Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Electrochemiluminescence Sensors based on Lanthanide Nanomaterials as Modifiers

Author(s): Sepideh Mohammad Beigia, Fazeleh Mesgari, Morteza Hossein*, Davoud Dastan and Guobao Xu

Volume 18, Issue 1, 2022

Published on: 16 August, 2020

Page: [53 - 62] Pages: 10

DOI: 10.2174/1573411016999200816123009

Price: $65

Abstract

Background: The rapid and increasing use of the nanomaterials in the development of electrochemiluminescence (ECL) sensors is a significant area of study for its massive potential in the practical application of nanosensor fabrication. Recently, nanomaterials (NMs) have been widely applied in vast majority of ECL studies to remarkably amplify signals owing to their excellent conductivity, large surface area and sometimes catalytic activity. Lanthanides, as f-block-based elements, possess remarkable chemical and physical properties. This review covers the use of lanthanide NMs, focusing on their use in ECL for signal amplification in sensing applications.

Methods: We present the recent advances in ECL nanomaterials including lanthanides NMs with a particular emphasis on Ce, Sm, Eu and Yb. We introduce their properties along with applications in different ECL sensors. A major focus is placed upon numerous research strategies for addressing the signal amplification with lanthanide NMs in ECL.

Results: Lanthanide NMs as the amplification element can provide an ideal ECL platform for enhancing the signal of a sensor due to their chemical and physical properties. Function of lanthanide NMs on signal amplification remarkably depend on their large surface area to load sufficient signal molecules, high conductivity to promote electron-transfer reaction.

Conclusion: ECL as a powerful analytical technique has been widely used in various aspects. As the development of the nanotechnology and nanoscience, lanthanide nanomaterials have shown the remarkable advantages in analytical applications due to their significant physical and chemical properties. We predict that in the future, the demand for ECL sensors will be high due to their potential in a diverse range of applications. Also, we expect the research in nanomaterial-based sensors will still continue intensively and eventually become effectively routine analysis tools that could meet various challenges.

Keywords: Electrochemiluminescence, lanthanide, light, modifier, nanomaterials, sensor.

Graphical Abstract

[1]
Zhu, M.J.; Pan, J.B.; Wu, Z.Q.; Gao, X.Y.; Zhao, W.; Xia, X.H.; Xu, J.J.; Chen, H.Y. Electrogenerated Chemiluminescence Imaging of Electrocatalysis at a Single Au-Pt Janus Nanoparticle. Angew. Chem. Int. Ed. Engl., 2018, 57(15), 4010-4014.
[http://dx.doi.org/10.1002/anie.201800706] [PMID: 29423931]
[2]
Nasiri Khonsari, Y.; Sun, S. Recent trends in electrochemiluminescence aptasensors and their applications. Chem. Commun. (Camb.), 2017, 53(65), 9042-9054.
[http://dx.doi.org/10.1039/C7CC04300G] [PMID: 28759057]
[3]
Hercules, D.M. Chemiluminescence Resulting from electrochemically generated species. Science, 1964, 145(3634), 808-809.
[http://dx.doi.org/10.1126/science.145.3634.808] [PMID: 17816303]
[4]
Santhanam, K.S.V.; Bard, A.J. Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical1. J. Am. Chem. Soc., 1965, 87(1), 139-140.
[http://dx.doi.org/10.1021/ja01079a039]
[5]
Harvey, N. Luminescence during electrolysis. J. Phys. Chem., 1928, 33(10), 1456-1459.
[http://dx.doi.org/10.1021/j150304a002]
[6]
Hu, L.; Xu, G. Applications and trends in electrochemiluminescence. Chem. Soc. Rev., 2010, 39(8), 3275-3304.
[http://dx.doi.org/10.1039/b923679c] [PMID: 20593100]
[7]
Rassaei, L.; Xu, G.; Ding, Z.; Mathwig, K. Electrochemiluminescence: Fundamentals to applications. ChemElectroChem, 2017, 4(7), 1571-1571.
[http://dx.doi.org/10.1002/celc.201700530]
[8]
Zhai, Q.; Li, J.; Wang, E. Recent advances based on nanomaterials as electrochemiluminescence probes for the fabrication of sensors. ChemElectroChem, 2017, 4(7), 1639-1650.
[http://dx.doi.org/10.1002/celc.201600898]
[9]
Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq., 2020, 298112040
[http://dx.doi.org/10.1016/j.molliq.2019.112040]
[10]
Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movaghgharnezhad, S.; Rajendran, S.; Razmjou, A.; Orooji, Y.; Agarwal, S.; Gupta, V.K. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq., 2020.310113185
[http://dx.doi.org/10.1016/j.molliq.2020.113185]
[11]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium-Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250123042
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[12]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[13]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos., Part B Eng., 2019, 172, 666-670.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.065]
[14]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13(3), 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[15]
Miraki, M.; Karimi-Maleh, H.; Taher, M.A.; Cheraghi, S.; Karimi, F.; Agarwal, S.; Gupta, V.K. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq., 2019, 278, 672-676.
[http://dx.doi.org/10.1016/j.molliq.2019.01.081]
[16]
Khodadadi, A.; Faghih-Mirzaei, E.; Karimi-Maleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V.K. A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: Experimental and docking theoretical investigations. Sens. Actuators B Chem., 2019, 284, 568-574.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[17]
Karimi-Maleh, H.; Sheikhshoaie, M.; Sheikhshoaie, I.; Ranjbar, M.; Alizadeh, J.; Maxakato, N.W.; Abbaspourrad, A. A novel electrochemical epinine sensor using amplified CuO nanoparticles and a n-hexyl-3-methylimidazolium hexafluorophosphate electrode. New J. Chem., 2019, 43(5), 2362-2367.
[http://dx.doi.org/10.1039/C8NJ05581E]
[18]
Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec., 2020, 20(7), 682-692.
[19]
Karimi-Maleh, H.; Fakude, C.T.; Mabuba, N.; Peleyeju, G.M.; Arotiba, O.A. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci., 2019, 554, 603-610.
[http://dx.doi.org/10.1016/j.jcis.2019.07.047] [PMID: 31330427]
[20]
Hosseini, M.; Ganjali, M.R.; Veismohammadi, B.; Faridbod, F.; Norouzi, P.; Abkenar, S.D. Novel selective optode membrane for terbium ion based on fluorescence quenching of the 2-(5-(dimethylamino) naphthalen-1-ylsulfonyl)-N-henylhydrazinecarbo-thioamid. Sens. Actuators B Chem., 2010, 147(1), 23-30.
[http://dx.doi.org/10.1016/j.snb.2009.12.049]
[21]
Ganjali, M.R.; Ganjali, H.; Hosseini, M.; Norouzi, P. A Novel Nano-Composite Tb3+ Carbon Paste Electrode. Int. J. Electrochem. Sci., 2010, 5, 967-977.
[22]
Ganjali, M.R.; Veismohammadi, B.; Hosseini, M.; Norouzi, P. A new Tb3+-selective fluorescent sensor based on 2-(5-(dimethyl-amino)naphthalen-1-ylsulfonyl)-N-henylhydrazinecarbothioamide. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 74(2), 575-578.
[http://dx.doi.org/10.1016/j.saa.2009.07.014] [PMID: 19671495]
[23]
Ganjali, M.R.; Hosseini, M.; Hariri, M.; Faridbod, F.; Norouzi, P. Novel erbium (III)-selective fluorimetric bulk optode. Sens. Actuators B Chem., 2009, 142(1), 90-96.
[http://dx.doi.org/10.1016/j.snb.2009.08.027]
[24]
Li, J.; Guo, S.; Wang, E. Recent advances in new luminescent nanomaterials for electrochemiluminescence sensors. RSC Advances, 2012, 2(9), 3579-3586.
[http://dx.doi.org/10.1039/c2ra01070d]
[25]
Salehnia, F.; Hosseini, M.; Ganjali, M.R. Enhanced electrochemiluminescence of luminol by an in situ silver nanoparticle-decorated graphene dot for glucose analysis. Anal. Methods, 2018, 10(5), 508-514.
[http://dx.doi.org/10.1039/C7AY02375H]
[26]
Ma, X.; Wang, C.; Wu, F.; Guan, Y.; Xu, G. TiO2 nanomaterials in photoelectrochemical and electrochemiluminescent biosensing. Top. Curr. Chem. (Cham), 2020, 378(2), 28.
[http://dx.doi.org/10.1007/s41061-020-0291-y] [PMID: 32125549]
[27]
Mirzanasiri, N.; Hosseini, M.; Larijani, B.; Rashedi, H. Electrochemiluminescence analysis of levodopa using luminol at MWCNT-modified electrode. Anal. Bioanal. Electrochem., 2018, 10(1), 147-160.
[28]
Hamtak, M.; Hosseini, M.; Fotouhi, L.; Aghazadeh, M. A new electrochemiluminescence biosensor for the detection of glucose based on polypyrrole/polyluminol/Ni(OH)2 -C3 N4/glucose oxidase-modified graphite electrode. Anal. Methods, 2018, 10(47), 5723-5730.
[http://dx.doi.org/10.1039/C8AY01849A]
[29]
Hamtak, M.; Fotouhi, L.; Hosseini, M.; Reza Ganjali, M. Sensitive nonenzymatic electrochemiluminescence determination of hydrogen peroxide in dental products using a polypyrrole/polyluminol/titanium dioxide nanocomposite. Anal. Lett., 2019, 52(4), 633-648.
[http://dx.doi.org/10.1080/00032719.2018.1483940]
[30]
Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens. Bioelectron., 2017, 91, 504-514.
[http://dx.doi.org/10.1016/j.bios.2017.01.007] [PMID: 28082239]
[31]
Faridbod, F.; Ganjali, M.R.; Hosseini, M. 12 - Lanthanide materials as chemosensors.Lanthanide-Based Multifunctional Materials; Martín-Ramos, P.; Ramos Silva, M., Eds.; Elsevier, 2018, pp. 411- 454;
[http://dx.doi.org/10.1016/B978-0-12-813840-3.00012-0]
[32]
Sun, J.; Sun, H.; Liang, Z. Nanomaterials in Electrochemiluminescence Sensors. ChemElectroChem, 2017, 4(7), 1651-1662.
[http://dx.doi.org/10.1002/celc.201600920]
[33]
Bünzli, J-C.G. Lanthanide light for biology and medical diagnosis. J. Lumin., 2016, 170, 866-878.
[http://dx.doi.org/10.1016/j.jlumin.2015.07.033]
[34]
Tian, Z.; Li, J.; Zhang, Z.; Gao, W.; Zhou, X.; Qu, Y. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials, 2015, 59, 116-124.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.039 PMID: 25968461]
[35]
Liu, W.; Liu, X.; Feng, L.; Guo, J.; Xie, A.; Wang, S.; Zhang, J.; Yang, Y. The synthesis of CeO2 nanospheres with different hollowness and size induced by copper doping. Nanoscale, 2014, 6(18), 10693-10700.
[http://dx.doi.org/10.1039/C4NR02485K] [PMID: 25093710]
[36]
Hosseini, M.; Sadat Sabet, F.; Khabbaz, H.; Aghazadeh, M.; Mizani, F.; Ganjali, M.R. Enhancement of the peroxidase-like activity of cerium-doped ferrite nanoparticles for colorimetric detection of H2O2 and glucose. Anal. Methods, 2017, 9(23), 3519-3524.
[http://dx.doi.org/10.1039/C7AY00750G]
[37]
Ganjali, M.R.; Hosseini, M.; Memari, Z.; Faridbod, F.; Norouzi, P.; Goldooz, H.; Badiei, A. Selective recognition of monohydrogen phosphate by fluorescence enhancement of a new cerium complex. Anal. Chim. Acta, 2011, 708(1-2), 107-110.
[http://dx.doi.org/10.1016/j.aca.2011.09.032] [PMID: 22093351]
[38]
Sun, C.; Li, H.; Chen, L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci., 2012, 5(9), 8475-8505.
[http://dx.doi.org/10.1039/c2ee22310d]
[39]
Zhang, M.; Yuan, R.; Chai, Y.; Wang, C.; Wu, X. Cerium oxide-graphene as the matrix for cholesterol sensor. Anal. Biochem., 2013, 436(2), 69-74.
[http://dx.doi.org/10.1016/j.ab.2013.01.022] [PMID: 23380308]
[40]
Hosseini, M.; Karimi Pur, M.R.; Norouzi, P.; Moghaddam, M.R.; Faridbod, F.; Ganjali, M.R.; Shamsi, J. Enhanced solid-state electrochemiluminescence of Ru(bpy)32+ with nano-CeO2 modified carbon paste electrode and its application in tramadol determination. Anal. Methods, 2015, 7(5), 1936-1942.
[http://dx.doi.org/10.1039/C4AY02772H]
[41]
Pur, M.R.K.; Hosseini, M.; Faridbod, F.; Dezfuli, A.S.; Ganjali, M.R. A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite. Anal. Bioanal. Chem., 2016, 408(25), 7193-7202.
[http://dx.doi.org/10.1007/s00216-016-9856-6] [PMID: 27558103]
[42]
Karimi, A.; Husain, S.W.; Hosseini, M.; Azar, P.A.; Ganjali, M.R. Rapid and sensitive detection of hydrogen peroxide in milk by Enzyme-free electrochemiluminescence sensor based on a polypyrrole-cerium oxide nanocomposite. Sens. Actuators B Chem., 2018, 271, 90-96.
[http://dx.doi.org/10.1016/j.snb.2018.05.066]
[43]
Karimi Pur, M.R.; Hosseini, M.; Faridbod, F.; Ganjali, M.R.; Hosseinkhani, S. Early detection of cell apoptosis by a cytochrome C label-Free electrochemiluminescence aptasensor. Sens. Actuators B Chem., 2018, 257, 87-95.
[http://dx.doi.org/10.1016/j.snb.2017.10.138]
[44]
Wang, J-X.; Zhuo, Y.; Zhou, Y.; Wang, H-J.; Yuan, R.; Chai, Y-Q. Ceria Doped Zinc Oxide Nanoflowers enhanced luminol-based electrochemiluminescence immunosensor for Amyloid-β detection. ACS Appl. Mater. Interfaces, 2016, 8(20), 12968-12975.
[http://dx.doi.org/10.1021/acsami.6b00021] [PMID: 27145690]
[45]
Nguyen, T-D.; Mrabet, D.; Do, T-O. Controlled self-assembly of Sm2O3 nanoparticles into nanorods: Simple and large scale synthesis using bulk Sm2O3 powders. J. Phys. Chem. C, 2008, 112(39), 15226-15235.
[http://dx.doi.org/10.1021/jp804030m]
[46]
Rosengren, A.; Johansson, B. Valence instability of the samarium metal surface. Phys. Rev. B, 1982, 26(6), 3068-3078.
[http://dx.doi.org/10.1103/PhysRevB.26.3068]
[47]
Kendall, K. Hydrocarbon fuels.Hopes for a flame-free future. Nature, 2000, 404(6775), 233-235, 235.,
[http://dx.doi.org/10.1038/35005191] [PMID: 10749192]
[48]
Gudiksen, M.S.; Lauhon, L.J.; Wang, J.; Smith, D.C.; Lieber, C.M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 415(6872), 617-620.
[http://dx.doi.org/10.1038/415617a] [PMID: 11832939]
[49]
Barone, P.W.; Baik, S.; Heller, D.A.; Strano, M.S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater., 2005, 4(1), 86-92.
[http://dx.doi.org/10.1038/nmat1276] [PMID: 15592477]
[50]
Dezfuli, A.S.; Ganjali, M.R.; Naderi, H.R. Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor. Appl. Surf. Sci., 2017, 402, 245-253.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.021]
[51]
Mesgari, F.; Beigi, S.M.; Salehnia, F.; Hosseini, M.; Ganjali, M.R. Enhanced electrochemiluminescence of Ru(bpy)32+ by Sm2O3 nanoparticles decorated graphitic carbon nitride nano-sheets for pyridoxine analysis. Inorg. Chem. Commun., 2019, 106, 240-247.
[http://dx.doi.org/10.1016/j.inoche.2019.05.023]
[52]
Pur, M.R.K.; Hosseini, M.; Faridbod, F.; Ganjali, M.R. Highly sensitive label-free electrochemiluminescence aptasensor for early detection of myoglobin, a biomarker for myocardial infarction. Mikrochim. Acta, 2017, 184(9), 3529-3537.
[http://dx.doi.org/10.1007/s00604-017-2385-y]
[53]
Hosseini, M.; Moghaddam, M.R.; Faridbod, F.; Norouzi, P.; Pur, M.R.K.; Ganjali, M.R. A novel solid-state electrochemiluminescence sensor based on a Ru(bpy)32+/nano Sm2O3 modified carbon paste electrode for the determination of L-proline. RSC Advances, 2015, 5(79), 64669-64674.
[http://dx.doi.org/10.1039/C5RA06897E]
[54]
Beigi, S. M.; Khurshid, C. A.; Mesgari, F.; Poursaberi, T.; Hosseini, M. Use of an Electrogenerated Chemiluminescence Sensor 62 Current Analytical Chemistry, 2022, Vol. 18, No. 1 Beigi et al. Modified with Sm2O3 Nanoparticles/Chitosan for the Analysis of Phenylalanine,
[55]
Ganjali, M.R.; Hosseini, M.; Khobi, M.; Farahani, S.; Shaban, M.; Faridbod, F.; Shafiee, A.; Norouzi, P. A novel europium-sensitive fluorescent nano-chemosensor based on new functionalized magnetic core-shell Fe3O4@SiO2 nanoparticles. Talanta, 2013, 115, 271-276.
[http://dx.doi.org/10.1016/j.talanta.2013.04.010] [PMID: 24054591]
[56]
Zhou, M.; Li, Y-J.; Ma, Y-J.; Wang, W-F.; Mi, J.; Chen, H. Determination of ketotifen fumarate by capillary electrophoresis with tris(2,2′-bipyridyl) ruthenium(II) electrochemiluminescence detection. Luminescence, 2011, 26(5), 319-323.
[http://dx.doi.org/10.1002/bio.1231] [PMID: 20737650]
[57]
Zhou, M.; Li, Y.; Liu, C.; Ma, Y.; Mi, J.; Wang, S. Simultaneous determination of lappaconitine hydrobromide and isopropiram fumarate in rabbit plasma by capillary electrophoresis with electrochemiluminescence detection. Electrophoresis, 2012, 33(16), 2577-2583.
[http://dx.doi.org/10.1002/elps.201100630] [PMID: 22899266]
[58]
Moghaddam, M.R.; Ganjali, M.R.; Hosseini, M.; Faridbod, F.; Karimi Pur, M.R. A novel electrochemiluminescnece sensor based on an Ru(bpy)32+ - Eu2O3 - nafion nanocomposite and its application in the detection of diphenhydramine. Int. J. Electrochem. Sci., 2017, 12, 5220-5232.
[http://dx.doi.org/10.20964/2017.06.56]
[59]
Mesgari, F.; Beigi, S.M.; Hosseini, M. Electrochemiluminescence sensor based on ru(Bpy)3 2+-eu2(co3)3 nanoparticle-chitosan modified electrode for the ultrasensitive detection of dextromethorphan HBr. Anal. Bioanal. Electrochem., 2019, 11(9), 1255-1269.
[60]
Naderi, H.R.; Ganjali, M.R.; Dezfuli, A.S.; Norouzi, P. Sonochemical preparation of a ytterbium oxide/reduced graphene oxide nanocomposite for supercapacitors with enhanced capacitive performance. RSC Adv, 2016, 6(56), 51211-51220.
[http://dx.doi.org/10.1039/C6RA02943D]
[61]
Hosseini, M.; Pur, M.R.K.; Norouzi, P.; Moghaddam, M.R.; Ganjali, M.R. An enhanced electrochemiluminescence sensor modified with a Ru(bpy)32+/Yb2O3 nanoparticle/nafion composite for the analysis of methadone samples. Mater. Sci. Eng. C, 2017, 76, 483-489.
[http://dx.doi.org/10.1016/j.msec.2017.03.070] [PMID: 28482554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy