Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Substituted 4-Formyl-2H-chromen-2-ones: Their Reaction with N-(2,3,4,6-Tetra-Oacetyl- β-D-galactopyranosyl)thiosemicarbazide, Antibacterial and Antifungal Activity of Their Thiosemicarbazone Products

Author(s): Vu Ngoc Toan*, Nguyen Minh Tri and Nguyen Dinh Thanh*

Volume 24, Issue 19, 2020

Page: [2272 - 2282] Pages: 11

DOI: 10.2174/1385272824999200812132256

Price: $65

Abstract

Several 6- and 7-alkoxy-2-oxo-2H-chromene-4-carbaldehydes were prepared from corresponding alkyl ethers of 6- and 7-hydroxy-4-methyl-2-oxo-2H-chromen-2-ones by oxidation using selenium dioxide. 6- and 7-Alkoxy-4-methyl-2H-chromenes were obtained with yields of 57-85%. Corresponding 4-carbaldehyde derivatives were prepared with yields of 41-67%. Thiosemicarbazones of these aldehydes with D-galactose moiety were synthesized by reaction of these aldehydes with N-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl) thiosemicarbazide with yields of 62-74%. These thiosemicarbazones were screened for their antibacterial and antifungal activities in vitro against bacteria, such as Staphylococcus aureus, Escherichia coli, and fungi, such as Aspergillus niger, Candida albicans. Several compounds exhibited strong inhibitory activity with MIC values of 0.78- 1.56 μM, including 8a (against S. aureus, E. coli, and C. albicans), 8d (against E. coli and A. niger), 9a (against S. aureus), and 9c (against S. aureus and C. albicans).

Keywords: 2H-Chromen-2-ones, 2H-chromene-4-carbaldehydes, antibacterial, antifungal, ethyl acetoacetate, D-galactose, thiosemicarbazide, thiosemicarbazone.

Graphical Abstract

[1]
Alho, M.A.; D’Accorso, N.B. Behavior of free sugar thiosemicarbazones toward heterocyclization reactions. Carbohydr. Res., 2000, 328(4), 481-488.
[http://dx.doi.org/10.1016/S0008-6215(00)00127-0] [PMID: 11093704]
[2]
de Aquino, T.M.; Liesen, A.P.; da Silva, R.E.A.; Lima, V.T.; Carvalho, C.S.; de Faria, A.R.; de Araújo, J.M.; de Lima, J.G.; Alves, A.J.; de Melo, E.J.T.; Góes, A.J.S. Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)-hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids. Bioorg. Med. Chem., 2008, 16(1), 446-456.
[http://dx.doi.org/10.1016/j.bmc.2007.09.025] [PMID: 17905587]
[3]
Deleanu, A.C.T.; Kostas, I.D.; Demertzi, D.K.; Terzis, A. Synthesis and characterization of new aromatic aldehyde/ketone 4-(β-D-glucopyranosyl)-thiosemicarbazones. Carbohydr. Res., 2009, 344(11), 1352-1364.
[http://dx.doi.org/10.1016/j.carres.2009.05.010] [PMID: 19497560]
[4]
Ghosh, S.; Misra, A.K.; Bhatia, G.; Khan, M.M.; Khanna, A.K. Syntheses and evaluation of glucosyl aryl thiosemicarbazide and glucosyl thiosemicarbazone derivatives as antioxidant and anti-dyslipidemic agents. Bioorg. Med. Chem. Lett., 2009, 19(2), 386-389.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.070] [PMID: 19064319]
[5]
Mosa, A.I.; Ibrahim, M.M.; Aldhlmani, S.A. Spectroscopic and solution studies of some transition metal complexes of new 4-hydroxy coumarin semi- and thiosemicarbazone complexes. J. Solution Chem., 2013, 42(12), 2364-2383.
[http://dx.doi.org/10.1007/s10953-013-0108-5]
[6]
Maddireddy, M.; Kulkarni, A.D.; Bagihalli, G.B.; Malladi, S. Thiosemicarbazone scaffold as a multidentate ligand for transition-metal ions: synthesis, characterization, in vitro antimicrobial, anthelmintic, DNA cleavage, and cytotoxic studies. Helv. Chim. Acta, 2016, 99(7), 562-572.
[http://dx.doi.org/10.1002/hlca.201600045]
[7]
Demirci, T.B.; Şahin, M.; Kondakçı, E.; Özyürek, M.; Ülküseven, B.; Apak, R. Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 138, 866-872.
[http://dx.doi.org/10.1016/j.saa.2014.10.088] [PMID: 25467658]
[8]
Rogolino, D.; Gatti, A.; Carcelli, M.; Pelosi, G.; Bisceglie, F.; Restivo, F.M.; Degola, F.; Buschini, A.; Montalbano, S.; Feretti, D.; Zani, C. Thiosemicarbazone scaffold for the design of antifungal and antiaflatoxigenic agents: evaluation of ligands and related copper complexes. Sci. Rep., 2017, 7(1), 11214.
[http://dx.doi.org/10.1038/s41598-017-11716-w] [PMID: 28894265]
[9]
Kenny, R.S.; Mashelkar, U.C. Synthesis of 2-aryl and coumarin substituted benzothiazole derivatives. J. Heterocycl. Chem., 2006, 43(5), 1367-1369.
[http://dx.doi.org/10.1002/jhet.5570430535]
[10]
Kumbar, S.S.; Hosamani, K.M.; Gouripur, G.C.; Joshi, S.D. Functionalization of 3-chloroformylcoumarin to coumarin Schiff bases using reusable catalyst: an approach to molecular docking and biological studies. R. Soc. Open Sci., 2018, 5(5), 172416-172416.
[http://dx.doi.org/10.1098/rsos.172416] [PMID: 29892427]
[11]
Naik, R.M.; Thakor, V.M. Formylation of benzopyrones. I. Formylation of hydroxycoumarins with hexamethylenetetramine1. J. Org. Chem., 1957, 22(12), 1626-1629.
[http://dx.doi.org/10.1021/jo01363a024]
[12]
Bochkov, A.Y.; Akchurin, I.O.; Traven, V.F. A new facile way for the preparation of 3-formylcoumarins. Heterocycl. Commun., 2017, 23(2), 75-78.
[http://dx.doi.org/10.1515/hc-2017-0038]
[13]
Lim, N.C.; Schuster, J.V.; Porto, M.C.; Tanudra, M.A.; Yao, L.; Freake, H.C.; Brückner, C. Coumarin-based chemosensors for zinc(II): toward the determination of the design algorithm for CHEF-type and ratiometric probes. Inorg. Chem., 2005, 44(6), 2018-2030.
[http://dx.doi.org/10.1021/ic048905r] [PMID: 15762729]
[14]
Hou, J-T.; Li, K.; Liu, B-Y.; Liao, Y-X.; Yu, X-Q. The first ratiometric probe for lysine in water. Tetrahedron, 2013, 69(9), 2118-2123.
[http://dx.doi.org/10.1016/j.tet.2013.01.010]
[15]
Boehm, T.; Schumann, G.; Hansen, H. Untersuchungen in der kumarinreihe. 2. Synthese einiger kumarinaldehyde; mit bemerkungen über die katalytische hydrierung der säurechloride. Arch. Pharm. (Weinheim), 1933, 271(8), 490-513.
[http://dx.doi.org/10.1002/ardp.19332710808]
[16]
Rene, L.; Lefebvre, A.; Auzou, G. An easy conversion of 2H-chromenes into coumarins: an entry to 3-formyl coumarins. Synthesis, 1986, 1986(7), 567-569.
[http://dx.doi.org/10.1055/s-1986-31707]
[17]
Kirpichenok, M.A.; Baukulev, V.M.; Karandashova, L.A.; Grandberg, I.I. Synthesis and spectral and luminescent properties of 3-formyl-7-dialkylaminocoumarins. Chem. Heterocycl. Compd., 1991, 27(11), 1193-1199.
[http://dx.doi.org/10.1007/BF00471743]
[18]
Olomola, T.O.; Klein, R.; Kaye, P.T. Convenient synthesis of 3-methylcoumarins and coumarin-3-carbaldehydes. Synth. Commun., 2012, 42(2), 251-257.
[http://dx.doi.org/10.1080/00397911.2010.523491]
[19]
de Souza, S.M.; Franco, D.M.; Smânia, A. Antibacterial activity of coumarins. Zeitschrift für Naturforschung. C, 2005, 60, 693-700.
[http://dx.doi.org/10.1515/znc-2005-9-1006] [PMID: 16320610]
[20]
Bubols, G.B.; Vianna, D.R.; Remon, A.M.; von Poser, G.; Raventos, R.M.L.; Lima, V.L.E.; Garcia, S.C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem., 2013, 13(3), 318-334.
[PMID: 22876957]
[21]
Al-Ayed, A.S. Synthesis of new substituted chromen[4,3-c]pyrazol-4-ones and their antioxidant activities. Molecules, 2011, 16(12), 10292-10302.
[http://dx.doi.org/10.3390/molecules161210292] [PMID: 22158652]
[22]
Yang, F.; Zhao, N.; Song, J.; Zhu, K.; Jiang, C.S.; Shan, P.; Zhang, H. Design, synthesis and biological evaluation of novel coumarin-based hydroxamate derivatives as histone deacetylase (Hdac) inhibitors with antitumor activities. Molecules, 2019, 24(14), 2569.
[http://dx.doi.org/10.3390/molecules24142569] [PMID: 31311163]
[23]
Miri, R.; Nejati, M.; Saso, L.; Khakdan, F.; Parshad, B.; Mathur, D.; Parmar, V.S.; Bracke, M.E.; Prasad, A.K.; Sharma, S.K.; Firuzi, O. Structure-activity relationship studies of 4-methylcoumarin derivatives as anticancer agents. Pharm. Biol., 2016, 54(1), 105-110.
[http://dx.doi.org/10.3109/13880209.2015.1016183] [PMID: 26017566]
[24]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[http://dx.doi.org/10.1016/j.bmc.2014.05.032] [PMID: 24934993]
[25]
Ayeleso, A.O.; Joseph, J.S.; Oguntibeju, O.O.; Mukwevho, E. Evaluation of free radical scavenging capacity of methoxy containing-hybrids of thiosemicarbazone-triazole and their influence on glucose transport. BMC Pharmacol. Toxicol., 2018, 19(1), 84.
[http://dx.doi.org/10.1186/s40360-018-0266-6] [PMID: 30522526]
[26]
Yanardag, R.; Demirci, T.B.; Ulküseven, B.; Bolkent, S.; Tunali, S.; Bolkent, S. Synthesis, characterization and antidiabetic properties of N(1)-2,4-dihydroxybenzylidene-N(4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium(IV). Eur. J. Med. Chem., 2009, 44(2), 818-826.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.023] [PMID: 18621448]
[27]
Thanh, N.D.; Giang, N.T.K.; Quyen, T.H.; Huong, D.T.; Toan, V.N. Synthesis and evaluation of in vivo antioxidant, in vitro antibacterial, MRSA and antifungal activity of novel substituted isatin N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)thiosemicarbazones. Eur. J. Med. Chem., 2016, 123, 532-543.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.074] [PMID: 27517802]
[28]
Russell, A.; Frye, J.R. 2,6-Dihydroxyacetophenone. Org. Synth. Inc., 1941, 21, 22.
[http://dx.doi.org/10.1002/0471264180.os021.09 ]
[29]
Riley, H.L.; Morley, J.F.; Friend, N.A.C. 255. Selenium dioxide, a new oxidising agent. Part I. Its reaction with aldehydes and ketones. J. Chem. Soc., 1932, 1932, 1875-1883.
[http://dx.doi.org/10.1039/JR9320001875 ]
[30]
Ito, K.; Maruyama, J. Studies on stable diazoalkanes as potential fluorogenic reagents. I. 7-Substituted 4-diazomethylcoumarins. Chem. Pharm. Bull. (Tokyo), 1983, 31(9), 3014-3023.
[http://dx.doi.org/10.1248/cpb.31.3014]
[31]
Hyodo, K.; Togashi, K.; Oishi, N.; Hasegawa, G.; Uchida, K. Brønsted acid catalyzed transoximation reaction: synthesis of aldoximes and ketoximes without use of hydroxylamine salts. Green Chem., 2016, 18(21), 5788-5793.
[http://dx.doi.org/10.1039/C6GC02156E]
[32]
Lemieux, R.U. Tetra-O-acetyl-α-D-glucopyranosyl bromide. Methods Carbohydr. Chem., 1963, 2, 221-222.
[33]
Tashpulatov, A.A.; Rakhmatullaev, V.A.; Ismailov, N. Synthesis and some reactions of glycosyl isocyanate. Zh. Org. Khim., 1988, 24, 1893-1897.
[34]
Celikezen, F.C.; Orek, C.; Parlak, A.E.; Sarac, K.; Turkez, H.; Tozlu, Ö.Ö. Synthesis, structure, cytotoxic and antioxidant properties of 6-ethoxy-4-methylcoumarin. J. Mol. Struct., 2020, 1205127577
[http://dx.doi.org/10.1016/j.molstruc.2019.127577]
[35]
Stoyanov, E.V.; Mezger, J. Pechmann reaction promoted by boron trifluoride dihydrate. Molecules, 2005, 10(7), 762-766.
[http://dx.doi.org/10.3390/10070762] [PMID: 18007344]
[36]
Singh, V.; Singh, J.; Preet Kaur, K.; Kad, L.G. Acceleration of the Pechmann reaction by microwave irradiation: application to the preparation of coumarins. J. Chem. Res. Synop., 1997, 1997(2), 58-59.
[http://dx.doi.org/10.1039/a605672e]
[37]
Wang, T.; Zhao, Y.; Shi, M.; Wu, F. The synthesis of novel coumarin dyes and the study of their photoreaction properties. Dyes Pigments, 2007, 75(1), 104-110.
[http://dx.doi.org/10.1016/j.dyepig.2006.04.019]
[38]
Jorgensen, J.H. Pfaller, M.A.; Carroll, K.C.; Funke, G.; Landry, M.L.; Richter, S.S.; Warnock, D.W. Manual of Clinical Microbiology, 11th ed; American Society of Mi-crobiology, 2015.
[39]
Thanh, N.D.; Hai, D.S.; Ngoc Bich, V.T.; Thu Hien, P.T.; Ky Duyen, N.T.; Mai, N.T.; Dung, T.T.; Toan, V.N.; Kim Van, H.T.; Dang, L.H.; Toan, D.N.; Thanh Van, T.T. Efficient click chemistry towards novel 1H-1,2,3-triazole-tethered 4H-chromene-d-glucose conjugates: design, synthesis and evaluation of in vitro antibacterial, MRSA and antifungal activities. Eur. J. Med. Chem., 2019, 167, 454-471.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.060] [PMID: 30784879]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy