Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Nickel(II) Chromite Nanoparticles: An Eco-Friendly and Reusable Catalyst for Synthesis of 2,4-Diamino-6-aryl-pyrimidine-5-yl Cyanides under Ultrasonic Radiation

Author(s): Bahareh Saeedi, Shahrzad Abdolmohammadi*, Zohreh Mirjafary and Reza Kia-Kojoori

Volume 24, Issue 3, 2021

Published on: 08 August, 2020

Page: [455 - 464] Pages: 10

DOI: 10.2174/1386207323666200808180527

Price: $65

Abstract

Background: One of the principal factors in the field of research in green chemistry is to drive chemical reactions using ultrasonication as a versatile synthetic tool. Moreover, nanostructured metal salts occupy an important position as low cost, efficient, heterogeneous, and green catalysts in chemical reactions. Pyrimidine has also acquired significance because it is a core structure in a variety of natural and non-natural agents, many of which display versatile biological activities and medical applications.

Objective: The aim of this study was to explore the role of nickel(II) chromite nanoparticles (NiCr2O4 NPs) as a green and recyclable catalyst for the synthesis of 2,4-diamino-6-arylpyrimidine- 5-yl cyanides under ultrasonic radiation.

Methods: A direct cyclocondensation reaction of guanidine nitrate, aromatic aldehydes, and malononitrile was performed using NiCr2O4 NPs as an effective heterogeneous catalyst under ultrasonic radiation at room temperature conditions to prepare 2,4-diamino-6-aryl-pyrimidine-5-yl cyanides in high yields. The described catalyst was prepared successfully according to a simple hydrothermal route and fully characterized by the X-Ray diffraction (XRD) technique, dispersive energy X-Ray (EDS) analysis, scanning electron microscopy (SEM), and dynamic light scattering (DLS).

Results: A number of 2,4-diamino-6-aryl-pyrimidine-5-yl cyanides were effectively synthesized in high yields (94-98%) within short reaction times (15 min). All synthesized compounds were well characterized by IR, 1H and 13C NMR spectroscopy, and also by elemental analyses.

Conclusion: In conclusion, a simple, efficient, and green synthesis of 2,4-diamino-6-arylpyrimidine- 5-yl cyanides was developed using NiCr2O4 NPs as a green nanocatalyst, and under ultrasound radiation as a green tool. The mild reaction conditions, avoiding the use of toxic solvents or reagents, high atom economy, high yields, and simple workup are the attractive features of this new protocol.

Keywords: Green synthesis, nickel(II) chromite nanoparticles (NiCr2O4 NPs), pyrimidines, recyclability of catalyst, ultrasonic radiation, antimicrobial.

[1]
Lagoja, I.M. Pyrimidine as constituent of natural biologically active compounds. Chem. Biodivers., 2005, 2(1), 1-50.
[http://dx.doi.org/10.1002/cbdv.200490173] [PMID: 17191918]
[2]
Wierenga, W. Antiviral and other bioactivities of pyrimidinones. Pharmacol. Ther., 1985, 30(1), 67-89.
[http://dx.doi.org/10.1016/0163-7258(85)90048-8] [PMID: 2428070]
[3]
Jabli, D.; Lahbib, K.; Dridi, K.; Lotfi Efrit, M. Antibacterial study novel 2-cyanomethylthieno [3,2-e][1,2,4]-triazolo[1,5-c] pyrimidine. J. Pharm. Chem. Biol. Sci., 2015, 3(2), 178-187.
[4]
Hossan, A.S.M.; Abu-Melha, H.M.A.; Al-Omar, M.A. Amr, Ael-G. Synthesis and antimicrobial activity of some new pyrimidinone and oxazinone derivatives fused with thiophene rings using 2-chloro-6-ethoxy-4-acetylpyridine as starting material. Molecules, 2012, 17(11), 13642-13655.
[http://dx.doi.org/10.3390/molecules171113642] [PMID: 23165308]
[5]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M. Synthesis of 2,4,6-trisubstituted pyrimidines as antimalarial agents. Bioorg. Med. Chem., 2005, 13(15), 4645-4650.
[http://dx.doi.org/10.1016/j.bmc.2005.04.061] [PMID: 15896965]
[6]
Fujiwara, N.; Nakajima, T.; Ueda, Y.; Fujita, H.; Kawakami, H. Novel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activation. Bioorg. Med. Chem., 2008, 16(22), 9804-9816.
[http://dx.doi.org/10.1016/j.bmc.2008.09.059] [PMID: 18926711]
[7]
Ballell, L.; Field, R.A.; Chung, G.A.C.; Young, R.J. New thiopyrazolo[3,4-d]pyrimidine derivatives as anti-mycobacterial agents. Bioorg. Med. Chem. Lett., 2007, 17(6), 1736-1740.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.066] [PMID: 17239593]
[8]
Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem., 1991, 34(2), 806-811.
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904]
[9]
Chen, W.; Feng, J.; Tu, H. Synthesis and antitumor activities of novel 2-substituted pyrimidinone-5-carboxylic acid benzylamides. Front. Chem. China, 2007, 2(2), 127-130.
[http://dx.doi.org/10.1007/s11458-007-0026-4]
[10]
Barone, M.; Graziano, A.C.; Marrazzo, A.; Gemmellaro, P.; Santagati, A.; Cardile, V. Synthesis and biological evaluation of new benzo-thieno[3,2-d]pyrimidin-4-one sulphonamide thio-derivatives as potential selective cyclooxygenase-2 inhibitors. Mol. Divers., 2013, 17(3), 445-458.
[http://dx.doi.org/10.1007/s11030-013-9443-0] [PMID: 23620375]
[11]
Yu, Z.; Li, X.; Ge, C.; Si, H.; Cui, L.; Gao, H.; Duan, Y.; Zhai, H. 3D-QSAR modeling and molecular docking study on Mer kinase inhibitors of pyridine-substituted pyrimidines. Mol. Divers., 2015, 19(1), 135-147.
[http://dx.doi.org/10.1007/s11030-014-9556-0] [PMID: 25355276]
[12]
Ukrainets, I.V.; Tugaibei, I.A.; Bereznyakova, N.L.; Kravchenko, V.N.; Turov, A.V. 4-Hydroxy-2-quinolones 144. Alkyl-, arylalkyl-, and arylamides of 2-hydroxy-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxylic acid and their diuretic properties. Chem. Heterocycl. Compd., 2008, 44(5), 565-575.
[http://dx.doi.org/10.1007/s10593-008-0076-7]
[13]
Sharma, S.; Gangal, S.; Rauf, A. Green chemistry approach to the sustainable and advancement to the synthesis of heterocyclic chemistry. Rasayan J. Chem., 2008, 1(4), 693-717.
[14]
Song, B.A.; Zhang, G.P.; Yang, S.; Hu, D.Y.; Jin, L.H. Synthesis of N-(4-bromo-2-trifluoromethylphenyl)-1-(2-fluorophenyl)-O,O-dialkyl-α-aminophosphonates under ultrasonic irradiation. Ultrason. Sonochem., 2006, 13(2), 139-142.
[http://dx.doi.org/10.1016/j.ultsonch.2005.03.003] [PMID: 15936238]
[15]
Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev., 1997, 26(6), 443-451.
[http://dx.doi.org/10.1039/cs9972600443]
[16]
Mawson, R.; Gamage, M.; Terefe, N.S.; Knoerzer, K. Ultrasound in enzyme activation and inactivation; Ultrasound Technol; Food Bioprocess, 2011, pp. 369-404.
[17]
Liu, Y.Q.; Li, L.H.; Yang, L.; Li, H.Y. A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins. Chem. Pap., 2010, 64(4), 533-536.
[http://dx.doi.org/10.2478/s11696-010-0020-z]
[18]
Mečiarová, M.; Poláčková, V.; Toma, Š. The effect of microwave and ultrasonic irradiation on the reactivity of benzaldehydes under Al2O3, Ba(OH)2, and K2CO3 catalysis. Chem. Pap., 2002, 56(3), 208-213.
[19]
Mečiarová, M.; Toma, Š.; Babiak, P. Effect of ultrasound on one-pot conversion of alcohols to nitro and azido compounds. Chem. Pap., 2004, 58(2), 104-108.
[20]
Tabatabaeian, K.; Mamaghani, M.; Mahmoodi, N.O.; Khorshidi, A. Ultrasonic-assisted ruthenium-catalyzed oxidation of aromatic and heteroaromatic compounds. Catal. Commun., 2008, 9(3), 416-420.
[http://dx.doi.org/10.1016/j.catcom.2007.07.024]
[21]
Khan, A.T.; Choudhury, L.H.; Ghosh, S. Cupric sulfate pentahydrate (CuSO4. 5H2O): a mild and efficient catalyst for tetrahydropyranylation/depyranylation of alcohols and phenols. Tetrahedron Lett., 2004, 45(42), 7891-7894.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.141]
[22]
Madhavi Latha, B.; Sadasivam, V.; Sivasankar, B. A highly selective synthesis of pyrazine from ethylenediamine on copper oxide/copper chromite catalysts. Catal. Commun., 2007, 8(7), 1070-1073.
[http://dx.doi.org/10.1016/j.catcom.2006.06.007]
[23]
Sathiskumar, P.S.; Thomas, C.R.; Madras, G. Solution combustion synthesis of nanosized copper chromite and its use as a burn rate modifier in solid propellants. Ind. Eng. Chem. Res., 2012, 51(30), 10108-10116.
[http://dx.doi.org/10.1021/ie301435r]
[24]
Kalita, H.R.; Borah, A.J.; Phukan, P. Mukaiyama aldol reaction of trimethylsilyl enolate with aldehyde catalyzed by CuI. Indian J. Chem. B., 2013, 52(2), 289-292.
[25]
Safaei-Ghomi, J.; Khojastehbakht-Koopaei, B.; Zahedi, S. Copper chromite nanoparticles as an efficient and recyclable catalyst for facile synthesis of 4,4′-(arylmethanediyl)bis(3-methyl-1H-pyrazol-5-ol) derivatives. Chem. Heterocycl. Compd., 2015, 51(1), 34-38.
[http://dx.doi.org/10.1007/s10593-015-1656-y]
[26]
Bansal, P.; Chaudhary, G.R.; Kaur, N.; Mehta, S.K. An efficient and green synthesis of xanthene derivatives using CuS quantum dots as a heterogeneous and reusable catalyst under solvent free conditions. RSC Advances, 2015, 5(11), 8205-8209.
[http://dx.doi.org/10.1039/C4RA15045G]
[27]
Naeimi, H.; Foroughi, H. ZnS nanoparticles as an efficient recyclable heterogeneous catalyst for one-pot synthesis of 4-substituted-1,5-benzodiazepines. New J. Chem., 2015, 39(2), 1228-1236.
[http://dx.doi.org/10.1039/C4NJ01893A]
[28]
Wang, Z.; Saxena, S.K.; Lazor, P.; O’Neill, H.S.C. An in situ Raman spectroscopic study of pressure induced dissociation of spinel NiCr2O4. J. Phys. Chem. Solids, 2003, 64(3), 425-431.
[http://dx.doi.org/10.1016/S0022-3697(02)00328-1]
[29]
Słoczyński, J.; Ziolkowski, J.; Grzybowska, B.; Grabowski, R.; Jachewize, D.; Wcislo, K.; Gengembre, L. Oxidative dehydrogenation of propane on NixMg1−xAl2O4 and NiCr2O4 spinels. J. Catal., 1999, 187(2), 410-418.
[http://dx.doi.org/10.1006/jcat.1999.2626]
[30]
Bahareh, S.; Abdolmohammadi, S. MirJafari, Z.; Kia-Kojoori, R. Nickel(II) chromite nanoparticles promoted efficient synthesis of novel [1]benzopyrano[4,3-b]pyridines in aqueous media. Monatsh. Chem., 2020, 151(5), 773-780.
[http://dx.doi.org/10.1007/s00706-020-02595-5]
[31]
Honeybourne, C.L.; Rasheed, R.K. Nitrogen dioxide and volatile sulfide sensing properties of copper, zinc and nickel chromite. J. Mater. Chem., 1996, 6(3), 277-283.
[http://dx.doi.org/10.1039/jm9960600277]
[32]
Hu, Z.Q.; Qin, Y.; Liu, X.Q. Preparation and photoelectric properties of spinel MCr2O4 (M = Cu, Ni) nanopowders. Adv. Mat. Res., 2011, 415-417, 1594-1598.
[33]
(a)Abdolmohammadi, S.; Nasrabadi, S.R.R.; Seif, A.; Fard, N.E. Ag/CdS nanocomposite: an efficient recyclable catalyst for the synthesis of novel 8-aryl-8H-[1,3]dioxolo[4,5-g]chromene-6-carboxylic acids under mild reaction conditions Comb. Chem. High Throughput Screen, 2018, 21(5), 323-328.
[http://dx.doi.org/10.2174/1386207321666180604104456] [PMID: 29866001]
(b)Sadegh-Samiei, S.; Abdolmohammadi, S. Efficient synthesis of pyrido[2,3-d]pyrimidine-7-carboxylic acids catalyzed by a TiO2-SiO2 nanocomposite in aqueous media at room temperature. Z. Naturforsch. B, 2018, 73(9), 641-645.
(c)Fakheri-Vayeghan, S.; Abdolmohammadi, S.; Kia-Kojoori, R. An expedient synthesis of 6-amino-5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl]-1,3-dimethyl-2,4,6(1H,3H)-pyrimidinedione derivatives using Fe3O4@TiO2 nanocomposite as an efficient, magnetically separable, and reusable catalyst. Z. Naturforsch. B, 2018, 73(8), 545-551.
(d)Abdolmohammadi, S. TiO2 NPs-coated carbone nanotubes as a green and efficient catalyst for the synthesis of [1]benzopyrano[b][1]benzopyranones and xanthenols in water. Comb. Chem. High Throughput Screen, 2018, 21(8), 594-601.
[http://dx.doi.org/10.2174/1386207321666181018164739] [PMID: 30338732]
(e)Sadegh-Samiei, S.; Abdolmohammadi, S. TiO2-SiO2 nanocomposite promoted efficient cyclocondensation reaction of arylmethylidenepyruvic acids with dimedone in aqueous media J. Chin. Chem. Soc. (Taipei),, 2018, 65(10), 1155-1159.
[http://dx.doi.org/10.1002/jccs.201800057]
(f)Abdolmohammadi, S.; Hossaini, Z. Fe3O4 MNPs as a green catalyst for syntheseis of functionalized [1,3]-oxazole and 1Hpyrrolo-[1,3]-oxazole derivatives and evaluation of their antioxidant activity. Mol. Divers 2019, 23(4), 885-896.
[http://dx.doi.org/10.1007/s11030-019-09916-9] [PMID: 30656505]
(g)Janitabar-Darzi, S.; Abdolmohammadi, S. TiO2-SiO2 nanocomposite as a highly efficient catalyst for the solvent-free cyclocondensation reaction of isatins, cyclohexanones, and urea. Z. Naturforsch. B,, 2019, 74(7-8), 559-564.
[http://dx.doi.org/10.1515/znb-2019-0059]
(h)Abdolmohammadi, S.; Mirza, B.; Vessally, E. Immobilized TiO2 nanoparticles on carbon nanotubes: an efficient heterogeneous catalyst for the synthesis of chromeno[b]pyridine derivatives under ultrasonic irradiation RSC Advances,, 2019, 9, 41868-41876.
[http://dx.doi.org/10.1039/C9RA09031B]
(i)Abdolmohammadi, S.; Rasouli Nasrabadi, S.R.; Dabiri, M.R.; Banihashemi Jozdani, S.M. TiO2 nanoparticles immobilized on carbon nanotubes: an efficient heterogeneous catalyst in cyclocondensation reaction of isatins with malononitrile and 4- hydroxycoumarin or 3,4-methylenedioxyphenol under mild reaction conditions. Appl. Organomet. Chem., 2020, 34e5462.
[http://dx.doi.org/10.1002/aoc.5462]
[34]
Deshmukh, M.B.; Anbhule, P.V.; Jadhav, S.D.; Jagtap, S.S.; Patil, D.R.; Salunkhe, S.M.; Sankpal, S.A. Synthesis of 2,6-diamino-4-phenyl pyrimidine-5-carbonitrile using potassium carbonate in water. Indian J. Chem. B, 2008, 47(5), 792-795.
[35]
Sheibani, H.; Saljoogi, A.S.; Bazgir, A. Three-component process for the synthesis of 4-amino-5-pyrimidinecarbonitriles under thermal aqueous conditions or microwave. ARKIVOC, 2008, (ii), 115-123.
[36]
Sheibani, H.; Seifi, M.; Bazgir, A. Three-component synthesis of pyrimidine and pyrimidinone derivatives in the presenceof high-surface-area MgO, a highly effective heterogeneous base catalyst. Synth. Commun., 2009, 39(6), 1055-1064.
[http://dx.doi.org/10.1080/00397910802474982]
[37]
Rong, L.; Han, H.; Gao, L.; Dai, Y.; Cao, M.; Tu, S. Efficient and facile synthesis of 2,4-diamino-6-arylpyrimidine-5-carbonitrile under solvent-free conditions. Synth. Commun., 2010, 40(4), 504-509.
[http://dx.doi.org/10.1080/00397910902987784]
[38]
Rabiei, A.; Abdolmohammadi, S.; Shafaei, F. A green approach for an efficient preparation of 2,4-diamino-6-aryl-5-pyrimidinecarbonitriles using a TiO2/SiO2 nanocomposite catalyst under solvent-free conditions. Z. Naturforsch. B, 2017, 72(4), 241-247.
[http://dx.doi.org/10.1515/znb-2016-0219]
[39]
Beshkar, F.; Salavati-Niasari, M. Facile synthesis of nickel chromite nanostructures by hydrothermal route for photocatalytic degradation of acid black 1 under visible light. J. Nanostruct., 2015, 5(1), 17-23.
[40]
Parry, E.P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal., 1963, 2(5), 371-379.
[http://dx.doi.org/10.1016/0021-9517(63)90102-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy