Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Structure-Activity Relationship Study of an Alkynylphosphonate and Vynilphosphonate Analogues of Calcitriol

Author(s): Silvina M. Grioli, Eliana N. Alonso, Evangelina Mascaró, Santiago A. Stabile, María J. Ferronato, Mario A. Quevedo, Gabriel Radivoy, María M. Facchinetti, Cristian A. Vitale and Alejandro C. Curino*

Volume 17, Issue 3, 2021

Published on: 18 August, 2020

Page: [230 - 246] Pages: 17

DOI: 10.2174/1573406416999200818145115

Price: $65

Abstract

Background: 1α,25-dihydroxy vitamin D3 (calcitriol) shows potent growth-inhibitory properties on different cancer cell lines, but its hypercalcemic effects have severely hampered its therapeutic application. Therefore, it is important to develop synthetic calcitriol analogues that retain or even increase its antitumoral effects and lack hypercalcemic activity. Based on previous evidence of the potent antitumor effects of the synthetic alkynylphosphonate EM1 analogue, we have now synthesized a derivative called SG.

Objective: The aim of the present work is to evaluate the calcemic activity and the antitumor effect of SG, comparing these effects with those exerted by calcitriol and with those previously published for EM1. In addition, we propose to analyze by in silico studies, the chemical structure-biological function relationship of these molecules.

Methods: We performed the synthesis of vinylphosphonate SG analogue; in vitro assays on different cancer cell lines; in vivo assays on mice; and in silico assays applying computational molecular modeling.

Results: The SG compound lacks hypercalcemic activity, similar to the parent compound EM1. However, the antitumor activity was blunted, as no antiproliferative or anti-migratory effects were observed. By in silico assays, we demonstrated that SG analogue has a lower affinity for the VDRligand- binding domain than the EM1 compound due to lack of interaction with the important residues His305 and His397.

Conclusion: These results demonstrate that the chemical modification in the lateral side chain of the SG analogue affects the antitumoral activity observed previously for EM1 but does not affect the calcemic activity. These results contribute to the rational design and synthesis of novel calcitriol analogues.

Keywords: Calcitriol, phosphonate analogues, cancer, hypercalcemia, synthesis, in vitro assays, in vivo assays, computational modelling.

Graphical Abstract

[1]
Bikle, D.D.; Vitamin, D. Vitamin D: newly discovered actions require reconsideration of physiologic requirements. Trends Endocrinol. Metab., 2010, 21(6), 375-384.
[http://dx.doi.org/10.1016/j.tem.2010.01.003] [PMID: 20149679]
[2]
Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G.; Vitamin, D. Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev., 2016, 96(1), 365-408.
[http://dx.doi.org/10.1152/physrev.00014.2015] [PMID: 26681795]
[3]
Colston, K.; Colston, M.J.; Feldman, D. 1,25-dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology, 1981, 108(3), 1083-1086.
[http://dx.doi.org/10.1210/endo-108-3-1083] [PMID: 6257495]
[4]
Picotto, G.; Liaudat, A.C.; Bohl, L.; Tolosa de Talamoni, N. Molecular aspects of vitamin D anticancer activity. Cancer Invest., 2012, 30(8), 604-614.
[http://dx.doi.org/10.3109/07357907.2012.721039] [PMID: 22963190]
[5]
Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer, 2014, 14(5), 342-357.
[http://dx.doi.org/10.1038/nrc3691] [PMID: 24705652]
[6]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[7]
Salomón, D.G.; Mascaró, E.; Grioli, S.M.; Ferronato, M.J.; Vitale, C.A.; Radivoy, G.E.; Curino, A.C.; Facchinetti, M.M. Phosphonate analogues of 1α, 25 dihydroxyvitamin D3 are promising candidates for antitumoural therapies. Curr. Top. Med. Chem., 2014, 14(21), 2408-2423.
[http://dx.doi.org/10.2174/1568026615666141208101418] [PMID: 25486937]
[8]
Díaz, L.; Díaz-Muñoz, M.; García-Gaytán, A.C.; Méndez, I. Mechanistic effects of calcitriol in cancer biology. Nutrients, 2015, 7(6), 5020-5050.
[http://dx.doi.org/10.3390/nu7065020] [PMID: 26102214]
[9]
Ferronato, M.J.; Alonso, E.N.; Gandini, N.A.; Fermento, M.E.; Villegas, M.E.; Quevedo, M.A.; Arévalo, J.; López Romero, A.; Rivadulla, M.L.; Gómez, G.; Fall, Y.; Facchinetti, M.M.; Curino, A.C. The UVB1 Vitamin D analogue inhibits colorectal carcinoma progression. J. Steroid Biochem. Mol. Biol., 2016, 163, 193-205.
[http://dx.doi.org/10.1016/j.jsbmb.2016.05.019] [PMID: 27208626]
[10]
Ferronato, M.J.; Alonso, E.N.; Salomón, D.G.; Fermento, M.E.; Gandini, N.A.; Quevedo, M.A.; Mascaró, E.; Vitale, C.; Fall, Y.; Facchinetti, M.M.; Curino, A.C. Antitumoral effects of the alkynylphosphonate analogue of calcitriol EM1 on glioblastoma multiforme cells. J. Steroid Biochem. Mol. Biol., 2018, 178, 22-35.
[http://dx.doi.org/10.1016/j.jsbmb.2017.10.019] [PMID: 29102624]
[11]
Vuolo, L.; Di Somma, C.; Faggiano, A.; Colao, A. Vitamin D and cancer. Front. Endocrinol. (Lausanne), 2012, 3, 58.
[http://dx.doi.org/10.3389/fendo.2012.00058] [PMID: 22649423]
[12]
Orlov, I.; Rochel, N.; Moras, D.; Klaholz, B.P. Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA. EMBO J., 2012, 31(2), 291-300.
[http://dx.doi.org/10.1038/emboj.2011.445] [PMID: 22179700]
[13]
Rochel, N.; Wurtz, J.M.; Mitschler, A.; Klaholz, B.; Moras, D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol. Cell, 2000, 5(1), 173-179.
[http://dx.doi.org/10.1016/S1097-2765(00)80413-X] [PMID: 10678179]
[14]
Yamagishi, K.; Yamamoto, K.; Yamada, S.; Tokiwa, H. Functions of key residues in the ligand-binding pocket of vitamin D receptor: Fragment molecular orbital–interfragment interaction energy analysis. Chem. Phys. Lett., 2006, 420, 465-468.
[http://dx.doi.org/10.1016/j.cplett.2005.12.078]
[15]
Demizu, Y.; Takahashi, T.; Kaneko, F.; Sato, Y.; Okuda, H.; Ochiai, E.; Horie, K.; Takagi, K.; Kakuda, S.; Takimoto-Kamimura, M.; Kurihara, M. Design, synthesis and X-ray crystallographic study of new nonsecosteroidal vitamin D receptor ligands. Bioorg. Med. Chem. Lett., 2011, 21(20), 6104-6107.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.047] [PMID: 21889334]
[16]
Malinska, M.; Kutner, A.; Wozniak, K. Predicted structures of new Vitamin D Receptor agonists based on available X-ray structures. Steroids, 2015, 104(2015), 220-229.
[http://dx.doi.org/10.1016/j. esteroides.2015.10.007]
[17]
Bikle, D.D. Vitamin D and cancer: the promise not yet fulfilled. Endocrine, 2014, 46(1), 29-38.
[http://dx.doi.org/10.1007/s12020-013-0146-1] [PMID: 24402695]
[18]
Baron, J.A.; Barry, E.L.; Mott, L.A.; Rees, J.R.; Sandler, R.S.; Snover, D.C.; Bostick, R.M.; Ivanova, A.; Cole, B.F.; Ahnen, D.J.; Beck, G.J.; Bresalier, R.S.; Burke, C.A.; Church, T.R.; Cruz-Correa, M.; Figueiredo, J.C.; Goodman, M.; Kim, A.S.; Robertson, D.J.; Rothstein, R.; Shaukat, A.; Seabrook, M.E.; Summers, R.W. A trial of calcium and Vitamin D for the prevention of colorectal adenomas. N. Engl. J. Med., 2015, 373(16), 1519-1530.
[http://dx.doi.org/10.1056/NEJMoa1500409] [PMID: 26465985]
[19]
Osborn, J.L.; Schwartz, G.G.; Smith, D.C.; Bahnson, R.; Day, R.; Trump, D.L. Phase II trial of oral 1,25-dihydroxyvitamin D (calcitriol) in hormone refractory prostate cancer. Urol. Oncol., 1995, 1(5), 195-198.
[http://dx.doi.org/10.1016/1078-1439(95)00061-5] [PMID: 21224117]
[20]
Duffy, M.J.; Murray, A.; Synnott, N.C.; O’Donovan, N.; Crown, J. Vitamin D analogues: Potential use in cancer treatment. Crit. Rev. Oncol. Hematol., 2017, 112, 190-197.
[http://dx.doi.org/10.1016/j.critrevonc.2017.02.015] [PMID: 28325259]
[21]
DeLuca, H.F.; Plum, L.A. Analogs of 1α,25-Dihydroxyvitamin D3 in Clinical Use. Vitam. Horm., 2016, 100, 151-164.
[http://dx.doi.org/10.1016/bs.vh.2015.11.002] [PMID: 26827952]
[22]
Eelen, G.; Verlinden, L.; De Clercq, P.; Vandewalle, M.; Bouillon, R.; Verstuyf, A. Vitamin D analogs and coactivators. Anticancer Res., 2006, 26, 2717-2721.
[http://dx.doi.org/10.1016 / j.jsbmb.2006.09.014]
[23]
Beer, T.M.; Myrthue, A. Calcitriol in cancer treatment: from the lab to the clinic. Mol. Cancer Ther., 2004, 3(3), 373-381.
[PMID: 15026558]
[24]
Brown, A.J.; Slatopolsky, E. Vitamin D analogs: therapeutic applications and mechanisms for selectivity. Mol. Aspects Med., 2008, 29(6), 433-452.
[http://dx.doi.org/10.1016/j.mam.2008.04.001] [PMID: 18554710]
[25]
Trump, D.L.; Deeb, K.K.; Johnson, C.S.; Vitamin, D. considerations in the continued development as an agent for cancer prevention and therapy. Cancer J., 2010, 16(1), 1-9.
[http://dx.doi.org/10.1097/PPO.0b013e3181c51ee6] [PMID: 20164683]
[26]
Luo, W.; Hershberger, P.A.; Trump, D.L.; Johnson, C.S. 24-Hydroxylase in cancer: impact on vitamin D-based anticancer therapeutics. J. Steroid Biochem. Mol. Biol., 2013, 136, 252-257.
[http://dx.doi.org/10.1016/j.jsbmb.2012.09.031] [PMID: 23059474]
[27]
Salomón, D.G.; Grioli, S.M.; Buschiazzo, M.; Mascaró, E.; Vitale, C.; Radivoy, G.; Perez, M.; Fall, Y.; Mesri, E.A.; Curino, A.C.; Facchinetti, M.M. Novel alkynylphosphonate analogue of calcitriol with potent antiproliferative effects in cancer cells and lack of calcemic activity. ACS Med. Chem. Lett., 2011, 2(7), 503-508.
[http://dx.doi.org/10.1021/ml200034w] [PMID: 24900339]
[28]
Steinmeyer, A.; Schwarz, K.; Haberey, M.; Langer, G.; Wiesinger, H. Synthesis and biological activities of a new series of secosteroids: vitamin D phosphonate hybrids. Steroids, 2001, 66(3-5), 257-266.
[http://dx.doi.org/10.1016/S0039-128X(00)00148-3] [PMID: 11179733]
[29]
Uskokovic, M.R.; Norman, A.W.; Manchand, P.S.; Studzinski, G.P.; Campbell, M.J.; Koeffler, H.P.; Takeuchi, A.; Siu-Caldera, M.L.; Rao, D.S.; Reddy, G.S. Highly active analogs of 1α,25-dihydroxyvitamin D(3) that resist metabolism through C-24 oxidation and C-3 epimerization pathways. Steroids, 2001, 66(3-5), 463-471.
[http://dx.doi.org/10.1016/S0039-128X(00)00226-9] [PMID: 11179755]
[30]
Ferronato, M.J.; Obiol, D.J.; Fermento, M.E.; Gandini, N.A.; Alonso, E.N.; Salomón, D.G.; Vitale, C.; Mascaró, E.; Fall, Y.; Raimondi, A.R.; Curino, A.C.; Facchinetti, M.M. The alkynylphosphonate analogue of calcitriol EM1 has potent anti-metastatic effects in breast cancer. J. Steroid Biochem. Mol. Biol., 2015, 154, 285-293.
[http://dx.doi.org/10.1016/j.jsbmb.2015.09.009] [PMID: 26365558]
[31]
MarvinSketch v.6.31, ChemAxon Ltd.. http://www.chemaxon.com
[32]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R. Gaussian 03, Gaussian, Inc., 2003.
[33]
Open Eye. Scientific. Software, Santa Fe, NM http://www.eyesopen.com
[34]
Omega.2.4.3. OpenEye Scientific Software, Santa Fe, NM http://www.eyesopen.com
[35]
Hawkins, P.C.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model., 2010, 50(4), 572-584.
[http://dx.doi.org/10.1021/ci100031x] [PMID: 20235588]
[36]
Fred.3.0.0 OpenEye. Scientific.Software, Santa Fe, NM. http://www.eyesopen.com
[37]
McGann, M. FRED and HYBRID docking performance on standardized datasets. J. Comput. Aided Mol. Des., 2012, 26(8), 897-906.
[http://dx.doi.org/10.1007/s10822-012-9584-8] [PMID: 22669221]
[38]
McGann, M. FRED pose prediction and virtual screening accuracy. J. Chem. Inf. Model., 2011, 51(3), 578-596.
[http://dx.doi.org/10.1021/ci100436p] [PMID: 21323318]
[39]
VIDA. OpenEye Scientific Software, Santa Fe http://www.eyesopen.com
[40]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[41]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[42]
Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3, 198-210.
[http://dx.doi.org/10.1002/wcms.1121]
[43]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[44]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[45]
Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. Validation and use of the MM-PBSA approach for drug discovery. J. Med. Chem., 2005, 48(12), 4040-4048.
[http://dx.doi.org/10.1021/jm049081q] [PMID: 15943477]
[46]
Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[47]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38. 27-.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[48]
Cristau, H.J.; Mbianda, X.Y.; Beziat, Y.; Gasc, M.B. Facile and stereoselective synthesis of vinylphosphonates. J. Org. Chem., 1997, 529, 301-311.
[http://dx.doi.org/10.1016/S0022-328X(96)06646-6]
[49]
Muindi, J.R.; Modzelewski, R.A.; Peng, Y.; Trump, D.L.; Johnson, C.S. Pharmacokinetics of 1α,25-dihydroxyvitamin D3 in normal mice after systemic exposure to effective and safe antitumor doses. Oncology, 2004, 66(1), 62-66.
[http://dx.doi.org/10.1159/000076336] [PMID: 15031600]
[50]
Muindi, J.R.; Yu, W.D.; Ma, Y.; Engler, K.L.; Kong, R.X.; Trump, D.L.; Johnson, C.S. CYP24A1 inhibition enhances the antitumor activity of calcitriol. Endocrinology, 2010, 151(9), 4301-4312.
[http://dx.doi.org/10.1210/en.2009-1156] [PMID: 20591973]
[51]
Light, B.W.; Yu, W.D.; McElwain, M.C.; Russell, D.M.; Trump, D.L.; Johnson, C.S. Potentiation of cisplatin antitumor activity using a vitamin D analogue in a murine squamous cell carcinoma model system. Cancer Res., 1997, 57(17), 3759-3764.
[PMID: 9288784]
[52]
Prudencio, J.; Akutsu, N.; Benlimame, N.; Wang, T.; Bastien, Y.; Lin, R.; Black, M.J.; Alaoui-Jamali, M.A.; White, J.H. Action of low calcemic 1alpha,25-dihydroxyvitamin D3 analogue EB1089 in head and neck squamous cell carcinoma. J. Natl. Cancer Inst., 2001, 93(10), 745-753.
[http://dx.doi.org/10.1093/jnci/93.10.745] [PMID: 11353784]
[53]
Kumagai, T.; O’Kelly, J.; Said, J.W.; Koeffler, H.P. Vitamin D2 analog 19-nor-1,25-dihydroxyvitamin D2: antitumor activity against leukemia, myeloma, and colon cancer cells. J. Natl. Cancer Inst., 2003, 95(12), 896-905.
[http://dx.doi.org/10.1093/jnci/95.12.896] [PMID: 12813173]
[54]
Hathcock, J.N.; Shao, A.; Vieth, R.; Heaney, R. Risk assessment for vitamin D. Am. J. Clin. Nutr., 2007, 85(1), 6-18.
[http://dx.doi.org/10.1093/ajcn/85.1.6] [PMID: 17209171]
[55]
OECD. Repeated dose 28-day oral toxicity study in rodents, guideline 407, the OECD guideline for testing of chemical., 1995.
[56]
Windberger, U.; Bartholovitsch, A.; Plasenzotti, R.; Korak, K.J.; Heinze, G. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Exp. Physiol., 2003, 88(3), 431-440.
[http://dx.doi.org/10.1113/eph8802496] [PMID: 12719768]
[57]
Jones, G.; Prosser, D.E.; Kaufmann, M. Cytochrome P450-mediated metabolism of vitamin D. J. Lipid Res., 2014, 55(1), 13-31.
[http://dx.doi.org/10.1194/jlr.R031534] [PMID: 23564710]
[58]
Diesel, B.; Radermacher, J.; Bureik, M.; Bernhardt, R.; Seifert, M.; Reichrath, J.; Fischer, U.; Meese, E. Vitamin D(3) metabolism in human glioblastoma multiforme: functionality of CYP27B1 splice variants, metabolism of calcidiol, and effect of calcitriol. Clin. Cancer Res., 2005, 11(15), 5370-5380.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1968] [PMID: 16061850]
[59]
Garcion, E.; Wion-Barbot, N.; Montero-Menei, C.N.; Berger, F.; Wion, D. New clues about vitamin D functions in the nervous system. Trends Endocrinol. Metab., 2002, 13(3), 100-105.
[http://dx.doi.org/10.1016/S1043-2760(01)00547-1] [PMID: 11893522]
[60]
Anderson, M.G.; Nakane, M.; Ruan, X.; Kroeger, P.E.; Wu-Wong, J.R. Expression of VDR and CYP24A1 mRNA in human tumors. Cancer Chemother. Pharmacol., 2006, 57(2), 234-240.
[http://dx.doi.org/10.1007/s00280-005-0059-7] [PMID: 16180015]
[61]
Skowronski, R.J.; Peehl, D.M.; Feldman, D. Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology, 1993, 132(5), 1952-1960.
[http://dx.doi.org/10.1210/endo.132.5.7682937] [PMID: 7682937]
[62]
Fermento, M.E.; Gandini, N.A.; Salomón, D.G.; Ferronato, M.J.; Vitale, C.A.; Arévalo, J. Inhibition of p300 suppresses growth of breast cancer. Role of p300 subcellular localization. Exp. Mol. Pathol., 2014, 97(2014), 411-424.
[http://dx.doi.org/10.1016 / j.yexmp.2014.09.019]
[63]
Huet, T.; Laverny, G.; Ciesielski, F.; Molnár, F.; Ramamoorthy, T.G.; Belorusova, A.Y. A vitamin D receptor selectively activated by gemini analogs reveals ligand dependent and independent effects. Cell Rep., 2015, 10(2015), 516-526.
[http://dx.doi.org/10.1016 / j.celrep.2014.12.045]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy