Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Anti-Pseudomonas aeruginosa Activity of Metal Schiff Base Complex and Probiotics Against Planktonic- and Biofilm-Growing Cells

Author(s): Sepideh Hassanzadeh, Sudabeh Ebrahimi, Sara Ganjloo, Saeid Amel Jamehdar and Samaneh Dolatabadi*

Volume 19, Issue 2, 2021

Published on: 07 August, 2020

Page: [182 - 191] Pages: 10

DOI: 10.2174/2211352518999200807152232

Price: $65

Abstract

Introduction: The biofilm formation by Pseudomonas aeruginosa seems to protect the bacteria from antibiotics since these entities are highly resistant to such antimicrobial agents. The aim of this study was to investigate the role of Lactobacillus salivarus, Lactobacillus plantarum supernatants and CuII Schiff base complex in eliminating planktonic cells and biofilm of P. aeruginosa.

Methods: One hundred specimens of blood, urine, cerebrospinal fluid, respiratory samples, and wound swabs were collected from patients attending three hospitals in Mashhad. All specimens were identified by biochemical tests. The susceptibility of the isolates to the conventional antibiotics was assessed using disk diffusion method. The biofilm formation ability of P. aeruginosa isolates was evaluated by crystal violet assay and confirmed using PCR. The anti-planktonic and antibiofilm ability of L. salivarus, L. plantarum supernatants and CuII Schiff base complex was evaluated separately in P. aeruginosa isolates.

Results: The highest and lowest resistance rates were detected in Cefazoline (95%) and cefepime (23%), respectively. The thickest biofilm was produced by 8% of P. aeruginosa isolates, 9% and 83% of the isolates were considered as moderate and weak biofilm producers, respectively. The rhlR and lasR genes were reported in 100% of the isolates, but the algD gene existed in 92% of them.

Conclusion: Particularly, the CuII Schiff base complex could affect both planktonic and biofilm cells by the lowest concentration in comparison of probiotic supernatants. L. plantarum supernatant inhibited planktonic cells at a lower concentration than L. salivarius. Also, L. salivarius showed better antibiofilm activity than another probiotic in lower doses of supernatant. Unlike that, these compounds have not completely eliminated biofilm cells, but only reduced the biofilm formation.

Metal Schiff base complex and Lactobacillus supernatants is a potent antimicrobial agent against Pseudomonas aeruginosa biofilm cells.

Keywords: Pseudomonas aeruginosa, biofilm, probiotic, CuII Schiff base, resistance, antimicrobial agent.

Graphical Abstract

[1]
Tarashi, S.; Heidary, M.; Dabiri, H.; Nasiri, M.J. Prevalence of drug-resistant Pseudomonas aeruginosa in Iranian burned patients: A meta-analysis. Arch. Trauma Res., 2017, 6(3), 1.
[http://dx.doi.org/10.4103/atr.atr_22_17]
[2]
Vaez, H.; Salehi-Abargouei, A.; Ghalehnoo, Z.R.; Khademi, F. Multidrug resistant Pseudomonas aeruginosa in Iran: A systematic review and metaanalysis. J. Glob. Infect. Dis., 2018, 10(4), 212-217.
[http://dx.doi.org/10.4103/jgid.jgid_113_17] [PMID: 30581263]
[3]
El Zowalaty, M.E.; Al Thani, A.A.; Webster, T.J.; El Zowalaty, A.E.; Schweizer, H.P.; Nasrallah, G.K.; Marei, H.E.; Ashour, H.M. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol., 2015, 10(10), 1683-1706.
[http://dx.doi.org/10.2217/fmb.15.48] [PMID: 26439366]
[4]
Jamalifar, H.; Rahimi, H.; Samadi, N.; Shahverdi, A.; Sharifian, Z.; Hosseini, F.; Eslahi, H.; Fazeli, M. Antimicrobial activity of different Lactobacillus species against multi- drug resistant clinical isolates of Pseudomonas aeruginosa. Iran. J. Microbiol., 2011, 3(1), 21-25.
[PMID: 22347578]
[5]
Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context, 2018.7212527
[http://dx.doi.org/10.7573/dic.212527] [PMID: 29872449]
[6]
Obritsch, M.D.; Fish, D.N.; MacLaren, R.; Jung, R. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy, 2005, 25(10), 1353-1364.
[http://dx.doi.org/10.1592/phco.2005.25.10.1353] [PMID: 16185180]
[7]
Barsoumian, A.E.; Mende, K.; Sanchez, C.J., Jr; Beckius, M.L.; Wenke, J.C.; Murray, C.K.; Akers, K.S. Clinical infectious outcomes associated with biofilm-related bacterial infections: a retrospective chart review. BMC Infect. Dis., 2015, 15(1), 223.
[http://dx.doi.org/10.1186/s12879-015-0972-2] [PMID: 26049931]
[8]
Breidenstein, E.B.; de la Fuente-Núñez, C.; Hancock, R.E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol., 2011, 19(8), 419-426.
[http://dx.doi.org/10.1016/j.tim.2011.04.005] [PMID: 21664819]
[9]
Alhede, M.; Bjarnsholt, T.; Givskov, M.; Alhede, M. Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. Adv. Appl. Microbiol., 2014, 86, 1-40.
[http://dx.doi.org/10.1016/B978-0-12-800262-9.00001-9] [PMID: 24377853]
[10]
Lima, JL.; Alves, LR.; Araújo Jacomé, PR.; Bezerra Neto, JP.; Maciel, MA.; Morais, MM. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing . brazj infect is, 2018, 22(2), 129-136.
[11]
Ding, F.; Oinuma, K.I.; Smalley, N.E.; Schaefer, A.L.; Hamwy, O.; Greenberg, E.P.; Dandekar, A.A. Smalley. NE.; Schaefer, AL.; Hamwy, O.; Greenberg, EP.; Dandekar, AA. The Pseudomonas aeruginosa orphan quorum sensing signal receptor QscR regulates global quorum sensing gene expression by activating a single linked operon. MBio, 2018, 9(4), e01274-e18.
[http://dx.doi.org/10.1128/mBio.01274-18] [PMID: 30154259]
[12]
Zhong, L.; Ravichandran, V.; Zhang, N.; Wang, H.; Bian, X.; Zhang, Y.; Li, A. Attenuation of Pseudomonas aeruginosa Quorum Sensing by Natural Products: Virtual Screening, Evaluation and Biomolecular Interactions. Int. J. Mol. Sci., 2020, 21(6), 2190.
[http://dx.doi.org/10.3390/ijms21062190] [PMID: 32235775]
[13]
Stapper, A.P.; Narasimhan, G.; Ohman, D.E.; Barakat, J.; Hentzer, M.; Molin, S.; Kharazmi, A.; Høiby, N.; Mathee, K. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J. Med. Microbiol., 2004, 53(Pt 7), 679-690.
[http://dx.doi.org/10.1099/jmm.0.45539-0] [PMID: 15184541]
[14]
Masák, J.; Čejková, A.; Schreiberová, O.; Rezanka, T. Pseudomonas biofilms: possibilities of their control. FEMS Microbiol. Ecol., 2014, 89(1), 1-14.
[http://dx.doi.org/10.1111/1574-6941.12344] [PMID: 24754832]
[15]
Al-Malkey, M.K.; Ismeeal, M.C.; Al-Hur, F.J.A.; Mohammed, S.W.; Nayyef, H.J. Antimicrobial effect of probiotic Lactobacillus spp. on Pseudomonas aeruginosa. J. Contemp. Med. Sci., 2017, 3(10), 218-223.
[16]
Shokryazdan, P.; Sieo, C.C.; Kalavathy, R.; Liang, J.B.; Alitheen, N.B.; Faseleh Jahromi, M.; Ho, Y.W. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Res. Int., 2014, 2014927268
[http://dx.doi.org/10.1155/2014/927268] [PMID: 25105147]
[17]
Mazmanian, S.K.; Round, J.L.; Kasper, D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008, 453(7195), 620-625.
[http://dx.doi.org/10.1038/nature07008] [PMID: 18509436]
[18]
Syukur, S.; Bisping, B.; Aneloi Noli, Z.; Purwati, E. Antimicrobial properties and Lactase activities from selected probiotic Lactobacillus brevis associated with green cacao fermentation in West Sumatra, Indonesia. J Probiotics Health., 2013, 1(4)
[http://dx.doi.org/10.4172/2329-8901.1000113]
[19]
Ahmad, M.S. Transition metal complexes and their role in biological science-a review. Indo american journal of pharmaceutical sciences., 2014, 1(3), 196-198.
[20]
Ahamed, M.A.R.; Burkanudeen, A.R. Metal complexes of a novel terpolymer ligand: synthesis, spectral, morphology, thermal degradation kinetics and antimicrobial screening. J. Inorg. Organomet. Polym., 2012, 22(5), 1046-1061.
[http://dx.doi.org/10.1007/s10904-012-9677-9]
[21]
Vos, P.; Garrity, G.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A. 2011.
[22]
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing;. 28rd informational supplement, 2018.
[23]
Ebrahimi, S.; Allameh, S.; Pordel Fadafan, M. Schiff base Synthesis Derived from Pyrrole and evaluation of their fluorescence properties in different solvents. 2016.https://www.civilica.com/Paper-CHCONF03-CHCONF03_272.html
[24]
Fazeli, H.; Akbari, R.; Moghim, S.; Narimani, T.; Arabestani, M.R.; Ghoddousi, A.R. Pseudomonas aeruginosa infections in patients, hospital means, and personnel’s specimens. J. Res. Med. Sci., 2012, 17(4), 332-337.
[PMID: 23267393]
[25]
Soltan Dallal, M.M.; Davoodabadi, A.; Abdi, M.; Hajiabdolbaghi, M.; Sharifi Yazdi, M.K.; Douraghi, M.; Tabatabaei Bafghi, S.M. Inhibitory effect of Lactobacillus plantarum and Lb. fermentum isolated from the faeces of healthy infants against nonfermentative bacteria causing nosocomial infections. New Microbes New Infect., 2016, 15, 9-13.
[http://dx.doi.org/10.1016/j.nmni.2016.09.003] [PMID: 27830081]
[26]
Cai, Z.; Liu, Y.; Chen, Y.; Yam, J.K.; Chew, S.C.; Chua, S.L.; Wang, K.; Givskov, M.; Yang, L. RpoN regulates virulence factors of Pseudomonas aeruginosa via modulating the PqsR quorum sensing regulator. Int. J. Mol. Sci., 2015, 16(12), 28311-28319.
[http://dx.doi.org/10.3390/ijms161226103] [PMID: 26633362]
[27]
Alexandre, Y.; Le Berre, R.; Barbier, G.; Le Blay, G. Screening of Lactobacillus spp. for the prevention of Pseudomonas aeruginosa pulmonary infections. BMC Microbiol., 2014, 14(1), 107.
[http://dx.doi.org/10.1186/1471-2180-14-107] [PMID: 24766663]
[28]
Alexandre, Y.; Le Blay, G.; Boisramé-Gastrin, S.; Le Gall, F.; Héry-Arnaud, G.; Gouriou, S.; Vallet, S.; Le Berre, R. Probiotics: a new way to fight bacterial pulmonary infections? Med. Mal. Infect., 2014, 44(1), 9-17.
[http://dx.doi.org/10.1016/j.medmal.2013.05.001] [PMID: 23820129]
[29]
Deligianni, E.; Pattison, S.; Berrar, D.; Ternan, N.G.; Haylock, R.W.; Moore, J.E.; Elborn, S.J.; Dooley, J.S. Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol., 2010, 10(1), 38.
[http://dx.doi.org/10.1186/1471-2180-10-38] [PMID: 20141637]
[30]
Koraichi, S.I.; Hassan, L.; Ghizlane, Z.; Hind, M.; Adnane, R. Carvacrol and thymol components inhibiting Pseudomonas aeruginosa adherence and biofilm formation. Afr. J. Microbiol. Res., 2011, 5(20), 3229-3232.
[http://dx.doi.org/10.5897/AJMR11.275]
[31]
Beenken, K.E.; Mrak, L.N.; Griffin, L.M.; Zielinska, A.K.; Shaw, L.N.; Rice, K.C.; Horswill, A.R.; Bayles, K.W.; Smeltzer, M.S. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One, 2010, 5(5)e10790
[http://dx.doi.org/10.1371/journal.pone.0010790] [PMID: 20520723]
[32]
Manzoor, A.; Ul-Haq, I.; Baig, S.; Qazi, J.I.; Seratlic, S. Efficacy of locally isolated lactic acid bacteria against antibiotic-resistant uropathogens. Jundishapur J. Microbiol., 2016, 9(1)e18952
[http://dx.doi.org/10.5812/jjm.18952] [PMID: 27099677]
[33]
Al-Mathkhury, H.J.F. Inhibitory effect of lactobacilli filtrate on Klebsiella pneumoniae biofilm. IASJ, 2012, 11(2), 168-179.
[34]
Sharma, P.S.J. A Study showing antagonistic effect of Lactobacilli casei and Lactobacilli sporogenesis against some common pathogens- in vitro. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4(6), 36-40.
[35]
Khiralla, G.M.; Mohamed, E.A.; Farag, A.G.; Elhariry, H. Antibiofilm effect of Lactobacillus pentosus and Lactobacillus plantarum cell-free supernatants against some bacterial pathogens. J. Biotech Res., 2015, 6, 86-95.
[36]
Zamani, H.; Rahbar, S.; Garakoui, S.R.; Afsah Sahebi, A.; Jafari, H. Antibiofilm potential of Lactobacillus plantarum spp. cell free supernatant (CFS) against multidrug resistant bacterial pathogens. Pharm Biomed Res., 2017, 3(2), 39-44.
[http://dx.doi.org/10.29252/pbr.3.2.39]
[37]
Koohestani, M.; Moradi, M.; Tajik, H.; Badali, A. Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus. Vet. Res. Forum, 2018, 9(4), 301-306.
[PMID: 30713607]
[38]
Dallal, M.M.S.; Mirak, S.; Azarsa, M.; Rahbar, M.; Yazdi, M.K.S. Evaluation of antimicrobial activity of Lactobacillus plantarum and ruteri on Burkholderia cepacia isolated from nosocomial infections. Pajoohandeh J., 2013, 18(4), 202-207.
[39]
Varma, P.; Nisha, N.; Dinesh, K.R.; Kumar, A.V.; Biswas, R. Anti-infective properties of Lactobacillus fermentum against Staphylococcus aureus and Pseudomonas aeruginosa. J. Mol. Microbiol. Biotechnol., 2011, 20(3), 137-143.
[http://dx.doi.org/10.1159/000328512] [PMID: 21701187]
[40]
Onbas, T.; Osmanagaoglu, O.; Kiran, F. Potential Properties of Lactobacillus plantarum F-10 as a Bio-control Strategy for Wound Infections Probiotics and Antimicrobial Proteins.,
[41]
Raman, N.; Kulandaisamy, A.; Jeyasubramanian, K. Synthesis, spectral, redox, and antimicrobial activity of Schiff base transition metal (II) complexes derived from 4-aminoantipyrine and benzil. Synth React Inorg M J., 2002, 32(9), 1583-1610.
[http://dx.doi.org/10.1081/SIM-120015081]
[42]
Viganor, L.; Galdino, A.C.M.; Nunes, A.P.F.; Santos, K.R.; Branquinha, M.H.; Devereux, M.; Kellett, A.; McCann, M.; Santos, A.L. Anti-Pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells. J. Antimicrob. Chemother., 2016, 71(1), 128-134.
[http://dx.doi.org/10.1093/jac/dkv292] [PMID: 26416778]
[43]
McCann, M.; Kellett, A.; Kavanagh, K.; Devereux, M.; Santos, A.L. Deciphering the antimicrobial activity of phenanthroline chelators. Curr. Med. Chem., 2012, 19(17), 2703-2714.
[http://dx.doi.org/10.2174/092986712800609733] [PMID: 22455581]
[44]
Kharissova, O.V.; Méndez-Rojas, M.A.; Kharisov, B.I.; Méndez, U.O.; Martínez, P.E. Metal complexes containing natural and and artificial radioactive elements and their applications. Molecules, 2014, 19(8), 10755-10802.
[http://dx.doi.org/10.3390/molecules190810755] [PMID: 25061724]
[45]
Aminnezhad, S.; Kermanshahi, R.K.; Ranjbar, R. Evaluation of synergistic interactions between cell-free supernatant of Lactobacillus strains and amikacin and genetamicin against Pseudomonas aeruginosa. Jundishapur J. Microbiol., 2015, 8(4)e16592
[http://dx.doi.org/10.5812/jjm.8(4)2015.16592] [PMID: 26034539]
[46]
Aminnezhad, S.; Kasra-Kermanshahi, R. Antibiofilm activity of cell-free supernatant from Lactobacillus casei in Pseudomonas aeruginosa. KAUMS Journal, 2014, 18(1), 30-37. [FEYZ
[47]
Ming, L.; Zhang, Q.; Yang, L.; Huang, J.A. Comparison of antibacterial effects between antimicrobial peptide and bacteriocins isolated from Lactobacillus plantarum on three common pathogenic bacteria. Int. J. Clin. Exp. Med., 2015, 8(4), 5806-5811.
[PMID: 26131169]
[48]
Barzegari, A.; Kheyrolahzadeh, K.; Hosseiniyan Khatibi, S.M.; Sharifi, S.; Memar, M.Y.; Zununi Vahed, S. The Battle of Probiotics and Their Derivatives Against Biofilms. Infect. Drug Resist., 2020, 13, 659-672.
[http://dx.doi.org/10.2147/IDR.S232982] [PMID: 32161474]
[49]
Sangshetti, J.N.; Khan, F.A.K.; Patil, R.H.; Marathe, S.D.; Gade, W.N.; Shinde, D.B. Biofilm inhibition of linezolid-like Schiff bases: synthesis, biological activity, molecular docking and in silico ADME prediction. Bioorg. Med. Chem. Lett., 2015, 25(4), 874-880.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.063] [PMID: 25592714]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy