Abstract
Alginates are biopolymers usually obtained from brown seaweed, brown algae (Ochrophyta, Phaeophyceae), and bacteria (Azatobacter vineland and Pseudomonas species) belonging to the family of polycationic copolymers. They are biocompatible, biodegradable, non-antigenic, and non-toxic biopolymer with molecular mass ranges from 32,000-40,000 g/mol in commercial grades. These can be used as edible films or coatings in food industries and also some natural or chemical additives could be incorporated into them to modify their functional, mechanical, nutritional as well as organoleptic properties. Due to their high viscosity and extraordinary shear-thinning effect, they can be used as dietary fibers, thickening, gelling and stabilizing agents. Commercial alginates have vast applications in the fields of biomedical engineering, biotechnology, environmental contaminants treatments, food processing, and pharmaceuticals. Alginates can be used in wound dressings, bone regeneration, neovascularization, protein delivery, cell delivery, theranostic agents, oral drug delivery, controlled release systems, raft formulations, immobilization of biological agents and treatment of environmental contaminants. Various carrier systems can be formulated by the use of alginates like hydrogel, tablets, microcapsules, films, matrices, microspheres, liposomes, nanoparticles, beads, cochleate, floating and supersaturated drug delivery systems. This review presents a broad range of promising applications of alginates, and it can be a great interest to scientists and industries engaged in exploring its hidden potential.
Keywords: Alginate, drug delivery, environmental applications, food applications, pharmaceuticals, tablets.
Graphical Abstract
[http://dx.doi.org/10.1016/j.carbpol.2011.11.012]
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
(b)Nakauma, M.; Funami, T.; Fang, Y.; Nishinari, K.; Draget, K.I.; Phillips, G.O. Calcium binding and calcium-induced gelation of sodium alginate modified by low molecular-weight polyuronate. Food Hydrocoll., 2016, 55, 65-76.
[http://dx.doi.org/10.1016/j.foodhyd.2015.10.021]
[http://dx.doi.org/10.3109/03639045.2014.917657 ] [PMID: 25109399]
[http://dx.doi.org/10.1016/B978-0-12-811449-0.00013-X]
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.007 ] [PMID: 22281421]
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.040 ] [PMID: 16364576]
[http://dx.doi.org/10.1016/j.eurpolymj.2019.01.058]
[http://dx.doi.org/10.1016/j.foodhyd.2018.11.031]
[http://dx.doi.org/10.1016/j.jfoodeng.2011.12.016]
[http://dx.doi.org/10.1016/j.proche.2016.03.012]
[http://dx.doi.org/10.1016/j.jmbbm.2019.02.014 ] [PMID: 30802775]
[http://dx.doi.org/10.1016/j.wndm.2019.02.001]
[http://dx.doi.org/10.1016/j.colsurfb.2017.02.026 ] [PMID: 28242371]
[http://dx.doi.org/10.1016/j.ab.2019.03.008 ] [PMID: 30905690]
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.058 ] [PMID: 30981780]
[http://dx.doi.org/10.1007/978-3-540-92679-5_9]
[http://dx.doi.org/10.1016/j.foodhyd.2019.01.052]
[http://dx.doi.org/10.1016/j.procbio.2017.04.037]
[http://dx.doi.org/10.3390/foods7100170 ] [PMID: 30336642]
[http://dx.doi.org/10.1039/C7CC06523J ] [PMID: 29292806]
[http://dx.doi.org/10.1080/10408390500285673 ] [PMID: 16183570]
[http://dx.doi.org/10.1016/j.bej.2018.12.014]
[http://dx.doi.org/10.1080/10643389.2018.1547621]
[http://dx.doi.org/10.1016/j.bcab.2019.101458]
[http://dx.doi.org/10.1016/j.biortech.2011.03.006 ] [PMID: 21450461]
[http://dx.doi.org/10.1016/j.carbpol.2018.11.027 ] [PMID: 30553345]
[http://dx.doi.org/10.1016/j.jddst.2019.101379]
[http://dx.doi.org/10.1002/jbmr.5650060813 ] [PMID: 1664648]
[http://dx.doi.org/10.1016/j.carbpol.2020.115832 ] [PMID: 32059885]
[http://dx.doi.org/10.1081/DDC-120003853 ] [PMID: 12149954]
[http://dx.doi.org/10.1016/0378-5173(95)00173-5]
[http://dx.doi.org/10.1016/j.jddst.2020.101643]
[http://dx.doi.org/10.1016/S0268-005X(01)00046-7]
(b)Jain, A.; Jain, S.K. In vitro release kinetics model fitting of liposomes: an insight. Chem. Phys. Lipids, 2016, 201, 28-40.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.10.005 ] [PMID: 27983957]
[http://dx.doi.org/10.1016/0167-7799(90)90139-O] [PMID: 1366500]
(b)Dennis, A.; Timmins, P.; Lee, K. Buoyant controlled release powder formulation; Google Patents, 1992.
[http://dx.doi.org/10.1248/bpb.17.745] [PMID: 7920448]
(b)Miyazaki, S.; Nakayama, A.; Oda, M.; Takada, M.; Attwood, D. Drug release from oral mucosal adhesive tablets of chitosan and sodium alginate. Int. J. Pharm., 1995, 118(2), 257-263.
[http://dx.doi.org/10.1016/0378-5173(94)00396-M]
(c)Jain, A.; Gulbake, A.; Shilpi, S.; Jain, A.; Hurkat, P.; Jain, S.K. A new horizon in modifications of chitosan: syntheses and applications. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(2), 91-181.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005678] [PMID: 23510147]
(d)Jain, A.; Jain, S.K. Environmentally responsive Chitosan-based Nanocarriers (CBNs). Handbook of Polymers for Pharmaceutical Technologies, Biodegradable Polymers, 2015, 3, pp. 105.
[http://dx.doi.org/10.3748/wjg.v18.i32.4371 ] [PMID: 22969201]
[http://dx.doi.org/10.1248/bpb.22.55 ] [PMID: 9989662]
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2015010903] [PMID: 25955883]
(b)Gulbake, A.; Jain, A.; Jain, A.; Sahu, A. Prodrugs and bioconjugate hydrogels: a valuable strategy for the prolonged-delivery of drugs. Functional Hydrogels in Drug Delivery; Taylor and Francis Group, 2017, pp. 89-113.
(c)Kumari, A.; Jain, A.; Hurkat, P.; Verma, A.; Jain, S. K. Microsponges: a pioneering tool for biomedical applications. Crit. Rev. Therapeut. Drug Carrier Syst., 2016, 33, 1.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v33.i1.40]
(d)Jain, A.; Jain, S.K. Colon Targeted Liposomal Systems (CTLS): theranostic potential. Curr. Mol. Med., 2015, 15(7), 621-633.
[http://dx.doi.org/10.2174/1566524015666150831131320 ] [PMID: 26321756]
[http://dx.doi.org/10.1186/s13063-016-1240-5 ] [PMID: 26945575]
[PMID: 23832732]
[http://dx.doi.org/10.12968/jowc.2001.10.3.26063 ] [PMID: 11924357]
[http://dx.doi.org/10.7748/ns2014.04.28.35.60.e7943 ] [PMID: 24779845]
[http://dx.doi.org/10.1111/j.1365-2036.2010.04278.x ] [PMID: 20500735]
[http://dx.doi.org/10.1016/j.addr.2012.06.008 ] [PMID: 22728914]
[PMID: 23678438]
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.083 ] [PMID: 30580147]
[http://dx.doi.org/10.1016/j.carbpol.2013.09.004 ] [PMID: 24274557]
[http://dx.doi.org/10.1002/jps.23656 ] [PMID: 23839971]
[http://dx.doi.org/10.1016/j.jddst.2019.03.020]
[http://dx.doi.org/10.1016/j.carbpol.2019.04.067 ] [PMID: 31221310]
[http://dx.doi.org/10.1016/j.ejpb.2007.03.003 ] [PMID: 17451926]
[http://dx.doi.org/10.1016/j.xphs.2019.08.011 ] [PMID: 31446146]
[http://dx.doi.org/10.1016/j.carbpol.2010.06.009]
[http://dx.doi.org/10.1016/j.jece.2018.03.002]
[http://dx.doi.org/10.1016/j.carbpol.2018.07.002 ] [PMID: 30143129]
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.045 ] [PMID: 28692873]
[http://dx.doi.org/10.1016/j.msec.2018.12.033 ] [PMID: 30678955]
[http://dx.doi.org/10.1016/j.carbpol.2016.08.098 ] [PMID: 27702535]
[http://dx.doi.org/10.1016/j.apsusc.2019.143543]
[http://dx.doi.org/10.1016/j.polymertesting.2019.106039]
[http://dx.doi.org/10.1016/j.msec.2017.03.074 ] [PMID: 28482582]
[http://dx.doi.org/10.1016/j.biortech.2017.09.091 ] [PMID: 28950123]
[http://dx.doi.org/10.1016/j.carbpol.2014.10.045 ] [PMID: 25498702]
[http://dx.doi.org/10.3109/10717544.2012.657717 ] [PMID: 22352984]
[http://dx.doi.org/10.5138/ijdd.2010.0975.0215.02013]
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.035 ] [PMID: 24565522]
[http://dx.doi.org/10.1002/jsfa.7691 ] [PMID: 26921243]
[http://dx.doi.org/10.2217/nnm.13.148 ] [PMID: 24405513]
[http://dx.doi.org/10.18433/J3DP43 ] [PMID: 25224343]
[http://dx.doi.org/10.1002/jbm.a.34051 ] [PMID: 22396108]
[http://dx.doi.org/10.1111/1750-3841.12912 ] [PMID: 25990921]
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.009 ] [PMID: 27939272]
[http://dx.doi.org/10.1016/j.carbpol.2015.07.048 ] [PMID: 26344317]
[http://dx.doi.org/10.1208/s12249-018-1084-2 ] [PMID: 29948989]
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.121 ] [PMID: 30340010]
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109220]
[http://dx.doi.org/10.1016/j.partic.2015.09.004]
[http://dx.doi.org/10.1016/j.jconrel.2013.07.010 ] [PMID: 23886705]
[http://dx.doi.org/10.1016/j.colsurfa.2019.04.082]
[http://dx.doi.org/10.1016/j.lwt.2017.04.051]
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.103 ] [PMID: 30902715]
[http://dx.doi.org/10.1016/j.foodchem.2017.07.052 ] [PMID: 28946284]
[http://dx.doi.org/10.1016/j.carbpol.2016.08.079 ] [PMID: 27702502]
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.09.027]
[http://dx.doi.org/10.1002/(SICI)1097-0290(19960520)50:4<374:AID-BIT4>3.0.CO;2-I ] [PMID: 18626986]
[http://dx.doi.org/10.1016/j.ejpb.2008.10.006 ] [PMID: 18992337]
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.010 ] [PMID: 27155235]
[http://dx.doi.org/10.1016/j.ejpb.2015.07.020 ] [PMID: 26247118]
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.078 ] [PMID: 25843758]
[http://dx.doi.org/10.1016/j.jopr.2013.03.018]
[http://dx.doi.org/10.4103/2230-973X.106988 ] [PMID: 23580933]
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.036 ] [PMID: 29288095]
[http://dx.doi.org/10.1016/j.lwt.2017.04.036]
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.114 ] [PMID: 30336238]
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.062 ] [PMID: 30597265]
[http://dx.doi.org/10.1016/j.jhazmat.2017.05.018 ] [PMID: 28531662]
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.014]
[http://dx.doi.org/10.1016/j.addr.2012.09.007]
[http://dx.doi.org/10.1016/j.foodhyd.2016.09.023]
[http://dx.doi.org/10.2478/v10007-012-0034-x] [PMID: 23333888]
(b)Kumari, A.; Jain, A.; Hurkat, P.; Tiwari, A.; Jain, S.K. Eudragit S100 coated microsponges for colon targeting of prednisolone. Drug Dev. Ind. Pharm., 2017, 1-34.
[PMID: 29260916]
(c)Subudhi, M.B.; Jain, A.; Jain, A.; Hurkat, P.; Shilpi, S.; Gulbake, A.; Jain, S.K. Eudragit S100 coated citrus pectin nanoparticles for colon targeting of 5-fluorouracil. Materials (Basel), 2015, 8(3), 832-849.
[http://dx.doi.org/10.3390/ma8030832 ] [PMID: 28787974]
[http://dx.doi.org/10.1080/21691401.2017.1290647] [PMID: 28278584]
(b)Jain, A.; Jain, S.K. Application potential of engineered liposomes in tumor targeting. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Grumezescu, A., Ed.; Elsevier - Health Sciences Division, 2017, pp. 171-192.
[http://dx.doi.org/10.1016/B978-0-323-52725-5.00009-5]
(c)Ummarino, D.; Miele, E.; Martinelli, M.; Scarpato, E.; Crocetto, F.; Sciorio, E.; Staiano, A. Effect of magnesium alginate plus simethicone on gastroesophageal reflux in infants. J. Pediatr. Gastroenterol. Nutr., 2015, 60(2), 230-235.
[http://dx.doi.org/10.1097/MPG.0000000000000521 ] [PMID: 25079477]
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.039] [PMID: 30999120]
(b)Jain, A.J.; Sanjay, K. Liposomes in cancer therapy. Nanocarrier Systems for Drug Deliv; Carlos, J., Ed.; Nova Science Publishers: New York, 2016, pp. 1-42.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2019026358]
[http://dx.doi.org/10.1016/j.jddst.2020.101549]
(b)Jain, A.; Jain, S.K. Advances in tumor targeted liposomes. Curr. Mol. Med., 2018, 18(1), 44-57.
[http://dx.doi.org/10.2174/1566524018666180416101522 ] [PMID: 29663884]
(b)Jain, A.; Hurkat, P.; Jain, S. K. J. C.; Lipids, P. O. Development of liposomes using formulation by design: basics to recent advances. Chem. Phy. Lipids, 2019, 224, 104764.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.03.017]
(c)Martín, M.J.; Calpena, A.C.; Fernández, F.; Mallandrich, M.; Gálvez, P.; Clares, B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr. Polym., 2015, 117, 140-149.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.032] [PMID: 25498619]
(d)Jain, A.; Jain, S.K. Brain targeting using surface functionalized nanocarriers in human solid tumors. In Drug Nanocarriers, Series Nanobiomedicine; B., Singh.; N.K., Jain.; O.P, Katare., Eds.; Studium Press, Houston LLC, USA,, 2014, pp. 1-62699-050-6203-255.
[http://dx.doi.org/10.1049/iet-nbt.2017.0308]
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
(b)Jain, A.; Kumari, R.; Tiwari, A.; Verma, A.; Tripathi, A.; Shrivastava, A.; Jain, S.K. Nanocarrier based advances in drug delivery to tumor: an overview. Curr. Drug Targets, 2018, 19(13), 1498-1518.
[http://dx.doi.org/10.2174/1389450119666180131105822 ] [PMID: 29384060]
[http://dx.doi.org/10.1201/9780429023439-15]
(b)Silva, K.M.M.N.; de Carvalho, D.É.L.; Valente, V.M.M.; Campos Rubio, J.C.; Faria, P.E.; Silva-Caldeira, P.P. Concomitant and controlled release of furazolidone and bismuth(III) incorporated in a cross-linked sodium alginate-carboxymethyl cellulose hydrogel. Int. J. Biol. Macromol., 2019, 126, 359-366.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.136] [PMID: 30572056]
[http://dx.doi.org/10.1016/j.carbpol.2014.12.009 ] [PMID: 25662690]
[http://dx.doi.org/10.1016/j.net.2016.09.004]
[http://dx.doi.org/10.1208/pt060231 ] [PMID: 16353980]
[http://dx.doi.org/10.1111/jphp.12345 ] [PMID: 25496042]
[http://dx.doi.org/10.1002/fsn3.451 ] [PMID: 28572961]
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.039 ] [PMID: 26592698]
[http://dx.doi.org/10.1016/j.jddst.2019.04.020]
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.038 ] [PMID: 25557368]
[http://dx.doi.org/10.1016/j.carbpol.2019.115601 ] [PMID: 31887891]
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015926 ] [PMID: 27910741]
[http://dx.doi.org/10.2174/1381612825666181226160040 ] [PMID: 30585543]