Chem 2016; 192: 98-104.
[http://dx.doi.org/10.1016/j.jfluchem.2016.10.013]
[141]
Wenholz DS, Bhadbhade M, Kandemir H, Ho J, Kumar N, Black DS. Substituent effects in solid-state assembly of activated benzotriazoles. CrystEngComm 2019; 21: 835-42.
[http://dx.doi.org/10.1039/C8CE01757C]
[142]
Holm SC, Straub BF. Synthesis of N-substituted 1,2,4-triazoles. a review. Org Prep Proced Int 2011; 43: 319-47.
[http://dx.doi.org/10.1080/00304948.2011.593999]
[143]
Al-Masoudi IA, Al-Soud YA, Al-Salihi NJ, Al-Masoudi NA. 1,2,4-Triazoles: Synthetic approaches and pharmacological importance. Chem Heterocycl Compd 2006; 42: 1377-403.
[http://dx.doi.org/10.1007/s10593-006-0255-3]
[144]
Namratha B, Gaonkar SL. Innovare academic sciences 1,2,4-triazoles : synthetic strategies and pharamacological profiles. Int J Pharm Pharm Sci 2014; 6: 73-80.
[145]
Martin A, Martin R. A review on the Antimicrobial, Analgesic and Anti-inflamamatory activity of 1,2,4-triazoles. Indian Res J Pharm Sci 2014; 2: 106-6.
[146]
Zhang X, Gong X. A DFT-D study on the stability and intramolecular interactions of the salts of 1,2,3- and 1,2,4-triazoles. Can J Chem 2014; 92: 1111-7.
[http://dx.doi.org/10.1139/cjc-2014-0343]
[147]
Ünlüer D, Ünver Y, Düğdü E, et al. Novel 1,2,4-triazole derivatives: structure, dft study, x-ray analysis, and antimicrobial activity. Russ J Org Chem 2019; 55: 254-61.
[http://dx.doi.org/10.1134/S1070428019020192]
[148]
El Bakri Y, Marmouzi I, El Jemli M, et al. Synthesis, biological activity and molecular modeling of a new series of condensed 1,2,4-triazoles. Bioorg Chem 2019; 92: 103193.
[http://dx.doi.org/10.1016/j.bioorg.2019.103193 ] [PMID: 31445196]
[149]
Santa María D, Claramunt RM, Elguero J, et al. New N,C-diaryl-1,2,4-triazol-3-ones: synthesis and evaluation as anticancer agents. Med Chem 2019; 15(4): 360-72.
[http://dx.doi.org/10.2174/1573406414666180821103604 ] [PMID: 30129416]
[150]
Bhatt U. Five-membered heterocycles with four heteroatoms: tetrazoles modern heterocyclic chemistry. Weinheim, Germany: Wiley- VCH Verlag GmbH Co. KGaA 2011; 1401-30.
[151]
Wang SQ, Wang YF, Xu Z. Tetrazole hybrids and their antifungal activities. Eur J Med Chem 2019; 170: 225-34.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.023 ] [PMID: 30904780]
[152]
Zhang J, Wang S, Ba Y, Xu Z. Tetrazole hybrids with potential anticancer activity. Eur J Med Chem 2019; 178: 341-51.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.071 ] [PMID: 31200236]
[153]
Gao F, Xiao J, Huang G. Current scenario of tetrazole hybrids for antibacterial activity. Eur J Med Chem 2019; 184111744
[http://dx.doi.org/10.1016/j.ejmech.2019.111744 ] [PMID: 31605865]
[154]
Neochoritis CG, Zhao T, Dömling A. Tetrazoles via Multicomponent Reactions. Chem Rev 2019; 119(3): 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564 ] [PMID: 30707567]
[155]
Holzschneider K, Tong ML, Mohr F, Kirsch SF. A synthetic route toward tetrazoles: the thermolysis of geminal diazides. Chemistry 2019; 25(50): 11725-33.
[http://dx.doi.org/10.1002/chem.201902131 ] [PMID: 31407837]
[156]
Sanz D, Claramunt RM, Roussel C, Alkorta I, Elguero J. The structure of N-benzylazoles from pyrrole to carbazole: geometries and energies. Indian J Heterocycl Chem 2018; 28: 1-10.
[157]
Aridoss G, Zhao C, Borosky GL, Laali KK. Experimental and GIAO 15N NMR study of substituent effects in 1H-tetrazoles. J Org Chem 2012; 77(8): 4152-5.
[http://dx.doi.org/10.1021/jo300242s ] [PMID: 22480162]
[158]
Butler RN, Hanniffy JM, Stephens JC, Burke LA. A ceric ammonium nitrate N-dearylation of N-p-anisylazoles applied to pyrazole, triazole, tetrazole, and pentazole rings: release of parent azoles. generation of unstable pentazole, HN5/N5-, in solution. J Org Chem 2008; 73(4): 1354-64.
[http://dx.doi.org/10.1021/jo702423z ] [PMID: 18198892]
[159]
Bo XX, Zheng HF, Xin JF, Ding YH. A kinetically persistent isomer found for pentazole: a global potential energy surface survey. Chem Commun (Camb) 2019; 55(18): 2597-600.
[http://dx.doi.org/10.1039/C8CC09626K ] [PMID: 30657482]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy