Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Mini-Review Article

Insights into Machine Learning-based Approaches for Virtual Screening in Drug Discovery: Existing Strategies and Streamlining Through FP-CADD

Author(s): Waqar Hussain*, Nouman Rasool and Yaser Daanial Khan

Volume 18, Issue 4, 2021

Published on: 06 August, 2020

Page: [463 - 472] Pages: 10

DOI: 10.2174/1570163817666200806165934

Price: $65

Abstract

Background: Machine learning is an active area of research in computer science by the availability of big data collection of all sorts prompting interest in the development of novel tools for data mining. Machine learning methods have wide applications in computer-aided drug discovery methods. Most incredible approaches to machine learning are used in drug designing, which further aid the process of biological modelling in drug discovery. Mainly, two main categories are present which are Ligand-Based Virtual Screening (LBVS) and Structure-Based Virtual Screening (SBVS), however, the machine learning approaches fall mostly in the category of LBVS.

Objectives: This study exposits the major machine learning approaches being used in LBVS. Moreover, we have introduced a protocol named FP-CADD which depicts a 4-steps rule of thumb for drug discovery, the four protocols of computer-aided drug discovery (FP-CADD). Various important aspects along with SWOT analysis of FP-CADD are also discussed in this article.

Conclusion: By this thorough study, we have observed that in LBVS algorithms, Support Vector Machines (SVM) and Random Forest (RF) are those which are widely used due to high accuracy and efficiency. These virtual screening approaches have the potential to revolutionize the drug designing field. Also, we believe that the process flow presented in this study, named FP-CADD, can streamline the whole process of computer-aided drug discovery. By adopting this rule, the studies related to drug discovery can be made homogeneous and this protocol can also be considered as an evaluation criterion in the peer-review process of research articles.

Keywords: Machine learning, computational modelling, drug discovery, drug designing, FP-CADD, computational biology.

Graphical Abstract

[1]
French RM, Glady Y, Thibaut J-P. An evaluation of scanpath-comparison and machine-learning classification algorithms used to study the dynamics of analogy making. Behav Res Methods 2017; 49(4): 1291-302.
[http://dx.doi.org/10.3758/s13428-016-0788-z] [PMID: 27613019]
[2]
Weaver DC. Applying data mining techniques to library design, lead generation and lead optimization. Curr Opin Chem Biol 2004; 8(3): 264-70.
[http://dx.doi.org/10.1016/j.cbpa.2004.04.005] [PMID: 15183324]
[3]
Yang Y, Adelstein SJ, Kassis AI. Target discovery from data mining approaches. Drug Discov Today 2012; 17(Suppl.): S16-23.
[http://dx.doi.org/10.1016/j.drudis.2011.12.006] [PMID: 22178890]
[4]
Freitas RF, Oprea TI, Montanari CA. 2D QSAR and similarity studies on cruzain inhibitors aimed at improving selectivity over cathepsin L. Bioorg Med Chem 2008; 16(2): 838-53.
[http://dx.doi.org/10.1016/j.bmc.2007.10.048] [PMID: 17996450]
[5]
Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 2013; 20(23): 2839-60.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[6]
Geppert H, Horváth T, Gärtner T, Wrobel S, Bajorath J. Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds. J Chem Inf Model 2008; 48(4): 742-6.
[http://dx.doi.org/10.1021/ci700461s] [PMID: 18318473]
[7]
Geppert H, Vogt M, Bajorath J. Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 2010; 50(2): 205-16.
[http://dx.doi.org/10.1021/ci900419k] [PMID: 20088575]
[8]
Kubinyi H. Drug research: Myths, hype and reality. Nat Rev Drug Discov 2003; 2(8): 665-8.
[http://dx.doi.org/10.1038/nrd1156] [PMID: 12904816]
[9]
Eckert H, Bajorath J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today 2007; 12(5-6): 225-33.
[http://dx.doi.org/10.1016/j.drudis.2007.01.011] [PMID: 17331887]
[10]
Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov 2002; 1(11): 882-94.
[http://dx.doi.org/10.1038/nrd941] [PMID: 12415248]
[11]
Willett P, Wilton D, Hartzoulakis B, Tang R, Ford J, Madge D. Prediction of ion channel activity using binary kernel discrimination. J Chem Inf Model 2007; 47(5): 1961-6.
[http://dx.doi.org/10.1021/ci700087v] [PMID: 17622131]
[12]
Willett P. Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 2006; 11(23-24): 1046-53.
[http://dx.doi.org/10.1016/j.drudis.2006.10.005] [PMID: 17129822]
[13]
Hawkins PC, Skillman AG, Nicholls A. Comparison of shape-matching and docking as virtual screening tools. J Med Chem 2007; 50(1): 74-82.
[http://dx.doi.org/10.1021/jm0603365] [PMID: 17201411]
[14]
Rácz A, Bajusz D, Héberger K. Life beyond the Tanimoto coefficient: similarity measures for interaction fingerprints. J Cheminform 2018; 10(1): 48.
[http://dx.doi.org/10.1186/s13321-018-0302-y] [PMID: 30288626]
[15]
Mitchell JB. Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci 2014; 4(5): 468-81.
[http://dx.doi.org/10.1002/wcms.1183] [PMID: 25285160]
[16]
Vapnik V. The nature of statistical learning theory. Springer science & business media 2013.
[17]
Zernov VV, Balakin KV, Ivaschenko AA, Savchuk NP, Pletnev IV. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. J Chem Inf Comput Sci 2003; 43(6): 2048-56.
[http://dx.doi.org/10.1021/ci0340916] [PMID: 14632457]
[18]
Jorissen RN, Gilson MK. Virtual screening of molecular databases using a support vector machine. J Chem Inf Model 2005; 45(3): 549-61.
[http://dx.doi.org/10.1021/ci049641u] [PMID: 15921445]
[19]
Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Ostermann C, Zell A. Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics. J Chem Inf Model 2011; 51(2): 203-13.
[http://dx.doi.org/10.1021/ci100073w] [PMID: 21207929]
[20]
Foody GM, Mathur A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sens Environ 2006; 103(2): 179-89.
[http://dx.doi.org/10.1016/j.rse.2006.04.001]
[21]
Agarwal S, Dugar D, Sengupta S. Ranking chemical structures for drug discovery: a new machine learning approach. J Chem Inf Model 2010; 50(5): 716-31.
[http://dx.doi.org/10.1021/ci9003865] [PMID: 20387860]
[22]
Neumann M, Garnett R, Bauckhage C, Kersting K. Propagation kernels: efficient graph kernels from propagated information. Mach Learn 2016; 102(2): 209-45.
[http://dx.doi.org/10.1007/s10994-015-5517-9]
[23]
Mahé P, Ralaivola L, Stoven V, Vert J-P. The pharmacophore kernel for virtual screening with support vector machines. J Chem Inf Model 2006; 46(5): 2003-14.
[http://dx.doi.org/10.1021/ci060138m] [PMID: 16995731]
[24]
Erhan D, L’heureux P-J, Yue SY, Bengio Y. Collaborative filtering on a family of biological targets. J Chem Inf Model 2006; 46(2): 626-35.
[http://dx.doi.org/10.1021/ci050367t] [PMID: 16562992]
[25]
Wasserman L. Bayesian model selection and model averaging. J Math Psychol 2000; 44(1): 92-107.
[http://dx.doi.org/10.1006/jmps.1999.1278] [PMID: 10733859]
[26]
Wassermann AM, Geppert H, Bajorath J. Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. J Chem Inf Model 2009; 49(10): 2155-67.
[http://dx.doi.org/10.1021/ci9002624] [PMID: 19780576]
[27]
Plewczynski D. Brainstorming: weighted voting prediction of inhibitors for protein targets. J Mol Model 2011; 17(9): 2133-41.
[http://dx.doi.org/10.1007/s00894-010-0854-x] [PMID: 20857153]
[28]
Tong W, Hong H, Fang H, Xie Q, Perkins R. Decision forest: combining the predictions of multiple independent decision tree models. J Chem Inf Comput Sci 2003; 43(2): 525-31.
[http://dx.doi.org/10.1021/ci020058s] [PMID: 12653517]
[29]
Schneider N, Jäckels C, Andres C, Hutter MC. Gradual in silico filtering for druglike substances. J Chem Inf Model 2008; 48(3): 613-28.
[http://dx.doi.org/10.1021/ci700351y] [PMID: 18269264]
[30]
Ishwaran H. The effect of splitting on random forests. Mach Learn 2015; 99(1): 75-118.
[http://dx.doi.org/10.1007/s10994-014-5451-2] [PMID: 28919667]
[31]
Breiman L. Bagging predictors. Mach Learn 1996; 24(2): 123-40.
[http://dx.doi.org/10.1007/BF00058655]
[32]
Ballester PJ, Mitchell JB. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 2010; 26(9): 1169-75.
[http://dx.doi.org/10.1093/bioinformatics/btq112] [PMID: 20236947]
[33]
Shoichet BK, Kuntz ID. Matching chemistry and shape in molecular docking. Protein Eng 1993; 6(7): 723-32.
[http://dx.doi.org/10.1093/protein/6.7.723] [PMID: 7504257]
[34]
Shen H, Chou K-C. Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types. Biochem Biophys Res Commun 2005; 334(1): 288-92.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.087] [PMID: 16002049]
[35]
Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 2015; 20(3): 318-31.
[http://dx.doi.org/10.1016/j.drudis.2014.10.012] [PMID: 25448759]
[36]
Itskowitz P, Tropsha A. kappa Nearest neighbors QSAR modeling as a variational problem: theory and applications. J Chem Inf Model 2005; 45(3): 777-85.
[http://dx.doi.org/10.1021/ci049628+] [PMID: 15921467]
[37]
von Korff M, Sander T. Toxicity-indicating structural patterns. J Chem Inf Model 2006; 46(2): 536-44.
[http://dx.doi.org/10.1021/ci050358k] [PMID: 16562981]
[38]
Nigsch F, Bender A, Jenkins JL, Mitchell JB. Ligand-target prediction using Winnow and naive Bayesian algorithms and the implications of overall performance statistics. J Chem Inf Model 2008; 48(12): 2313-25.
[http://dx.doi.org/10.1021/ci800079x] [PMID: 19055411]
[39]
Abdo A, Chen B, Mueller C, Salim N, Willett P. Ligand-based virtual screening using Bayesian networks. J Chem Inf Model 2010; 50(6): 1012-20.
[http://dx.doi.org/10.1021/ci100090p] [PMID: 20504032]
[40]
Lounkine E, Nigsch F, Jenkins JL, Glick M. Activity-aware clustering of high throughput screening data and elucidation of orthogonal structure-activity relationships. J Chem Inf Model 2011; 51(12): 3158-68.
[http://dx.doi.org/10.1021/ci2004994] [PMID: 22098146]
[41]
Patel D, Patel S, Hanley D. Object oriented artificial neural networks in decision support systems for dermatological research. Healthc Inform 1995; 1(2): 56-68.
[http://dx.doi.org/10.1177/146045829500100206]
[42]
Patel JL, Goyal RK. Applications of artificial neural networks in medical science. Curr Clin Pharmacol 2007; 2(3): 217-26.
[http://dx.doi.org/10.2174/157488407781668811] [PMID: 18690868]
[43]
Fogel GB. Computational intelligence approaches for pattern discovery in biological systems. Brief Bioinform 2008; 9(4): 307-16.
[http://dx.doi.org/10.1093/bib/bbn021] [PMID: 18460474]
[44]
Vasanthanathan P, Taboureau O, Oostenbrink C, Vermeulen NP, Olsen L, Jørgensen FS. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab Dispos 2009; 37(3): 658-64.
[http://dx.doi.org/10.1124/dmd.108.023507] [PMID: 19056915]
[45]
Bishop CM. Neural networks for pattern recognition. Oxford university press 1995.
[46]
Haykin S. Neural networks: A comprehensive foundation. Prentice Hall PTR 1994.
[47]
Petersen B, Lundegaard C, Petersen TN. NetTurnP--neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features. PLoS One 2010; 5(11)e15079
[http://dx.doi.org/10.1371/journal.pone.0015079] [PMID: 21152409]
[48]
Reinhardt A, Hubbard T. Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res 1998; 26(9): 2230-6.
[http://dx.doi.org/10.1093/nar/26.9.2230] [PMID: 9547285]
[49]
Sutskever I, Vinyals O, Le QV. In Adv Neural Inf Process Syst 2014; 3104-12.
[50]
Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 2001; 26(1): 51-6.
[http://dx.doi.org/10.1016/S0097-8485(01)00099-7] [PMID: 11765852]
[51]
Bonachera F, Marcou G, Kireeva N, Varnek A, Horvath D. Using self-organizing maps to accelerate similarity search. Bioorg Med Chem 2012; 20(18): 5396-409.
[http://dx.doi.org/10.1016/j.bmc.2012.04.024] [PMID: 22595424]
[52]
Luzio JM. Evaluation of image registration performance and study of classification algorithm on histopathological images. UNIVERSIDADE DE LISBOA 2018.
[53]
Selzer P, Ertl P. Applications of self-organizing neural networks in virtual screening and diversity selection. J Chem Inf Model 2006; 46(6): 2319-23.
[http://dx.doi.org/10.1021/ci0600657] [PMID: 17125175]
[54]
Cong Y, Li B-k, Yang X-g, Xue Y, Chen Y-z, Zeng Y. Quantitative structure–activity relationship study of influenza virus neuraminidase A/PR/8/34 (H1N1) inhibitors by genetic algorithm feature selection and support vector regression. Chemom Intell Lab Syst 2013; 127: 35-42.
[http://dx.doi.org/10.1016/j.chemolab.2013.05.012]
[55]
Korkmaz S, Zararsiz G, Goksuluk D. Drug/nondrug classification using support vector machines with various feature selection strategies. Comput Methods Programs Biomed 2014; 117(2): 51-60.
[http://dx.doi.org/10.1016/j.cmpb.2014.08.009] [PMID: 25224081]
[56]
Liao Q, Wang J, Webster Y, Watson IA. GPU accelerated support vector machines for mining high-throughput screening data. J Chem Inf Model 2009; 49(12): 2718-25.
[http://dx.doi.org/10.1021/ci900337f] [PMID: 19961205]
[57]
Dekker FJ, van den Bosch T, Martin NI. Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today 2014; 19(5): 654-60.
[http://dx.doi.org/10.1016/j.drudis.2013.11.012] [PMID: 24269836]
[58]
Kruse U, Bantscheff M, Drewes G, Hopf C. Chemical and pathway proteomics: Powerful tools for oncology drug discovery and personalized health care. Mol Cell Proteomics 2008; 7(10): 1887-901.
[http://dx.doi.org/10.1074/mcp.R800006-MCP200] [PMID: 18676365]
[59]
Parekh RB, Rohlff C. Post-translational modification of proteins and the discovery of new medicine. Curr Opin Biotechnol 1997; 8(6): 718-23.
[http://dx.doi.org/10.1016/S0958-1669(97)80126-7] [PMID: 9425663]
[60]
Schirle M, Bantscheff M, Kuster B. Mass spectrometry-based proteomics in preclinical drug discovery. Chem Biol 2012; 19(1): 72-84.
[http://dx.doi.org/10.1016/j.chembiol.2012.01.002] [PMID: 22284356]
[61]
Wang JH, Hewick RM. Proteomics in drug discovery. Drug Discov Today 1999; 4(3): 129-33.
[http://dx.doi.org/10.1016/S1359-6446(99)01306-9] [PMID: 10322265]
[62]
Zhang J, McCombie G, Guenat C, Knochenmuss R. FT-ICR mass spectrometry in the drug discovery process. Drug Discov Today 2005; 10(9): 635-42.
[http://dx.doi.org/10.1016/S1359-6446(05)03438-0] [PMID: 15894228]
[63]
Akmal MA, Rasool N, Khan YD. Prediction of N-linked glycosylation sites using position relative features and statistical moments. PLoS One 2017; 12(8)e0181966
[http://dx.doi.org/10.1371/journal.pone.0181966] [PMID: 28797096]
[64]
Butt AH, Khan SA, Jamil H, Rasool N, Khan YD. A prediction model for membrane proteins using moments based features. Bio-Med research international 2016; 2016: 10.1155/2016/8370132.
[65]
Butt AH, Rasool N, Khan YD. A treatise to computational approaches towards prediction of membrane protein and its subtypes. J Membr Biol 2017; 250(1): 55-76.
[http://dx.doi.org/10.1007/s00232-016-9937-7] [PMID: 27866233]
[66]
Khan YD, Rasool N, Hussain W, Khan SA, Chou K-C. iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal Biochem 2018; 550: 109-16.
[http://dx.doi.org/10.1016/j.ab.2018.04.021] [PMID: 29704476]
[67]
Qiu W-R, Xiao X, Lin W-Z, Chou K-C. iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach. BioMed research international 2014; 2014
[68]
Qiu W-R, Xiao X, Lin W-Z, Chou K-C. iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model. J Biomol Struct Dyn 2015; 33(8): 1731-42.
[http://dx.doi.org/10.1080/07391102.2014.968875] [PMID: 25248923]
[69]
Shen H-B, Chou K-C. Signal-3L: A 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun 2007; 363(2): 297-303.
[http://dx.doi.org/10.1016/j.bbrc.2007.08.140] [PMID: 17880924]
[70]
Qiu W-R, Sun B-Q, Xiao X, Xu Z-C, Chou K-C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget 2016; 7(28): 44310-21.
[http://dx.doi.org/10.18632/oncotarget.10027] [PMID: 27322424]
[71]
Xu Y, Wen X, Shao X-J, Deng N-Y, Chou K-C. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int J Mol Sci 2014; 15(5): 7594-610.
[http://dx.doi.org/10.3390/ijms15057594] [PMID: 24857907]
[72]
Jia J, Liu Z, Xiao X, Liu B, Chou K-C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J Theor Biol 2016; 394: 223-30.
[http://dx.doi.org/10.1016/j.jtbi.2016.01.020] [PMID: 26807806]
[73]
Qiu W-R, Xiao X, Xu Z-C, Chou K-C. iPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget 2016; 7(32): 51270-83.
[http://dx.doi.org/10.18632/oncotarget.9987] [PMID: 27323404]
[74]
Qiu W-R, Sun B-Q, Xiao X, Xu Z-C, Chou K-C. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics 2016; 32(20): 3116-23.
[http://dx.doi.org/10.1093/bioinformatics/btw380] [PMID: 27334473]
[75]
Jia J, Zhang L, Liu Z, Xiao X, Chou K-C. pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics 2016; 32(20): 3133-41.
[http://dx.doi.org/10.1093/bioinformatics/btw387] [PMID: 27354696]
[76]
Jia J, Li X, Qiu W, Xiao X, Chou K-C. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J Theor Biol 2019; 460: 195-203.
[http://dx.doi.org/10.1016/j.jtbi.2018.10.021] [PMID: 30312687]
[77]
He W, Jia C, Zou Q. 4mCPred: machine learning methods for DNA N4-methylcytosine sites prediction. Bioinformatics 2019; 35(4): 593-601.
[http://dx.doi.org/10.1093/bioinformatics/bty668] [PMID: 30052767]
[78]
Cui X, Yu Z, Yu B, Wang M, Tian B, Ma Q. UbiSitePred: A novel method for improving the accuracy of ubiquitination sites prediction by using LASSO to select the optimal Chou’s pseudo components. Chemom Intell Lab Syst 2019; 184: 28-43.
[http://dx.doi.org/10.1016/j.chemolab.2018.11.012]
[79]
Yang H, Lv H, Ding H, Chen W, Lin H. iRNA-2OM: A sequence-based predictor for identifying 2′-O-methylation sites in homo sapiens. J Computational Biol 2018; 25(11): 1266-77.
[80]
Wang X, Yu B, Ma A, Chen C, Liu B, Ma Q. Protein–protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique. Bioinformatics 2018.
[PMID: 30520961]
[81]
Song J, Wang Y, Li F, et al. iProt-Sub: A comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief Bioinform 2018.
[PMID: 29897410]
[82]
Song J, Li F, Takemoto K, et al. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. J Theor Biol 2018; 443: 125-37.
[http://dx.doi.org/10.1016/j.jtbi.2018.01.023] [PMID: 29408627]
[83]
Shi H, Liu S, Chen J, Li X, Ma Q, Yu B. Predicting drug-target interactions using lasso with random forest based on evolutionary information and chemical structure. Genomics 2018.
[PMID: 30550813]
[84]
Sabooh MF, Iqbal N, Khan M, Khan M, Maqbool HF. Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC. J Theor Biol 2018; 452: 1-9.
[http://dx.doi.org/10.1016/j.jtbi.2018.04.037] [PMID: 29727634]
[85]
Butt AH, Rasool N, Khan YD. Predicting membrane proteins and their types by extracting various sequence features into Chou’s general PseAAC. Mol Biol Rep 2018; 45(6): 2295-306.
[http://dx.doi.org/10.1007/s11033-018-4391-5] [PMID: 30238411]
[86]
Ehsan A, Mahmood K, Khan YD, Khan SA, Chou K-C. A novel modeling in mathematical biology for classification of signal peptides. Sci Rep 2018; 8(1): 1039.
[http://dx.doi.org/10.1038/s41598-018-19491-y] [PMID: 29348418]
[87]
Ghauri AW, Khan YD, Rasool N, Khan SA, Chou KC. pNitro-Tyr-PseAAC: Predict nitrotyrosine sites in proteins by incorporating five features into Chou’s general PseAAC. Curr Pharm Des 2018; 24(34): 4034-43.
[http://dx.doi.org/10.2174/1381612825666181127101039] [PMID: 30479209]
[88]
Hussain W, Khan YD, Rasool N, Khan SA, Chou K-C. SPalmitoylC-PseAAC: A sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins. Anal Biochem 2019; 568: 14-23.
[http://dx.doi.org/10.1016/j.ab.2018.12.019] [PMID: 30593778]
[89]
Hussain W, Khan YD, Rasool N, Khan SA, Chou K-C. SPrenylC-PseAAC: A sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. J Theor Biol 2019; 468: 1-11.
[http://dx.doi.org/10.1016/j.jtbi.2019.02.007] [PMID: 30768975]
[90]
Khan YD, Jamil M, Hussain W, Rasool N, Khan SA, Chou K-C. pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments. J Theor Biol 2018.
[PMID: 30550863]
[91]
Khan YD, Rasool N, Hussain W, Khan SA, Chou K-C. iPhosY-PseAAC: Identify phosphotyrosine sites by incorporating sequence statistical moments into PseAAC. Mol Biol Rep 2018; 45(6): 2501-9.
[http://dx.doi.org/10.1007/s11033-018-4417-z] [PMID: 30311130]
[92]
Hussain W, Amir A, Rasool N. Computer-aided study of selective flavonoids against chikungunya virus replication using molecular docking and DFT-based approach. Struct Chem 2020; 1-12.
[http://dx.doi.org/10.1007/s11224-020-01507-x]
[93]
Rasool N, Bakht A, Hussain W. Analysis of inhibitor binding combined with reactivity studies to discover the potentially inhibiting phytochemicals targeting Chikungunya viral replication. Curr Drug Discov Technol 2020.
[http://dx.doi.org/10.2174/1570163817666200312102659] [PMID: 32164512]
[94]
Rasool N, Hussain W. three major phosphoacceptor Sites in HIV-1 capsid protein enhances its structural stability and resistance against inhibitor: Explication through molecular dynamics simulation, molecular docking and DFT analysis. Comb Chem High Throughput Screen 2019.
[PMID: 31838993]
[95]
Schneider G. Automating drug discovery. Nat Rev Drug Discov 2018; 17(2): 97-113.
[http://dx.doi.org/10.1038/nrd.2017.232] [PMID: 29242609]
[96]
Akhtar A, Amir A, Hussain W, Ghaffar A, Rasool N. In silico computations of selective phytochemicals as potential inhibitors against major biological targets of diabetes mellitus. Curr Comput Aided Drug Des 2019.
[http://dx.doi.org/10.2174/1573409915666190130164923]
[97]
Amjad H, Hussain W, Rasool NJOAJBE. Biosciences. molecular simulation investigation of prolyl oligopeptidase from pyrobaculum calidifontis and in silico docking with substrates and inhibitors 2018; 2(4): 185-94.
[98]
Hussain W, Ali M, Sohail Afzal M, Rasool N. Penta-1,4-Diene-3-one oxime derivatives strongly inhibit the replicase domain of tobacco mosaic virus: Elucidation through molecular docking and density functional theory mechanistic computations. J Antivir Antiretrovir 2018; 10(3)
[http://dx.doi.org/10.4172/1948-5964.1000177]
[99]
Hussain W, Qaddir I, Mahmood S, Rasool N. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: Study of molecular dynamics simulation, ADMET and virtual screening. Virusdisease 2018; 29(2): 147-56.
[http://dx.doi.org/10.1007/s13337-018-0446-4] [PMID: 29911147]
[100]
Qaddir I, Rasool N, Hussain W, Mahmood S. Computer-aided analysis of phytochemicals as potential dengue virus inhibitors based on molecular docking, ADMET and DFT studies. J Vector Borne Dis 2017; 54(3): 255-62.
[http://dx.doi.org/10.4103/0972-9062.217617] [PMID: 29097641]
[101]
Rasool N, Ashraf A, Waseem M, Hussain W, Mahmood S. Computational exploration of antiviral activity of phytochemicals against NS2B/NS3 proteases from dengue virus. Turkish Journal of Biochemistry 2019.
[102]
Rasool N, Iftikhar S, Amir A, Hussain W. Structural and quantum mechanical computations to elucidate the altered binding mechanism of metal and drug with pyrazinamidase from Mycobacterium tuberculosis due to mutagenicity. J Mol Graph Model 2018; 80: 126-31.
[http://dx.doi.org/10.1016/j.jmgm.2017.12.011] [PMID: 29331879]
[103]
Rasool N, Jalal A, Amjad A, Hussain W. Probing the pharmacological parameters, molecular docking and quantum computations of plant derived compounds exhibiting strong inhibitory potential against NS5 from zika virus. Braz Arch Biol Technol 2018; 61(0)
[http://dx.doi.org/10.1590/1678-4324-2018180004]
[104]
Arif N, Subhani A, Hussain W, Rasool N. In silico inhibition of BACE-1 by selective phytochemicals as novel potential inhibitors: molecular docking and DFT studies. Curr Drug Discov Technol 2019. E-pub Ahead of Print
[http://dx.doi.org/10.2174/1570163816666190214161825]
[105]
Rasool N, Husssain W, Khan YDJCb. Chemistry, revelation of enzyme activity of mutant pyrazinamidases from mycobacterium tuberculosis upon binding with various metals using quantum mechanical approach. 2019; 107108.
[106]
Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[107]
Sterling T, Irwin JJ. ZINC 15–ligand discovery for everyone. J Chem Inf Model 2015; 55(11): 2324-37.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[108]
Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev 2017; 9(2): 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[109]
Kapetanovic IM. Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact 2008; 171(2): 165-76.
[http://dx.doi.org/10.1016/j.cbi.2006.12.006] [PMID: 17229415]
[110]
Ou-Yang SS, Lu JY, Kong XQ, Liang ZJ, Luo C, Jiang H. Computational drug discovery. Acta Pharmacol Sin 2012; 33(9): 1131-40.
[http://dx.doi.org/10.1038/aps.2012.109] [PMID: 22922346]
[111]
B-Rao C. Subramanian J, Sharma SD. Managing protein flexibility in docking and its applications. Drug Discov Today 2009; 14(7-8): 394-400.
[http://dx.doi.org/10.1016/j.drudis.2009.01.003] [PMID: 19185058]
[112]
Neese F, Wennmohs F, Hansen A, Becker U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem Phys 2009; 356(1-3): 98-109.
[http://dx.doi.org/10.1016/j.chemphys.2008.10.036]
[113]
Akhtar A, Hussain W, Rasool N. Probing the pharmacological binding properties, and reactivity of selective phytochemicals as potential HIV-1 protease inhibitors. Univ Sci 2019; 24(3): 441-64.
[http://dx.doi.org/10.11144/Javeriana.SC24-3.artf]
[114]
Amjad H, Hussain W, Rasool N. Molecular Simulation investigation of prolyl oligopeptidase from pyrobaculum calidifontis and in silico docking with substrates and inhibitors. Open Access Journal of Biomedical Engineering and Biosciences 2018; 2(4): 185-94.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy