Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Mini-Review Article

Microwave-assisted Homogeneous Gold Catalyzed Organic Transformations

Author(s): Biswajit Panda*

Volume 7, Issue 3, 2020

Page: [166 - 182] Pages: 17

DOI: 10.2174/2213335607999200811130113

Price: $65

Abstract

Microwave chemistry is an emerging area of science mainly focusing on various applications of microwave energy into chemical processes. Microwave irradiation has enormous potential to provide controlled energy directly to the molecules of interest. On the other hand, homogeneous gold catalysis has emerged in the last two decades or so as one of the most promising fields in organic and organometallic chemistry. Its efficacy has been established many times for the construction of new C – X (X = O, N, S, etc.) and C – C bonds under mild reaction conditions. Although a significant number of reports have appeared in the literature regarding the homogeneous gold-catalyzed organic transformations under microwave conditions, this is the first review article which is going to appear in the literature. This mini-review is designed to give an interesting insight into various homogeneous goldcatalyzed organic reactions under microwave irradiation for the synthesis of a library of electronically and structurally diverse and biologically important organic molecules.

Keywords: Gold catalysis, microwave, homogeneous catalysis, synthetic methods, green chemistry, combinatorial chemistry.

Graphical Abstract

[1]
Banik, B.K.; Bandyopadhyay, D., Eds.; Advances in Microwave Chemistry; CRC Press Taylor & Francis Group: Broken Sound Parkway NW, Suite 300 Boca Raton, FL, 2019, pp. 33487-2742.
[2]
Horikoshi, S.; Serpone, N., Eds.; Microwaves in Catalysis: Methodology and Applications; Wiley-VCH Verlag GmbH & Co: KGaA,. , 2016.
[3]
Kappe, C.O.; Stadler, A.; Dallinger, D., Eds.; Microwaves in Organic and Medicinal Chemistry; John Wiley & Sons, 2012.
[http://dx.doi.org/10.1002/9783527647828]
[4]
Larhed, M.; Olofsson, K., Eds.; Microwave Methods in Organic Synthesis; Springer: Verlag Berlin Heidelberg,. , 2006.
[5]
de la Hoz, A.; Loupy, A. Microwaves in Organic Synthesis, 3rd; Wiley-VCH Verlag & Co.: Weinheim, Germany, 2012.
[http://dx.doi.org/10.1002/9783527651313]
[6]
Polshettiwar, V.; Varma, R.S. Aqueous Microwave Assisted Chemistry Synthesis and Catalysis; Royal Society of Chemistry, 2010.
[http://dx.doi.org/10.1039/9781849730990]
[7]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[8]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—a review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[9]
Hayes, B.L. Microwave synthesis: chemistry at the speed of light; CEM Pub, 2002, pp. 11-23.
[10]
Rajak, H.; Mishra, P. Microwave assisted combinatorial chemistry: The potential approach for acceleration of drug discovery. J. Sci. Ind. Res. (India), 2004, 63(8), 641-654.
[11]
Jimenez, D.E.Q.; Zanin, L.L.; Ferreira, I.M.; Araujo, Y.J.K.; Porto, A.L.M. Microwave Radiation in Biocatalysis; Advances in Microwave Chemistry, Banik, B.K.; Bandyopadhyay, D.; Eds.; 2019.
[12]
Ribeiro, S.S. Pantaroto de, S.; Ramos, P.L.; da Cruz, J.B.; Porto, A. L. M. Application of conventional heating and microwave irradiation for the biocatalytic reduction of fluoroacetophenones by thermophilic bacteria. Curr. Microw. Chem., 2016, 3(1), 9-13.
[http://dx.doi.org/10.2174/2213335602666150205102756]
[13]
Sandoval, W.N.; Pham, V.; Ingle, E.S.; Liu, P.S.; Lill, J.R. Applications of microwave-assisted proteomics in biotechnology. Comb. Chem. High Throughput Screen., 2007, 10(9), 751-765.
[http://dx.doi.org/10.2174/138620707783018504] [PMID: 18478957]
[14]
Liang, C.; Liu, Z.; Liu, C.; Li, Y.; Yuan, H.; Wang, T. Cook your samples: The application of microwave irradiation in speeding up biological processes. Mol. Biotechnol., 2018, 60(3), 236-244.
[http://dx.doi.org/10.1007/s12033-018-0061-z] [PMID: 29396747]
[15]
Wang, N.; Li, L. Reproducible microwave-assisted acid hydrolysis of proteins using a household microwave oven and its combination with LC-ESI MS/MS for mapping protein sequences and modifications. J. Am. Soc. Mass Spectrom., 2010, 21(9), 1573-1587.
[http://dx.doi.org/10.1016/j.jasms.2010.04.014] [PMID: 20547072]
[16]
Singh, I.; Rani, P.; Sareen, G.; Kaur, S. Microwave assisted synthesis of acrylamide grafted locust bean gum for colon specific drug delivery. Curr. Microw. Chem., 2018, 5(1), 46-53.
[http://dx.doi.org/10.2174/2213335605666180129160145]
[17]
Patel, N.B.; Patel, H.R.; Shaikh, F.M.; Rajani, D.P.; Patel, V.M. Microwave assisted synthetic approach of new pyridine based benzothiazepines: Their antibacterial and antifungal activities. Curr. Microw. Chem., 2016, 3(3), 212-218.
[http://dx.doi.org/10.2174/2213335603666160609123550]
[18]
Jin, Q.; Liang, F.; Zhang, H.; Zhao, L.; Huan, Y.; Song, D. Application of microwave techniques in analytical chemistry. Trends Analyt. Chem., 1999, 18(7), 479-484.
[http://dx.doi.org/10.1016/S0165-9936(99)00110-7]
[19]
Smith, F.E.; Arsenault, E.A. Microwave-assisted sample preparation in analytical chemistry. Talanta, 1996, 43(8), 1207-1268.
[http://dx.doi.org/10.1016/0039-9140(96)01882-6] [PMID: 18966599]
[20]
Khajeh, M.; Nooshiravani, F. Application of ANN-GA in the development of a microwave assisted extraction method for determination of multi-elemental determination in tea samples. Curr. Microw. Chem., 2014, 1(1), 16-21.
[http://dx.doi.org/10.2174/2213335601666131223234505]
[21]
Xiao, Y.; Gu, C.; Yu, J.; Shan, C.; Ren, Y. A novel method for analysis of phosphine (PH3) residues in canola and cotton seed. Curr. Microw. Chem., 2018, 5(2), 155-159.
[http://dx.doi.org/10.2174/2213335605666181105113527]
[22]
Badwaik, H.R.; Alexander, A.; Sakure, K. Understanding the Significance of microwave radiation for the graft copolymerization of acrylamide on carboxymethyl xanthan gum. Curr. Microw. Chem., 2019, 6(1), 13-22.
[http://dx.doi.org/10.2174/2213335606666190307162901]
[23]
Olvera-Mancilla, J.; Alexandrova, L.; Escobar-Barrios, V.A.; Palacios-Alquisira, J. Comparative kinetic study on the preparation of poly(vinyl acetate) activated by microwave and conventional heating. Curr. Microw. Chem., 2016, 3(2), 114-123.
[http://dx.doi.org/10.2174/2213335602666150930215320]
[24]
Lin, K.; Gu, Y.; Zhang, H.; Qiang, Z.; Vogt, B.D.; Zacharia, N.S. Accelerated amidization of branched poly(ethylenimine)/poly(acrylic acid) multilayer films by microwave heating. Langmuir, 2016, 32(36), 9118-9125.
[http://dx.doi.org/10.1021/acs.langmuir.6b02051] [PMID: 27548626]
[25]
Bauer, P.; Bennartz, R. Tropical rainfall measuring mission microwave imaging capabilities for the observation of rain clouds. Radio Sci., 1998, 33(2), 335-349.
[http://dx.doi.org/10.1029/97RS02049]
[26]
Wang, Y.; Alishouse, J.C.; Ferraro, R.R.; Song, R. Estimation of midlatitude rainfall parameters from satellite microwave radiometers using the area‐time integral concept. Radio Sci., 1998, 33(2), 317-333.
[http://dx.doi.org/10.1029/97RS03654]
[27]
Wang, J.R.; Zhan, J.; Racette, P. Multiple aircraft microwave observations of storms over the western Pacific Ocean. Radio Sci., 1998, 33(2), 351-368.
[http://dx.doi.org/10.1029/97RS02221]
[28]
Liou, Y.A.; Kim, E.J.; England, A.W. Radiobrightness of prairie soil and grassland during dry-down simulations. Radio Sci., 1998, 33(2), 259-265.
[http://dx.doi.org/10.1029/97RS03655]
[29]
Das, A.K.; Chakraborty, R. Microwave-enhanced speciation analysis of environmental samples. Curr. Microw. Chem., 2017, 4(1), 5-15.
[http://dx.doi.org/10.2174/2213335603666160407211819]
[30]
Panda, B.; Sarkar, T.K. On the catalytic duo PdCl2(PPh3)2/AuCl(PPh3) that cannot effect a Sonogashira-type reaction: a correction. Tetrahedron Lett., 2010, 51, 301-303.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.003]
[31]
Panda, B.; Sarkar, T. K. Gold and palladium combined for the Sonogashira coupling of aryl and heteroaryl halides.Synthesis, 2013, 45, 0817-0829.
[32]
Panda, B.; Sarkar, T.K. Gold and palladium combined for the Sonogashira-type cross-coupling of arenediazonium salts. Chem. Commun. (Camb.), 2010, 46(18), 3131-3133.
[http://dx.doi.org/10.1039/c001277g] [PMID: 20361097]
[33]
Garcia, P.; Malacria, M.; Aubert, C.; Gandon, V.; Fensterbank, L. Gold-catalyzed cross-couplings: New opportunities for C-C bond formation. ChemCatChem, 2010, 2(5), 493-497.
[http://dx.doi.org/10.1002/cctc.200900319]
[34]
Blum, S.A. Gold Catalysis: An Homogeneous Approach; Toste, F.D; Michelet, V., Ed.; World Scientific, 2014, pp. 393-412.
[http://dx.doi.org/10.1142/9781848168534_0010]
[35]
Nijamudheen, A.; Datta, A. Gold-catalyzed cross-coupling reactions: An overview of design strategies, mechanistic studies, and applications. Chemistry, 2020, 26(7), 1442-1487.
[http://dx.doi.org/10.1002/chem.201903377] [PMID: 31657487]
[36]
Panda, B. Joy and challenges of alkynylation of arenes and heteroarenes through double C-H functionalizations. Asian J. Org. Chem., 2020, 9, 492-507.
[http://dx.doi.org/10.1002/ajoc.201900733]
[37]
Hashmi, A.S.K.; Salathé, R.; Frost, T.M.; Schwarz, L.; Choi, J-H. Homogeneous catalysis by gold: The current status of C-H activation. Appl. Catal. A Gen., 2005, 291, 238-246.
[http://dx.doi.org/10.1016/j.apcata.2004.11.049]
[38]
Meera, G.; Rohit, K.R.; Treesa, G.S.S.; Anilkumar, G. Advances and prospects in gold‐catalyzed C−H activation. Asian J. Org. Chem., 2020, 9(2), 144-161.
[http://dx.doi.org/10.1002/ajoc.202000020]
[39]
Panda, B.; Bhadra, J.; Sarkar, T.K. An approach to highly functionalized quinolines and isoquinolines via a gold-catalyzed benzannulation. Synlett, 2011, 689-693.
[40]
Panda, B.; Sarkar, T.K. Gold-catalyzed benzannulation of electronically rich/rich and deficient/deficient oxoalkynes with alkynes. Synthesis, 2013, 45, 1227-1234.
[http://dx.doi.org/10.1055/s-0032-1318454]
[41]
Patil, N.T.; Yamamoto, Y. Gold-catalyzed reactions of oxo-alkynes. ARKIVOC, 2007, (v), 6-19.
[42]
Shore, G.; Tsimerman, M.; Organ, M.G. Gold film-catalysed benzannulation by microwave-assisted, continuous flow organic synthesis (MACOS). Beilstein J. Org. Chem., 2009, 5(35), 35.
[http://dx.doi.org/10.3762/bjoc.5.35] [PMID: 19777133]
[43]
Pina, C.D.; Falletta, E. Gold-catalyzed oxidation in organic synthesis: a promise kept. Catal. Sci. Technol., 2011, 1, 1564-1571.
[http://dx.doi.org/10.1039/c1cy00283j]
[44]
Bond, G.C. Hydrogenation by gold catalysts: an unexpected discovery and a current assessment. Gold Bull., 2016, 49, 53-61.
[http://dx.doi.org/10.1007/s13404-016-0182-8]
[45]
Marín-Luna, M.; Nieto Faza, O.; Silva López, C. Gold-catalyzed homogeneous (cyclo)isomerization reactions. Front. Chem,, 2019, 7(article 296), 1-22.
[46]
Li, Z.; Brouwer, C.; He, C. Gold-catalyzed organic transformations. Chem. Rev., 2008, 108(8), 3239-3265.
[http://dx.doi.org/10.1021/cr068434l] [PMID: 18613729]
[47]
Hashmi, A.S.K. Gold-catalyzed organic reactions. Chem. Rev., 2007, 107(7), 3180-3211.
[http://dx.doi.org/10.1021/cr000436x] [PMID: 17580975]
[48]
Jia, M.; Bandini, M. Counterion effects in homogeneous gold catalysis. ACS Catal., 2015, 5(3), 1638-1652.
[http://dx.doi.org/10.1021/cs501902v]
[49]
Miró, J.; Del Pozo, C. Fluorine and gold: A fruitful partnership. Chem. Rev., 2016, 116(19), 11924-11966.
[http://dx.doi.org/10.1021/acs.chemrev.6b00203] [PMID: 27548659]
[50]
Krause, N.; Winter, C. Gold-catalyzed nucleophilic cyclization of functionalized allenes: a powerful access to carbo- and heterocycles. Chem. Rev., 2011, 111(3), 1994-2009.
[http://dx.doi.org/10.1021/cr1004088] [PMID: 21314182]
[51]
Dorel, R.; Echavarren, A.M. Gold-catalyzed reactions via cyclopropyl gold carbene-like intermediates. J. Org. Chem., 2015, 80(15), 7321-7332.
[http://dx.doi.org/10.1021/acs.joc.5b01106] [PMID: 26061916]
[52]
Corma, A.; Leyva-Pérez, A.; Sabater, M.J. Gold-catalyzed carbon-heteroatom bond-forming reactions. Chem. Rev., 2011, 111(3), 1657-1712.
[http://dx.doi.org/10.1021/cr100414u] [PMID: 21391565]
[53]
Wei, Y.; Shi, M. Divergent synthesis of carbo- and heterocycles via gold-catalyzed reactions. ACS Catal., 2016, 6(4), 2515-2524.
[http://dx.doi.org/10.1021/acscatal.6b00048]
[54]
Hashmi, A.S.K.; Rudolph, M. Gold catalysis in total synthesis. Chem. Soc. Rev., 2008, 37(9), 1766-1775.
[http://dx.doi.org/10.1039/b615629k] [PMID: 18762826]
[55]
Pflästerer, D.; Hashmi, A.S.K. Gold catalysis in total synthesis - recent achievements. Chem. Soc. Rev., 2016, 45(5), 1331-1367.
[http://dx.doi.org/10.1039/C5CS00721F] [PMID: 26673389]
[56]
Panda, B.; Sarkar, T.K. Gold catalysis: regio- and stereoselective total synthesis of xyloketals D and G and the related natural product alboatrin. J. Org. Chem., 2013, 78(6), 2413-2421.
[http://dx.doi.org/10.1021/jo302545n] [PMID: 23428314]
[57]
Panda, B. Total synthesis of xyloketals and related natural product alboatrin: strategies and tactics. ChemistrySelect, 2019, 4, 9143-9164.
[http://dx.doi.org/10.1002/slct.201900779]
[58]
Panda, B. Total synthesis of bruguierols: strategies and tactics. ARKIVOC, 2019, i, 293-303.
[http://dx.doi.org/10.24820/ark.5550190.p010.966]
[59]
Baghurst, D.R.; Mingos, D.M.P. Superheating effects associated with microwave dielectric heating. J. Chem. Soc. Chem. Commun., 1992, (9), 674-677.
[http://dx.doi.org/10.1039/c39920000674]
[60]
Strauss, C.R.; Trainor, R.W. Developments in microwave-assisted organic chemistry. Aust. J. Chem., 1995, 48(10), 1665-1692.
[http://dx.doi.org/10.1071/CH9951665]
[61]
Gabriel, C.; Gabriel, S.; Grant, E.H.; Grant, E.H.; Halstead, B.S.J.; Mingos, D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev., 1998, 27(3), 213-224.
[http://dx.doi.org/10.1039/a827213z]
[62]
Ravichandran, S.; Karthikeyan, E. Microwave synthesis: A potential tool for green chemistry. Int. J. Chemtech Res., 2011, 3(1), 466-470.
[63]
Collins, M.J., Jr Future trends in microwave synthesis. Future Med. Chem., 2010, 2(2), 151-155.
[http://dx.doi.org/10.4155/fmc.09.133] [PMID: 21426181]
[64]
Grewal, A.S.; Kumar, K.; Redhu, S.; Bhardwaj, S. Microwave assisted synthesis: a green chemistry approach. Int. Res. J. Pharm. App Sci., 2013, 3(5), 278-285.
[65]
Krstenansky, J.L.; Cotterill, I. Recent advances in microwave-assisted organic syntheses. Curr. Opin. Drug Discov. Devel., 2000, 3(4), 454-461.
[PMID: 19649876]
[66]
Sekhon, B.S. Microwave-assisted pharmaceutical synthesis: An overview. Int. J. Pharm. Tech. Res., 2010, 2(1), 827-833.
[67]
Wathey, B.; Tierney, J.; Lidström, P.; Westman, J. The impact of microwave-assisted organic chemistry on drug discovery. Drug Discov. Today, 2002, 7(6), 373-380.
[http://dx.doi.org/10.1016/S1359-6446(02)02178-5] [PMID: 11893546]
[68]
Panda, B. Catalysis by Gold Alone and in Combination with Palladium: Methodology Developments and Total Synthesis of Natural Products; IIT Kharagpur, 2012.
[69]
Liu, X.Y.; Ding, P.; Huang, J.S.; Che, C.M. Synthesis of substituted 1,2-dihydroquinolines and quinolines from aromatic amines and alkynes by gold(I)-catalyzed tandem hydroamination-hydroarylation under microwave-assisted conditions. Org. Lett., 2007, 9(14), 2645-2648.
[http://dx.doi.org/10.1021/ol070814l] [PMID: 17564458]
[70]
Anh, N.T. Frontier orbitals:a practical manual; Wiley: Chichester, 2007.
[http://dx.doi.org/10.1002/9780470065709]
[71]
Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L.J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev., 2015, 115(7), 2596-2697.
[http://dx.doi.org/10.1021/cr300389u] [PMID: 25721762]
[72]
Zhdanko, A.; Maier, M.E. Mechanistic study of gold(I)-catalyzed hydroamination of alkynes: outer or inner sphere mechanism? Angew. Chem. Int. Ed. Engl., 2014, 53(30), 7760-7764.
[http://dx.doi.org/10.1002/anie.201402557] [PMID: 24923243]
[73]
Liu, X-Y.; Li, C.H.; Che, C.M. Phosphine gold(I)-catalyzed hydroamination of alkenes under thermal and microwave-assisted conditions. Org. Lett., 2006, 8(13), 2707-2710.
[http://dx.doi.org/10.1021/ol060719x] [PMID: 16774237]
[74]
Wang, M-Z.; Wong, M.K.; Che, C.M. Gold(I)-catalyzed intermolecular hydroarylation of alkenes with indoles under thermal and microwave-assisted conditions. Chemistry, 2008, 14(27), 8353-8364.
[http://dx.doi.org/10.1002/chem.200800040] [PMID: 18666293]
[75]
Nieto-Oberhuber, C.; Pérez-Galan, P.; Herrero-Gómez, E.; Lauterbach, T.; Rodríguez, C.; López, S.; Bour, C.; Rosellón, A.; Cárdenas, D.J.; Echavarren, A.M. Gold(I)-catalyzed intramolecular [4+2] cycloadditions of arylalkynes or 1,3-enynes with alkenes: scope and mechanism. J. Am. Chem. Soc., 2008, 130(1), 269-279.
[http://dx.doi.org/10.1021/ja075794x] [PMID: 18076170]
[76]
Giner, X.; Najera, C.; Kovacs, G.; Lledos, A.; Ujaque, G. Gold versus silver-catalyzed intermolecular hydroaminations of alkenes and dienes. Adv. Synth. Catal., 2011, 353, 3451-3466.
[http://dx.doi.org/10.1002/adsc.201100478]
[77]
Richard, M.E.; Fraccica, D.V.; Garcia, K.J.; Miller, E.J.; Ciccarelli, R.M.; Holahan, E.C.; Resh, V.L.; Shah, A.; Findeis, P.M.; Stockland, R.A. Jr Acid, silver, and solvent-free gold-catalyzed hydrophenoxylation of internal alkynes. Beilstein J. Org. Chem., 2013, 9, 2002-2008.
[http://dx.doi.org/10.3762/bjoc.9.235] [PMID: 24204410]
[78]
Vinson, A.R.; Iafe, R.G.; Wenzel, A.G. Gold-catalyzed, sn1-type reaction of alcohols to afford ethers and Cbz-protected amines. Synlett, 2015, 26, 765-770.
[http://dx.doi.org/10.1055/s-0034-1380128]
[79]
Parthasarathy, K.; Praveen, C.; Jeyaveeran, J.C.; Prince, A.A.M. Gold catalyzed double condensation reaction: Synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(17), 4310-4317.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.036] [PMID: 27476145]
[80]
Webster, S.; O’Rourke, K.M.; Fletcher, C.; Pimlott, S.L.; Sutherland, A.; Lee, A.L. RapidIododeboronation with and without gold catalysis: Application to radiolabelling of arenes. Chemistry, 2018, 24(4), 937-943.
[http://dx.doi.org/10.1002/chem.201704534] [PMID: 29105856]
[81]
Zhang, H.; Huang, R.; Pillarsetty, N.; Thorek, D.L.J.; Vaidyanathan, G.; Serganova, I.; Blasberg, R.G.; Zhang, H.; Huang, R.; Pillarsetty, N.; Thorek, D.L.; Vaidyanathan, G.; Serganova, I.; Blasberg, R.G.; Lewis, J.S. Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(2), 322-332.
[http://dx.doi.org/10.1007/s00259-013-2558-9] [PMID: 24173571]
[82]
Sharp, S.E.; Trout, A.T.; Weiss, B.D.; Gelfand, M.J. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics, 2016, 36(1), 258-278.
[http://dx.doi.org/10.1148/rg.2016150099] [PMID: 26761540]
[83]
Giammarile, F.; Chiti, A.; Lassmann, M.; Brans, B.; Flux, G. EANM. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(5), 1039-1047.
[http://dx.doi.org/10.1007/s00259-008-0715-3] [PMID: 18274745]
[84]
Razzaq, T.; Kappe, C.O. On the energy efficiency of microwave-assisted organic reactions. ChemSusChem, 2008, 1(1-2), 123-132.
[http://dx.doi.org/10.1002/cssc.200700036] [PMID: 18605675]
[85]
Hoogenboom, R.; Wilms, A.F.A.; Erdmenger, T.; Schubert, U.S. Microwave-assisted chemistry: a closer look at heating efficiency. Aust. J. Chem., 2009, 62, 236-243.
[http://dx.doi.org/10.1071/CH08503]
[86]
Moseley, J.D.; Kappe, C.O. A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem., 2011, 13, 794-806.
[http://dx.doi.org/10.1039/c0gc00823k]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy