Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the- Art Electroanalytical Techniques

Author(s): S. Irem Kaya, Ahmet Cetinkaya and Sibel A. Ozkan*

Volume 18, Issue 1, 2022

Published on: 01 August, 2020

Page: [79 - 101] Pages: 23

DOI: 10.2174/1573411016999200802024629

Price: $65

Abstract

Background: Currently, nanotechnology and nanomaterials are considered as the most popular and outstanding research subjects in scientific fields ranging from environmental studies to drug analysis. Carbon nanomaterials such as carbon nanotubes, graphene, carbon nanofibers etc. and non-carbon nanomaterials such as quantum dots, metal nanoparticles, nanorods etc. are widely used in electrochemical drug analysis for sensor development. The main aim of the drug analysis with sensors, is fast development, ease to use and sensitivity. Electroanalytical techniques such as voltammetry, potentiometry, amperometry etc. which measure electrical parameters such as current or potential in an electrochemical cell, are considered economical, highly sensitive and versatile techniques.

Methods: Most recent researches and studies about electrochemical analysis of drugs with carbonbased nanomaterials were analyzed. Books and review articles about this topic were reviewed

Results: The most significant carbon-based nanomaterials and electroanalytical techniques were explained in detail. In addition to this; recent applications of electrochemical techniques with carbon nanomaterials in drug analysis were expressed comprehensively. Recent researches about electrochemical applications of carbon-based nanomaterials in drug sensing were given in a table.

Conclusion: Nanotechnology provides opportunities to create functional materials, devices and systems using nanomaterials with advantageous features such as high surface area, improved electrode kinetics and higher catalytic activity. Electrochemistry is widely used in drug analysis for pharmaceutical and medical purposes. Carbon nanomaterials based electrochemical sensors are one of the most preferred methods for drug analysis with high sensitivity, low cost and rapid detection.

Keywords: Carbon nanomaterials, drug analysis, electrochemistry, graphene, nanosensors, voltammetry.

Graphical Abstract

[1]
Ramsden, J.J. What is nanotechnology?; Nanotechnology. William Andrew, 2016, pp. 1-18.
[2]
Al-Nemrawi, N.K.; Mahmoud, M. Abu Al Sulemani, Karem H.; Alzhoubi. Awareness about nanotechnology and its applications in drug industry among pharmacy students. Curr. Pharm. Teach. Learn., 2012, (13), 247-280.
[PMID: 32273062]
[3]
Xiaoli, F.; Longquan, S. Neurotoxicity of nanomaterials; Elsevier Inc., 2018.
[http://dx.doi.org/10.1016/B978-0-12-812291-4.00020-0]
[4]
Sudak, N.L.; Harvie, J. Integrative Strategies for Planetary Health; Elsevier Inc., 2018.
[http://dx.doi.org/10.1016/B978-0-323-35868-2.00108-0]
[5]
Maduraiveeran, G.; Jin, W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ. Anal. Chem., 2017, 13, 10-23.
[http://dx.doi.org/10.1016/j.teac.2017.02.001]
[6]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for Bogical and biomedical applications. Biosens. Bioelectron., 2018, 103(103), 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[7]
Kempahanumakkagari, S.; Deep, A.; Kim, K.H.; Kumar Kailasa, S.; Yoon, H.O. Nanomaterial-based electrochemical sensors for arsenic-A review. Biosens. Bioelectron., 2017, 95(April), 106-116.
[http://dx.doi.org/10.1016/j.bios.2017.04.013] [PMID: 28431363]
[8]
Kaya, S.I. Nanomaterials-Based nanosensors for the simultaneous electrochemical determination of Bogically important compounds: ascorbic acid, uric acid, and dopamine. Crit. Rev. Anal. Chem., 2018, 0(0), 1-25.
[PMID: 30574792]
[9]
Kurbanoglu, S. Carbon-based nanostructures for electrochemical analysis of oral medicines; Elsevier Inc., 2017.
[http://dx.doi.org/10.1016/B978-0-323-47720-8.00029-8]
[10]
Li, Z. Carbon-based functional nanomaterials: Preparation, properties and applications. Compos. Sci. Technol., 2019, 179(April), 10-40.
[http://dx.doi.org/10.1016/j.compscitech.2019.04.028]
[11]
Kai-Hua Chow, E. Carbon nanomaterials: fundamental concepts, Bogical interactions, and clinical applications; Elsevier Inc., 2020.
[12]
Wang, Z.; Yu, J.; Gui, R.; Jin, H.; Xia, Y. Carbon nanomaterials-based electrochemical aptasensors. Biosens. Bioelectron., 2016, 79, 136-149.
[http://dx.doi.org/10.1016/j.bios.2015.11.093] [PMID: 26703992]
[13]
Kurbanoglu, S.; Ozkan, S.A. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal., 2018, 147, 439-457.
[http://dx.doi.org/10.1016/j.jpba.2017.06.062] [PMID: 28780997]
[14]
Kaya, S.I.; Kurbanoglu, S.; Ozkan, S.A. Nanomaterials-Based nanosensors for the simultaneous electrochemical determination of Bogically important compounds: Ascorbic acid, uric acid, and dopamine. Crit. Rev. Anal. Chem., 2019, 49(2), 101-125.,
[http://dx.doi.org/10.1080/10408347.2018.1489217] [PMID: 30574792]
[15]
Li, X. Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TrAC Trends Analyt. Chem., 2019, 113, 1-12.
[http://dx.doi.org/10.1016/j.trac.2019.01.008]
[16]
Zhao, F. Carbon nanomaterial-enabled pesticide biosensors: Design strategy, biosensing mechanism, and practical application. TrAC Trends Analyt. Chem., 2018, 106, 62-83.
[http://dx.doi.org/10.1016/j.trac.2018.06.017]
[17]
Karfa, P. Functionalization of carbon nanostructures. Compr. Nanosci. Nanotechnol., 2019, 1-5, 123-144.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.11225-1]
[18]
Llobet, E. Carbon nanomaterials; Elsevier Inc., 2020.
[19]
Lu, S. Monitoring the glass transition temperature of polymeric composites with carbon nanotube buckypaper sensor. Polym. Test., 2017, 57, 12-16.
[http://dx.doi.org/10.1016/j.polymertesting.2016.11.008]
[20]
Choi, J. A study on the effect of pyrene derivatives on the noncovalent sidewall functionalisation of carbon nanotube buckypapers. Thin Solid Films, 2018, 651, 77-84.
[http://dx.doi.org/10.1016/j.tsf.2018.02.016]
[21]
Mei, H. Carbon nanotube buckypaper-reinforced SiCN ceramic matrix composites of superior electrical conductivity. J. Eur. Ceram. Soc., 2016, 36(8), 1893-1898.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2016.02.045]
[22]
Hu, Y. Comparative study of structure, mechanical and electromagnetic interference shielding properties of carbon nanotube buckypapers prepared by different dispersion media. Mater. Des., 2019, 184108175
[http://dx.doi.org/10.1016/j.matdes.2019.108175]
[23]
Podyacheva, O.Y.; Ismagilov, Z.R. Nitrogen-doped carbon nanomaterials: To the mechanism of growth, electrical conductivity and application in catalysis. Catal. Today, 2015, 249, 12-22.
[http://dx.doi.org/10.1016/j.cattod.2014.10.033]
[24]
Kumaresan, T.K. Promising nature-based nitrogen-doped porous carbon nanomaterial derived from borassus flabellifer male inflorescence as superior metal-free electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy, 2019, 44(47), 25918-25929.
[http://dx.doi.org/10.1016/j.ijhydene.2019.08.044]
[25]
Dumitriu, G.D.; López de Lerma, N.; Luchian, C.E.; Cotea, V.V.; Peinado, R.A. Study of the potential use of mesoporous nanomaterials as fining agent to prevent protein haze in white wines and its impact in major volatile aroma compounds and polyols.Food Chem., 2018, 240(240), 751-758.,
[http://dx.doi.org/10.1016/j.foodchem.2017.07.163] [PMID: 28946339]
[26]
Chen, Y.; Yang, Y.; Xu, B.; Wang, S.; Li, B.; Ma, J.; Gao, J.; Zuo, Y.Y.; Liu, S. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis. J. Environ. Sci. (China), 2017, 62, 100-114.
[http://dx.doi.org/10.1016/j.jes.2017.08.018] [PMID: 29289281]
[27]
Zhang, Q. Application of SiO2 spheres in the synthesis of coiled carbon nanofibers with high purity. Diamond Related Materials, 2019, 2020, 102.
[28]
Erdem, A. Indicator-free electrochemical biosensor for microRNA detection based on carbon nanofibers modified screen printed electrodes. J. Electroanal. Chem. (Lausanne Switz.), 2015, 755, 167-173.
[http://dx.doi.org/10.1016/j.jelechem.2015.07.031]
[29]
Kebabsa, L. Highly porous cobalt oxide-decorated carbon nanofibers fabricated from starch as free-standing electrodes for supercapacitors.Appl. Surf. Sci., 2020, 511(December 2019), 145313.,
[http://dx.doi.org/10.1016/j.apsusc.2020.145313]
[30]
Almeida, E.R.; De Souza, L.A.; De Almeida, W.B.; Dos Santos, H.F. Molecular dynamics of carbon nanohorns and their complexes with cisplatin in aqueous solution. J. Mol. Graph. Model., 2019, 89, 167-177.
[http://dx.doi.org/10.1016/j.jmgm.2019.03.015] [PMID: 30903984]
[31]
Ohba, T. Separation of adsorption isotherms of N2 in internal and interstitial nanopores of single-walled carbon nanohorn-A comparative study with experiment and simulation. Stud. Surf. Sci. Catal., 2002, 144, 521-527.
[http://dx.doi.org/10.1016/S0167-2991(02)80176-8]
[32]
Rao, C.N.R. Functionalization and Solubilization of Carbon and Inorganic Nanostructures. Compr. Nanosci. Technol., 2011, 1-5, 445-490.
[33]
Mengesha, A.E.; Youan, B.B.C. Nanodiamonds for drug delivery systems; Woodhead Publishing Limited: Cambridge, 2013.
[http://dx.doi.org/10.1533/9780857093516.2.186]
[34]
Nafisi, S.; Maibach, H.I. Nanotechnology in cosmetics. Cosmetic Sci. Technol., 2017, 2017, 337-369.
[http://dx.doi.org/10.1016/B978-0-12-802005-0.00022-7]
[35]
Nageswara Rao, R.; Albaseer, S.S. Nanomaterials in Chromatographic Sample Preparations; Elsevier Inc.: The Netherlands, 2018.
[http://dx.doi.org/10.1016/B978-0-12-812792-6.00007-8]
[36]
Duan, L. Sensitive and selective sensing system of metallothioneins based on carbon quantum dots and gold nanoparticles. Anal. Chim. Acta, 2020, 1125, 177-186.
[http://dx.doi.org/10.1016/j.aca.2020.05.054]
[37]
Wang, C. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Mater. Res. Bull., 2020, 124110730
[http://dx.doi.org/10.1016/j.materresbull.2019.110730]
[38]
Mai, X.D. Scalable synthesis of highly photoluminescence carbon quantum dots. Mater. Lett., 2020.268127595
[http://dx.doi.org/10.1016/j.matlet.2020.127595]
[39]
Nie, X. Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. J. Photochem. PhotoB. Bol. B., 2020, 206111864
[40]
Molaei, M.J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta, 2019, 196(196), 456-478.
[http://dx.doi.org/10.1016/j.talanta.2018.12.042] [PMID: 30683392]
[41]
Kumar, N.; Kumbhat, S. Carbon-based nanomaterials. Essentials in Nanoscience and Nanotechnology; John Wiley & Sons, Inc.: New York, 2016.
[http://dx.doi.org/10.1002/9781119096122.ch5]
[42]
Arduini, F. Carbon-based nanomaterials.Essentials in Nanoscience and Nanotechnology; John Wiley & Sons, Inc., 2020.
[43]
Madannejad, R.; Shoaie, N.; Jahanpeyma, F.; Darvishi, M.H.; Azimzadeh, M.; Javadi, H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and Bogical systems. Chem. B. Interact., 2019, 307, 206-222.
[http://dx.doi.org/10.1016/j.cbi.2019.04.036] [PMID: 31054282]
[44]
Zilberg, R.A. Chiral voltammetric sensor for warfarin enantiomers based on carbon black paste electrode modified by 3,4,9,10-perylenetetracarboxylic acid. J. Electroanal. Chem. (Lausanne Switz.), 2020, 861113986
[http://dx.doi.org/10.1016/j.jelechem.2020.113986]
[45]
Xu, B.S. Prospects and research progress in nano onion-like fullerenes. Xinxing Tan Cailiao. N. Carbon Mater., 2008, 23(4), 289-301.
[http://dx.doi.org/10.1016/S1872-5805(09)60001-9]
[46]
Mykhailiv, O. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorg. Chim. Acta, 2017, 468, 49-66.
[http://dx.doi.org/10.1016/j.ica.2017.07.021]
[47]
Brett, C. Fundamentals of electrochemistry; Elsevier: The Netherlands, 2008.
[http://dx.doi.org/10.1007/978-3-540-77508-9_8]
[48]
Zuaznabar-Gardona, J.C.; Fragoso, A. A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes. Sens. Actuators B Chem., 2018, 273(June), 664-671.
[http://dx.doi.org/10.1016/j.snb.2018.06.103]
[49]
Wang, J. Analytical Electrochemistry; John Wiley & Sons, Inc.: New York, 2006.
[http://dx.doi.org/10.1002/0471790303]
[50]
Lasia, A., Ed.; Electrochemical Impedance Spectroscopy and Its Applications; Springer: New York, 2014.
[http://dx.doi.org/10.1007/978-1-4614-8933-7]
[51]
Scholz, F. Electroanalytical Methods: Guide to experiments and applications; Springer: New York, 2010.
[http://dx.doi.org/10.1007/978-3-642-02915-8]
[52]
Ozkan, S.A. Electroanalysis in Biomedical and Pharmaceutical Sciences; Springer: New York, 2015.
[http://dx.doi.org/10.1007/978-3-662-47138-8]
[53]
Wilson, H.N. Polarography. An approach to chemical analysis; Elsevier: The Netherlands, 1966.
[http://dx.doi.org/10.1016/B978-0-08-011543-6.50012-6]
[54]
Scholz, F. Voltammetric techniques of analysis: the essentials. ChemTexts, 2015, 1(4), 17.
[http://dx.doi.org/10.1007/s40828-015-0016-y]
[55]
Weber, S. Analytical and physical electrochemistry., 2005.
[http://dx.doi.org/10.1016/j.trac.2005.07.002]
[56]
Potential sweep techniques and cyclic voltammetry; Instrum. Methods Electrochem, 2010, pp. 178-228.,
[57]
Barker, G.C.; Gardner, A.W. Pulse polarography. Fresenius Z. Anal. Chem., 1960, 173(1), 79-83.
[http://dx.doi.org/10.1007/BF00448718]
[58]
Clark, L.C., Jr; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery.Ann. N. Y. Acad. Sci., 1962, 102, 29-45.,
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x] [PMID: 14021529]
[59]
Blasco, A.J.; Escarpa, A. Electrochemical detection in capillary electrophoresis on microchips. Compr. Anal. Chem., 2005, 45(05), 703-758.
[http://dx.doi.org/10.1016/S0166-526X(05)45014-X]
[60]
Curry, P.D. Electrochemical detection for capillary electrophoresis. Electroanalysis, 1991, 3(7), 587-596.
[http://dx.doi.org/10.1002/elan.1140030702]
[61]
Guy, O.J.; Walker, K.A.D. Graphene Functionalization for Biosensor Applications; Elsevier Inc., 2016.
[http://dx.doi.org/10.1016/B978-0-12-802993-0.00004-6]
[62]
Hoyos-Arbeláez, J.; Vázquez, M.; Contreras-Calderón, J. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review.Food Chem., 2017, 221, 1371-1381.,
[http://dx.doi.org/10.1016/j.foodchem.2016.11.017] [PMID: 27979102]
[63]
Brock, J., Ed.; Electrochemical Impedance Spectroscopy-Methods, Analysis and Research; Nova Science Publishers, Inc: New York, 2017.
[64]
Lasia, A. Electrochemical Impedance Spectroscopy and its Applications. Mod. Asp. Electrochem., 1999, 32, 143-248.
[65]
Benavente, J. Electrochemical impedance spectroscopy as a tool for electrical and structural characterizations of membranes in contact with electrolyte solutions; Woodhead Publishing Limited, 2005.
[http://dx.doi.org/10.1016/B978-008044648-6/50074-4]
[66]
Roda, A. Smartphone-Based Biosensors for Bioanalytics: A Critical Review; Elsevier Ltd.: The Netherlands, 2017.
[http://dx.doi.org/10.1016/bs.coac.2017.05.007]
[67]
Richter, M.M. Electrochemiluminescence. Optical Biosensors: Today and Tomorrow; Ligler, F. S.; Taitt, C. R., Eds; Elsevier, B.V., Ed.; The Netherlands, 2008, pp. 317-384.
[68]
Bertoncello, P.; Forster, R.J. Nanostructured materials for electrochemiluminescence (ECL) -based detection methods : Recent advances and future perspectives. Biosens. Bioelectron., 2009, 24, 3191-3200.
[69]
Ju, H. Immunosensing for Detection of Protein Biomarkers. Electrochem. Immunosens., 2017, 2017, 171-206.
[http://dx.doi.org/10.1016/B978-0-08-101999-3.00006-2]
[70]
Zhang, Z.X.; Zhao, C.Z. Progress of photoelectrochemical analysis and sensors. Fenxi Huaxue. Chin. J. Anal. Chem., 2013, 41(3), 436-444.
[http://dx.doi.org/10.1016/S1872-2040(13)60637-4]
[71]
Zhao, W.W.; Wang, J.; Zhu, Y.C.; Xu, J.J.; Chen, H.Y. Quantum dots: electrochemiluminescent and photoelectrochemical bioanalysis. Anal. Chem., 2015, 87(19), 9520-9531.
[http://dx.doi.org/10.1021/acs.analchem.5b00497] [PMID: 26023706]
[72]
Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical bioanalysis: the state of the art. Chem. Soc. Rev., 2015, 44(3), 729-741.
[http://dx.doi.org/10.1039/C4CS00228H] [PMID: 25223761]
[73]
Wen, G. Photoelectrochemical sensor for detecting Hg2+ based on exciton trapping. Sens. Actuators B Chem., 2015, 221, 1449-1454.
[http://dx.doi.org/10.1016/j.snb.2015.07.103]
[74]
Wang, G.L. A novel strategy for the construction of photoelectrochemical sensors based on quantum dots and electron acceptor: The case of dopamine detection. Electrochem. Commun., 2014, 41, 47-50.
[http://dx.doi.org/10.1016/j.elecom.2014.01.014]
[75]
Telting-Diaz, M.; Qin, Y. Chapter 18a Potentiometry. Compr. Anal. Chem., 2006, 47(06), 625-659.
[http://dx.doi.org/10.1016/S0166-526X(06)47027-6]
[76]
Hujjatul Islam, M.; Paul, M.T.Y.; Burheim, O.S.; Pollet, B.G. Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrason. Sonochem., 2019, 59104711
[http://dx.doi.org/10.1016/j.ultsonch.2019.104711] [PMID: 31421622]
[77]
González-García, J. Relevant developments and new insights on sonoelectrochemistry. Phys. Procedia, 2010, 3(1), 117-124.
[http://dx.doi.org/10.1016/j.phpro.2010.01.017]
[78]
Theerthagiri, J.; Madhavan, J.; Lee, S.J.; Choi, M.Y.; Ashokkumar, M.; Pollet, B.G. Sonoelectrochemistry for energy and environmental applications. Ultrason. Sonochem., 2020, 63104960
[http://dx.doi.org/10.1016/j.ultsonch.2020.104960] [PMID: 31986327]
[79]
Heyser, C. New route for the synthesis of nickel (II) oxide nanostructures and its application as non-enzymatic glucose sensor. J. Electroanal. Chem. (Lausanne Switz.), 2018, 2019(832), 189-195.
[80]
González-García, J.; Esclapez, M.D.; Bonete, P.; Hernández, Y.V.; Garretón, L.G.; Sáez, V. Current topics on sonoelectrochemistry. Ultrasonics, 2010, 50(2), 318-322.
[http://dx.doi.org/10.1016/j.ultras.2009.09.022] [PMID: 19853270]
[81]
Beckett, E.L.; Lawrence, N.S.; Evans, R.G.; Davis, J.; Compton, R.G. Sonoelectrochemically enhanced determination of 5- aminosalicylic acid. Talanta, 2001, 54(5), 871-877.,
[http://dx.doi.org/10.1016/S0039-9140(01)00337-X] [PMID: 18968310]
[82]
Couto, R.A.S.; Lima, J.L.; Quinaz, M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and Bogical analysis. Talanta, 2016, 146(228), 801-814.
[http://dx.doi.org/10.1016/j.talanta.2015.06.011] [PMID: 26695333]
[83]
Mohamed, H.M. Screen-printed disposable electrodes: Pharmaceutical applications and recent developments. TrAC Trends Analyt. Chem., 2016, 82, 1-11.
[http://dx.doi.org/10.1016/j.trac.2016.02.010]
[84]
Renedo, O.D.; Alonso-Lomillo, M.A.; Martínez, M.J. Recent developments in the field of screen-printed electrodes and their related applications. Talanta, 2007, 73(2), 202-219.
[http://dx.doi.org/10.1016/j.talanta.2007.03.050] [PMID: 19073018]
[85]
Goyal, R.; Bishnoi, S. Surface modification in electroanalysis: Past, present and future. Indian J. Chem. A, 2012, 51, 205-225.
[86]
Alkire, R.C. Chemically Modified Electrodes; Elsevier B.V.: The Netherlands, 2011.
[87]
Zen, J.M. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis, 2003, 15(13), 1073-1087.
[http://dx.doi.org/10.1002/elan.200390130]
[88]
Li, W.B. Composite modification mechanism of cationic modifier to amphoteric modified kaolin and its effects on surface characteristics. Int. J. Environ. Sci. Technol., 2016, 13(11), 2639-2648.
[http://dx.doi.org/10.1007/s13762-016-1091-3]
[89]
Wong, A. Talanta A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta, 2020, 206120252
[90]
Balram, D. Ultrasonics-Sonochemistry Ultrasound-assisted synthesis of 3D fl ower-like zinc oxide decorated fMWCNTs for sensitive detection of toxic environmental pollutant 4- nitrophenol. Ultrason. Sonochem., 2020, 60104798
[91]
Imanzadeh, H.; Bakirhan, N.K.; Habibi, B.; Ozkan, S.A. A sensitive nanocomposite design via carbon nanotube and silver nanoparticles: Selective probing of emedastine difumarate. J. Pharm. Biomed. Anal., 2020, 181113096
[http://dx.doi.org/10.1016/j.jpba.2020.113096] [PMID: 32014685]
[92]
Sukanya, R. Ultrasound treated cerium oxide/tin oxide (CeO2/SnO2) nanocatalyst: A feasible approach and enhanced electrode material for sensing of anti-inflammatory drug 5-aminosalicylic acid in Bogical samples. Anal. Chim. Acta, 2020, 1096, 76-88.
[PMID: 31883594]
[93]
Hatamluyi, B.; Hashemzadeh, A.; Darroudi, M. A novel molecularly imprinted polymer decorated by CQDs@HBNNS nanocomposite and UiO-66-NH2 for ultra-selective electrochemical sensing of Oxaliplatin in Bogical samples. Sens. Actuators B Chem., 2019, 2019Article ID 127614
[94]
Heli, H. Copper nanoparticles-carbon microparticles nanocomposite for electrooxidation and sensitive detection of sotalol. Sens. Actuators B Chem., 2009, 140(1), 245-251.
[http://dx.doi.org/10.1016/j.snb.2009.04.021]
[95]
Shahrokhian, S. Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine. Biosens. Bioelectron., 2009, 24, 3235-3241.
[96]
Bao, X. Sensitive voltammetric determination of xanthinol nicotinate at a carbon nanotubes-ionic liquid gel modified electrode. Chin. Chem. Soc., 2009, 20, 849-851.
[97]
Daneshgar, P. A dysprosium nanowire modified carbon paste electrode for determination of levodopa using fast Fourier transformation square-wave voltammetry method. Colloids Surf. B Biointerf, 2009, 68, 27-32.
[98]
Hegde, R.N.; Hosamani, R.R.; Nandibewoor, S.T. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes. Colloids Surf. B Biointerf., 2009, 72(2), 259-265.
[http://dx.doi.org/10.1016/j.colsurfb.2009.04.013] [PMID: 19446444]
[99]
Xi, X. Electrochemical determination of thiamazole at a multi-wall carbon nanotube modified glassy carbon electrode. J. Appl. Electrochem., 2010, 40(8), 1449-1454.
[http://dx.doi.org/10.1007/s10800-010-0122-x]
[100]
Zheng, D. Chemical preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sens. Actuat. B. Chem., 2010, 148(1), 247-252.
[http://dx.doi.org/10.1016/j.snb.2010.04.031]
[101]
Heli, H. Ultrasensitive sensing of N-acetyl-l-cysteine using an electrocatalytic transducer of nanoparticles of iron(III) oxide core-cobalt hexacyanoferrate shell. Sens. Actuat. B. Chem., 2010, 145(1), 185-193.
[http://dx.doi.org/10.1016/j.snb.2009.11.065]
[102]
Heli, H. Electrooxidation of dextromethorphan on a carbon nanotube-carbon microparticle-ionic liquid composite: Applied to determination in pharmaceutical forms. J. Solid State Electrochem., 2010, 14(8), 1515-1523.
[http://dx.doi.org/10.1007/s10008-009-0979-y]
[103]
Sattarahmady, N.; Heli, H.; Faramarzi, F. Nickel oxide nanotubes-carbon microparticles/Nafion nanocomposite for the electrooxidation and sensitive detection of metformin. Talanta, 2010, 82(4), 1126-1135.
[http://dx.doi.org/10.1016/j.talanta.2010.06.022] [PMID: 20801308]
[104]
Lu, T.L.; Tsai, Y.C. Electrocatalytic oxidation of acetylsalicylic acid at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified glassy carbon electrodes. Sens. Actuators B Chem., 2010, 148(2), 590-594.
[http://dx.doi.org/10.1016/j.snb.2010.05.037]
[105]
Zhang, W.D. Electrochemical oxidation of salicylic acid at well-aligned multiwalled carbon nanotube electrode and its detection. J. Solid State Electrochem., 2010, 14(9), 1713-1718.
[http://dx.doi.org/10.1007/s10008-010-1014-z]
[106]
Lu, T.L.; Tsai, Y.C. Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode. Sens. Actuat. B. Chem., 2011, 153(2), 439-444.
[http://dx.doi.org/10.1016/j.snb.2010.11.013]
[107]
Peng, J.Y.; Hou, C.T.; Liu, X.X.; Li, H.B.; Hu, X.Y. Electrochemical behavior of azithromycin at graphene and ionic liquid composite film modified electrode. Talanta, 2011, 86(1), 227-232.
[http://dx.doi.org/10.1016/j.talanta.2011.09.005] [PMID: 22063535]
[108]
Yazhen, W. Electrochemical determination of methimazole based on the acetylene black/chitosan film electrode and its application to rat serum samples. Bioelectrochemistry, 2011, 81(2), 86-90.,
[http://dx.doi.org/10.1016/j.bioelechem.2011.04.001] [PMID: 21549647]
[109]
Patil, R.H.; Hegde, R.N.; Nandibewoor, S.T. Electro-oxidation and determination of antihistamine drug, cetirizine dihydrochloride at glassy carbon electrode modified with multi-walled carbon nanotubes. Colloids Surf. B Biointerf., 2011, 83(1), 133-138.
[http://dx.doi.org/10.1016/j.colsurfb.2010.11.008] [PMID: 21145217]
[110]
Ahmad, R. Adsorptive stripping voltammetric determination of podophyllotoxin, an antitumour herbal drug, at multi-walled carbon nanotube paste electrode. J. Appl. Electrochem., 2011, 2011, 1311-1321.
[111]
Dalmasso, P.R. Chemical electrochemical determination of ascorbic acid and paracetamol in pharmaceutical formulations using a glassy carbon electrode modified with multi-wall carbon nanotubes dispersed in polyhistidine. Sens. Actuators B Chem., 2012, 173, 732-736.
[http://dx.doi.org/10.1016/j.snb.2012.07.087]
[112]
Karuwan, C. Chemical Inkjet-printed on screen printed carbon electrode for electrochemical sensing of salbutamol. Sens. Actuators B Chem., 2012, 161(1), 549-555.
[http://dx.doi.org/10.1016/j.snb.2011.10.074]
[113]
Rahemi, V.; Vandamme, J.J.; Garrido, J.M.; Borges, F.; Brett, C.M.; Garrido, E.M. Enhanced host-guest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor. Talanta, 2012, 99, 288-293.
[http://dx.doi.org/10.1016/j.talanta.2012.05.053] [PMID: 22967554]
[114]
Chen, X. Chemical A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films. Sens. Actuators B Chem., 2012, 161(1), 648-654.
[http://dx.doi.org/10.1016/j.snb.2011.10.085]
[115]
Jain, R.; Sharma, S. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems. J. Pharm. Anal., 2012, 2(1), 56-61.
[http://dx.doi.org/10.1016/j.jpha.2011.09.013] [PMID: 29403721]
[116]
Arvand, M.; Gholizadeh, T.M.; Zanjanchi, M.A. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater. Sci. Eng. C, 2012, 32(6), 1682-1689.
[http://dx.doi.org/10.1016/j.msec.2012.04.066] [PMID: 24364977]
[117]
Bui, M.N. Chemical Determination of acetaminophen by electrochemical co-deposition of glutamic acid and gold nanoparticles. Sens. Actuators B Chem., 2012, 174, 318-324.
[http://dx.doi.org/10.1016/j.snb.2012.08.012]
[118]
Shahrokhian, S.; Rastgar, S. Electrochemical deposition of gold nanoparticles on carbon nanotube coated glassy carbon electrode for the improved sensing of tinidazole. Electrochim. Acta, 2012, 78, 422-429.
[http://dx.doi.org/10.1016/j.electacta.2012.06.035]
[119]
Shetti, N.P. Bioelectrochemistry Electrochemical behavior of an antiviral drug acyclovir at fullerene-C 60 -modified glassy carbon electrode. Bioelectrochemistry, 2012, 88, 76-83.
[http://dx.doi.org/10.1016/j.bioelechem.2012.06.004] [PMID: 22796504]
[120]
Wang, B. Electrochemical fabrication of TiO2 nanoparticles/[BMIM] BF 4 ionic liquid hybrid fi lm electrode and its application in determination of p -acetaminophen. Mater. Sci. Eng. C, 2012, 32(8), 2280-2285.
[http://dx.doi.org/10.1016/j.msec.2012.06.015]
[121]
Wang, H. CNL-Cyclodextrin/Fe3O4 hybrid magnetic nano-composite modified glassy carbon electrode for tryptophan sensing. Sens. Actuat. B. Chem., 2012, 163(1), 171-178.
[http://dx.doi.org/10.1016/j.snb.2012.01.031]
[122]
Xiao, X. A square wave voltammetric method for the detection of microorganism populations using a MWNT-modified glassy carbon electrode. Electrochim. Acta, 2012, 74, 105-110.
[123]
Dogan-topal, B. Chemical Multi-walled carbon nanotube modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-viral drug valganciclovir in pharmaceuticals. Sens. Actuat. B. Chem., 2013, 177, 841-847.
[http://dx.doi.org/10.1016/j.snb.2012.11.111]
[124]
Geto, A. Electrochemical determination of berberine at a multi-walled carbon nanotubes-modified glassy carbon electrode. Sens. Actuat. B. Chem., 2013, 183, 96-101.
[http://dx.doi.org/10.1016/j.snb.2013.03.121]
[125]
Dogan-topal, B. Electrooxidative behavior and determination of trifluoperazine at multiwalled carbon nanotube-modified glassy carbon electrode. J. Solid State Electrochem., 2013, 2013, 1059-1066.
[http://dx.doi.org/10.1007/s10008-012-1967-1]
[126]
Bozal-Palabiyik, B. Sensitive voltammetric assay of etoposide using modified glassy carbon electrode with a dispersion of multi-walled carbon nanotube. J. Solid State Electrochem., 2013, 17(11), 2815-2822.
[http://dx.doi.org/10.1007/s10008-013-2184-2]
[127]
Chen, M.; Ma, X. Electrochemical determination of ethyl maltol on a glassy carbon electrode modified with graphene. J. Chil. Chem. Soc., 2013, 3, 1918-1920.
[128]
Zhao, X. Sensitive determination of thymol based on CeO2 nanoparticle-decorated graphene hybrid film. New J. Chem., 2013, 12, 4045-4051.
[129]
Jiang, L.; Gu, S.; Ding, Y.; Jiang, F.; Zhang, Z. Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. Nanoscale, 2014, 6(1), 207-214.
[http://dx.doi.org/10.1039/C3NR03620K] [PMID: 24201458]
[130]
Afzali, D.; Zarei, S.; Fathirad, F.; Mostafavi, A. Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol. Mater. Sci. Eng. C, 2014, 43, 97-101.
[http://dx.doi.org/10.1016/j.msec.2014.06.035] [PMID: 25175193]
[131]
Fayazfar, H.; Afshar, A.; Dolati, A. Tantalum electrodes modified with well-aligned carbon nanotube-Au nanoparticles: application to the highly sensitive electrochemical determination of cefazolin. Appl. Biochem. Biotechnol., 2014, 173(6), 1511-1528.
[http://dx.doi.org/10.1007/s12010-014-0944-9] [PMID: 24817553]
[132]
Hasanzadeh, M. Determination of lisinopril using β-cyclodextrin/graphene oxide-SO3H modified glassy carbon electrode. J. Appl. Electrochem., 2014, 44(7), 821-830.
[http://dx.doi.org/10.1007/s10800-014-0689-8]
[133]
Kang, S. RSC Advances nanotubes improved with Cu2O clusters. RSC Advances, 2014, 2, 538-543.
[134]
Demir, E. Electrochemical behavior of tadalafil on TiO2 nanoparticles-MWCNT composite paste electrode and its determination in pharmaceutical dosage forms and human serum samples using adsorptive stripping square wave voltammetry. J. Solid State Electrochem., 2014, 18(10), 2709-2720.
[http://dx.doi.org/10.1007/s10008-014-2529-5]
[135]
Yadav, S.K.; Choubey, P.K.; Agrawal, B.; Goyal, R.N. Carbon nanotube embedded poly 1,5-diaminonapthalene modified pyrolytic graphite sensor for the determination of sulfacetamide in pharmaceutical formulations. Talanta, 2014, 118, 96-103.
[http://dx.doi.org/10.1016/j.talanta.2013.09.061] [PMID: 24274275]
[136]
Shpigun, L.K. Determination of catecolamines on electrodes modified with multiwalled carbon nanotubes. Russ. J. Electrochem., 2014, 50(10), 926-932.
[http://dx.doi.org/10.1134/S1023193514100103]
[137]
Geto, A. Determination of histamine in fish muscle at multi-walled carbon nanotubes coated conducting polymer modified glassy carbon electrode. Synth. Met., 2014, 191, 135-140.
[http://dx.doi.org/10.1016/j.synthmet.2014.03.005]
[138]
Lin, X. Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples. Electrochim. Acta, 2014, 133, 484-491.
[http://dx.doi.org/10.1016/j.electacta.2014.04.065]
[139]
Sun, J. A novel sensing platform based on a core-shell Fe@Fe3C-C nanocomposite for ultrasensitive determination of vanillin. Anal. Methods, 2014, 6(15), 5639-5646.
[http://dx.doi.org/10.1039/C4AY00859F]
[140]
Behpour, M. Determination of trace amounts of thymol and caffeic acid in real samples using a graphene oxide nanosheet modi fi ed electrode: application of experimental design in voltammetric studies. RSC Advances, 2014, 2014, 14270.
[141]
Feng, Q. Chemical A novel way for detection of eugenol via poly nano-flower fabricated electrochemical sensor. Sens. Actuat. B. Chem., 2014, 192, 1-8.
[http://dx.doi.org/10.1016/j.snb.2013.10.087]
[142]
Kutluay, A.; Aslanoglu, M. Analytica Chimica Acta An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine; Elsevier B.V.: The Netherlands, 2014.
[143]
Kutluay, A.; Aslanoglu, M. Nickel nanoparticles functionalized multi-walled carbon nanotubes at platinum electrodes for the detection of bromhexine. Sens. Actuators B Chem., 2014, 192, 720-724.
[http://dx.doi.org/10.1016/j.snb.2013.11.047]
[144]
Narang, J.; Malhotra, N.; Singh, G.; Pundir, C.S. Voltammetric detection of anti-HIV replication drug based on novel nanocomposite gold-nanoparticle-CaCO3 hybrid material. Bioprocess Biosyst. Eng., 2015, 38(5), 815-822.
[http://dx.doi.org/10.1007/s00449-014-1323-1] [PMID: 25416586]
[145]
Silva, T.R. Electrochemical sensor based on gold nanoparticles stabilized in Poly(Allylamine hydrochloride) for determination of vanillin. Electroanalysis, 2015, 27(2), 465-472.
[http://dx.doi.org/10.1002/elan.201400517]
[146]
Hatami, Z.; Jalali, F. Voltammetric determination of immunosuppressive agent, azathioprine, by using a graphene-chitosan modified-glassy carbon electrode. Russ. J. Electrochem., 2015, 51(1), 70-76.
[http://dx.doi.org/10.1134/S1023193515010097]
[147]
Dorraji, P.S.; Jalali, F. Sensitive amperometric determination of methimazole based on the electrocatalytic effect of rutin/multiwalled carbon nanotube film. Bioelectrochemistry, 2015, 101, 66- 74.,
[http://dx.doi.org/10.1016/j.bioelechem.2014.07.009] [PMID: 25128894]
[148]
Materon, E.M. Multi-walled carbon nanotubes modified screen-printed electrodes for cisplatin detection. Electrochim. Acta, 2015, 158, 271-276.
[http://dx.doi.org/10.1016/j.electacta.2015.01.184]
[149]
Gowda, J.I.; Buddanavar, A.T.; Nandibewoor, S.T. Fabrication of multiwalled carbon nanotube-surfactant modified sensor for the direct determination of toxic drug 4-aminoantipyrine. J. Pharm. Anal., 2015, 5(4), 231-238.
[http://dx.doi.org/10.1016/j.jpha.2015.01.001] [PMID: 29403936]
[150]
Salamanca-Neto, C.A.R. Electrochemical evaluation and simultaneous determination of binary mixture of antihypertensives hydrochlorothiazide and enalapril in combined dosage forms using carbon nanotubes paste electrode. Ionics (Kiel), 2015, 21(6), 1615-1622.
[http://dx.doi.org/10.1007/s11581-014-1349-z]
[151]
Thirumalraj, B. Direct electrochemistry of glucose oxidase and sensing of glucose at a glassy carbon electrode modified with a reduced graphene oxide/fullerene-C60 composite. RSC Advances, 2015, 95, 77651-77657.
[152]
Thirumalraj, B. Electroanalysis and bioelectrochemistry lab, department of chemical engineering and chemistry division, center for general education, chang gung university. J. Colloid Interf. Sci: Tao-Yuan, 2015, 2015, 1-10.,
[153]
Udayan, M. A new insight into electrochemical detection of eugenol by hierarchical sheaf-like mesoporous NiCo2O4. Nano Res., 2015, 8(8), 2636-3645.
[154]
Baytak, A.K.; Aslanoglu, M. Decorating carbon nanotubes with nanoparticles of indium tin oxide for the voltammetric determination of metaproterenol. J. Electroanal. Chem. (Lausanne Switz.), 2015, 757, 210-215.
[http://dx.doi.org/10.1016/j.jelechem.2015.09.041]
[155]
Souza, O.J.D. Electrocatalytic oxidation of L -tyrosine at carboxylic acid functionalized multi-walled carbon nanotubes modified carbon paste electrode. Ionics, 2016, 22(3), 405-414.
[156]
Mazloum-ardakani, M. Simultaneous determination of hydrazine and hydroxylamine based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens. Actuators B Chem., 2015, 214, 1-10.
[157]
Deiminiat, B. A novel electrochemical aptasensor based on f-MWCNTs/AuNPs nanocomposite for label-free detection of bisphenol A. Sens. Actuat. B. Chem., 2016, 214, 132-137.
[158]
Thapliyal, N. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine. Mater. Sci. Eng. C, 2017, 74, 27-35.
[159]
Stojanović, Z.S. SWCNT-modified carbon paste electrode as an electrochemical sensor for histamine determination in alcoholic beverages. Food Anal. Methods, 2016, 9(10), 2701-2710.
[http://dx.doi.org/10.1007/s12161-016-0452-3]
[160]
Gan, T. Ultrasensitive Electrochemical sensor for maltol in wines using graphene oxide-wrapped amino-functionalized carbon sphere as sensing electrode materials. Electroanalysis, 2016, 28(1), 103-110.
[http://dx.doi.org/10.1002/elan.201500476]
[161]
Yang, L. Electrochemical determination of eugenol using a three-dimensional molecularly imprinted poly (p-aminothiophenol-co-p-aminobenzoic acids) film modified electrode. Electrochim. Acta, 2016, 210, 293-300.
[http://dx.doi.org/10.1016/j.electacta.2016.05.167]
[162]
Ziyatdinova, G. Voltammetric determination of thymol in oregano using CeO2 -Modified Electrode in Brij ® 35 micellar medium. Food Anal. Methods, 2017, 10, 129-136.
[163]
Rao, H. Amperometric determination of maltol using a cobalt oxide assembled MCM-41 composite modified glassy carbon electrode amperometric determination of maltol using a cobalt oxide assembled mcm-41 composite modified glassy carbon electrode. Electrochemistry, 2016, 2719, 1-10.
[164]
Asadpour-zeynali, K.; Mollarasouli, F. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens. Bioelectron., 2017, 92, 509-516.
[165]
Hasanzadeh, M. Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J. Mol. Liq., 2016, 221, 354-357.
[http://dx.doi.org/10.1016/j.molliq.2016.05.082]
[166]
Shi, F.; Xi, J.; Hou, F.; Han, L.; Li, G.; Gong, S.; Chen, C.; Sun, W. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin. Mater. Sci. Eng. C, 2016, 58, 450-457.
[http://dx.doi.org/10.1016/j.msec.2015.08.049] [PMID: 26478332]
[167]
Gan, T.; Sun, J.; Yu, M.; Wang, K.; Lv, Z.; Liu, Y. Amplified electrochemical determination of maltol in food based on graphene oxide-wrapped tin oxide@carbon nanospheres. Food Chem., 2017, 214, 82-89.,
[http://dx.doi.org/10.1016/j.foodchem.2016.07.054] [PMID: 27507451]
[168]
Dong, X.X.; Yang, J.Y.; Luo, L.; Zhang, Y.F.; Mao, C.; Sun, Y.M.; Lei, H.T.; Shen, Y.D.; Beier, R.C.; Xu, Z.L. Portable amperometric immunosensor for histamine detection using Prussian blue-chitosan-gold nanoparticle nanocomposite films. Biosens. Bioelectron., 2017, 98(483), 305-309.
[http://dx.doi.org/10.1016/j.bios.2017.07.014] [PMID: 28697442]
[169]
Sivakumar, M.; Sakthivel, M.; Chen, S.M. Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. J. Colloid Interface Sci., 2017, 490, 719-726.
[http://dx.doi.org/10.1016/j.jcis.2016.11.094] [PMID: 27951514]
[170]
Tang, H. Electrochemical determination of maltol in food sample based on nitrogen-doped graphene -modified electrode. Int. J. Electrochem. Sci., 2017, 12, 2252.
[171]
Yildiz, G.; Aydogmus, Z.; Cinar, M.E.; Senkal, F.; Ozturk, T. Electrochemical oxidation mechanism of eugenol on graphene modified carbon paste electrode and its analytical application to pharmaceutical analysis. Talanta, 2017, 173, 1-8.
[http://dx.doi.org/10.1016/j.talanta.2017.05.056] [PMID: 28602182]
[172]
Da Silva, J.L. Cathodic electrochemical determination of furfural in sugarcane bagasse using an electrode modified with nickel nanoparticles. Anal. Methods, 2017, 9(5), 826-834.
[http://dx.doi.org/10.1039/C6AY03222B]
[173]
Liu, Z. High-sensitive electrochemical sensor for determination of Norfloxacin and its metabolism using MWCNT-CPE/pRGO-ANSA/Au. Sens. Actuators B Chem., 2018, 257, 1065-1075.
[http://dx.doi.org/10.1016/j.snb.2017.11.052]
[174]
Hashemi, P.; Bagheri, H.; Afkhami, A.; Amidi, S.; Madrakian, T. Graphene nanoribbon/FePt bimetallic nanoparticles/uric acid as a novel magnetic sensing layer of screen printed electrode for sensitive determination of ampyra. Talanta, 2018, 176(176), 350-359.
[http://dx.doi.org/10.1016/j.talanta.2017.08.046] [PMID: 28917761]
[175]
Deroco, P.B.; Rocha-Filho, R.C.; Fatibello-Filho, O. A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor. Talanta, 2018, 179(179), 115-123.
[http://dx.doi.org/10.1016/j.talanta.2017.10.048] [PMID: 29310210]
[176]
Khairy, M. Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilizing MgO nanoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids. Sens. Actuat. B. Chem., 2017, 252, 1045-1054.
[http://dx.doi.org/10.1016/j.snb.2017.06.105]
[177]
Baghayeri, M. Chemical Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: Application to determination of droxidopa in presence of phenobarbital. Sens. Actuators B Chem., 2017, 240, 255-263.
[http://dx.doi.org/10.1016/j.snb.2016.08.161]
[178]
Ensafi, A.A. electrode, a selective and sensitive electrochemical sensor for determination of methotrexate. J. Taiwan Inst. Chem. Eng., 2017, 2017, 1-6.
[179]
Savalia, R.; Chatterjee, S. Sensitive detection of brucine an anti-metastatic drug for hepatocellular carcinoma at carbon nanotubes-nafion composite based biosensor. Biosens. Bioelectron., 2017, 98(May), 371-377.
[http://dx.doi.org/10.1016/j.bios.2017.07.011] [PMID: 28709086]
[180]
Rahimi-nasrabadi, M. Chemical electrochemical determination of diazepam in real samples based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens. Actuators B Chem., 2017, 240, 125-131.
[http://dx.doi.org/10.1016/j.snb.2016.08.144]
[181]
Valentini, F. Fullerene black modified screen printed electrodes for the quantification of acetaminophen and guanine. Electroanalysis, 2017, 29(12), 1-11.
[http://dx.doi.org/10.1002/elan.201700426]
[182]
Sutradhar, S.; Patnaik, A. Chemical A new fullerene-C 60-Nanogold composite for non-enzymatic glucose sensing. Sens. Actuators B Chem., 2017, 241, 681-689.
[http://dx.doi.org/10.1016/j.snb.2016.10.111]
[183]
Kong, D.; Jiang, L.; Liu, Y.; Wang, Z.; Han, L.; Lv, R.; Lin, J.; Lu, C.H.; Chi, Y.; Chen, G. Electrochemical investigation and determination of procaterol hydrochloride on poly(glutamic acid)/carboxyl functionalized multiwalled carbon nanotubes/polyvinyl alcohol modified glassy carbon electrode. Talanta, 2017, 174, 436-443.
[http://dx.doi.org/10.1016/j.talanta.2017.06.047] [PMID: 28738604]
[184]
Algarra, M.; González-Calabuig, A.; Radotić, K.; Mutavdzic, D.; Ania, C.O.; Lázaro-Martínez, J.M.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E.; Del Valle, M. Enhanced electrochemical response of carbon quantum dot modified electrodes. Talanta, 2018, 178, 679-685.
[http://dx.doi.org/10.1016/j.talanta.2017.09.082] [PMID: 29136880]
[185]
Chen, J. Poly(B-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sens. Actuators B Chem., 2017, 252, 9-16.
[http://dx.doi.org/10.1016/j.snb.2017.05.096]
[186]
He, S. Poly(bromocresol green)/carbon quantum dots modified electrode for the simultaneous electrochemical determination of guanine and adenine. J. Electroanal. Chem. (Lausanne Switz.), 2017, 806, 158-165.
[http://dx.doi.org/10.1016/j.jelechem.2017.10.069]
[187]
Rahman, M. Highly sensitive and simultaneous detection of dopamine and uric acid at graphene nanoplatelet-modified fluorine-doped tin oxide electrode in the presence of ascorbic acid. J. Electroanal. Chem. (Lausanne Switz.), 2017, 792, 54-60.
[http://dx.doi.org/10.1016/j.jelechem.2017.03.038]
[188]
Ji, D. Biosensors and Bioelectronics Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens. Bioelectron., 2017, 98, 449-456.
[http://dx.doi.org/10.1016/j.bios.2017.07.027] [PMID: 28715792]
[189]
Durán, G.M.; Llorent-Martínez, E.J.; Contento, A.M.; Ríos, Á. Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Mikrochim. Acta, 2018, 185(3), 204.
[http://dx.doi.org/10.1007/s00604-018-2738-1] [PMID: 29594680]
[190]
Kowalcze, M. Voltammetric determination of anethole on La2O3/ CPE and BDDE., J. Anal. Chem. Methods. Chem., 2018, 2018, Article ID 2158407.,
[191]
Shetti, N.P. Analytica Chimica Acta Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of fl ufenamic acid and mefenamic acid. Anal. Chim. Acta, 2019, 1051, 58-72.
[http://dx.doi.org/10.1016/j.aca.2018.11.041] [PMID: 30661620]
[192]
Afzali, M. Sensitive voltammetric method for the determination of naproxen at the surface of carbon nanofiber/gold/polyaniline nanocomposite modified carbon ionic liquid electrode. Microchem. J., 2018, 2018, 1-10.
[193]
Atta, N.F. Nano-magnetite/ionic liquid crystal modifiers of carbon nanotubes composite electrode for ultrasensitive determination of a new anti-hepatitis C drug in human serum. J. Electroanal. Chem. (Lausanne Switz.), 2018, 823, 296-306.
[http://dx.doi.org/10.1016/j.jelechem.2018.06.016]
[194]
El-ads, E.H. Nano-perovskite decorated carbon nanotubes composite for ultrasensitive determination of a cardio-stimulator drug. J. Electroanal. Chem. (Lausanne Switz.), 2018, 816, 149-159.
[http://dx.doi.org/10.1016/j.jelechem.2018.03.040]
[195]
Mohammed, G.I. Electrochemical sensor for trace determination of timolol maleate drug in real samples and drug residues using Na fi on/carboxylated-MWCNTs nanocomposite modified glassy carbon electrode. Microchem. J., 2018, 143(May), 474-483.
[http://dx.doi.org/10.1016/j.microc.2018.08.011]
[196]
Aghajari, R.; Azadbakht, A. Amplified detection of streptomycin using aptamer-conjugated palladium nanoparticles decorated on chitosan-carbon nanotube. Anal. Biochem., 2018, 547, 57-65.
[http://dx.doi.org/10.1016/j.ab.2018.02.005] [PMID: 29428376]
[197]
Chen, Y. Preparation of thiolated calix[8]arene/AuNPs/MWCNTs modified glassy carbon electrode and its electrocatalytic oxidation toward paracetamol. Sens. Actuat. B. Chem., 2018, 277(August), 289-296.
[http://dx.doi.org/10.1016/j.snb.2018.09.012]
[198]
Mokhtari, B. Electrochemical simultaneous determination of nifedipine and its main metabolite dehydronifedipine using MWCNT modified glassy carbon electrode. J. Mol. Liq., 2018, 264, 543-549.
[http://dx.doi.org/10.1016/j.molliq.2018.05.082]
[199]
Ibrahim, M. Sensors and Actuators B: Chemical Gold nanoparticles/f-MWCNT nanocomposites modi fi ed glassy carbon paste electrode as a novel voltammetric sensor for the determination of cyproterone acetate in pharmaceutical and human body fluids. Sens. Actuat. B. Chem., 2018, 274, 123-132.
[http://dx.doi.org/10.1016/j.snb.2018.07.105]
[200]
Mirzajani, R.; Karimi, S. Sensors and Actuators B Chemical Preparation of γ -Fe2O3/hydroxyapatite/Cu (II) magnetic nanocomposite and its application for electrochemical detection of metformin in urine and pharmaceutical samples. Sens. Actuators B Chem., 2018, 270, 405-416.
[http://dx.doi.org/10.1016/j.snb.2018.05.032]
[201]
Ul, A. Chemical electrochemical sensing of acetaminophen using multi-walled carbon nanotube and NL-Cyclodextrin. Sens. Actuat. B. Chem., 2018, 254, 896-909.
[http://dx.doi.org/10.1016/j.snb.2017.07.127]
[202]
Ben Messaoud, N.; Ghica, M.E.; Dridi, C.; Ben Ali, M.; Brett, C.M.A. A novel amperometric enzyme inhibition biosensor based on xanthine oxidase immobilised onto glassy carbon electrodes for bisphenol A determination. Talanta, 2018, 184, 388-393.
[http://dx.doi.org/10.1016/j.talanta.2018.03.031] [PMID: 29674059]
[203]
Afzali, M. Square wave voltammetric determination of anticancer drug flutamide using carbon paste electrode modified by CuO/GO/PANI nanocomposite. Arab. J. Chem., 2018, 2018, 1-10.
[204]
Sudha, V. Simultaneous electrochemical sensing of sulphite and nitrite on acid-functionalized multi-walled carbon nanotubes modified electrodes. J. Alloys Compd., 2018, 749, 990-999.
[http://dx.doi.org/10.1016/j.jallcom.2018.03.287]
[205]
Wu, Z. Electrochemical nonenzymatic sensor based on cetyltrimethylammonium bromide and chitosan functionalized carbon nanotube modified glassy carbon electrode for the determination of hydroxymethanesulfinate in the presence of sulfite in foods Running title A. Food Chem., 2018, 259, 213-218.
[206]
Sun, N. Electrochemical sensing of 4-nitrochlorobenzene based on carbon nanohorns/graphene oxide nanohybrids. Biosens. Bioelectron., 2018, 106, 136-141.
[207]
Ensafi, A.A. Metronidazole determination with an extremely sensitive and selective electrochemical sensor based on graphene nanoplatelets and molecularly imprinted polymers on graphene quantum dots. Sens. Actuators B Chem., 2018, 270, 192-199.
[http://dx.doi.org/10.1016/j.snb.2018.05.024]
[208]
Ruiyi, L.; Haiyan, Z.; Zaijun, L.; Junkang, L. Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots. Mikrochim. Acta, 2018, 185(2), 145.
[http://dx.doi.org/10.1007/s00604-018-2688-7] [PMID: 29594483]
[209]
Yan, X. Morphology-controlled synthesis of Bi2S3 nanorods-reduced graphene oxide composites with high-performance for electrochemical detection of dopamine. Sens. Actuators B Chem., 2018, 257, 936-943.
[http://dx.doi.org/10.1016/j.snb.2017.11.037]
[210]
Tajyani, S.; Babaei, A. A new sensing platform based on magnetic Fe3O4@NiO core/shell nanoparticles modified carbon paste electrode for simultaneous voltammetric determination of Quercetin and Tryptophan. J. Electroanal. Chem. (Lausanne Switz.), 2018, 808, 50-58.
[http://dx.doi.org/10.1016/j.jelechem.2017.11.010]
[211]
Dong, W.; Ren, Y.; Bai, Z.; Jiao, J.; Chen, Y.; Han, B.; Chen, Q. Synthesis of tetrahexahedral Au-Pd core-shell nanocrystals and reduction of graphene oxide for the electrochemical detection of epinephrine. J. Colloid Interface Sci., 2018, 512, 812-818.
[http://dx.doi.org/10.1016/j.jcis.2017.10.071] [PMID: 29121608]
[212]
Abdel Hameed, R.M. A core-shell structured Ni-Co@Pt/C nanocomposite-modified sensor for the voltammetric determination of pseudoephedrine HCl. New J. Chem., 2018, 42(4), 2658-2668.
[http://dx.doi.org/10.1039/C7NJ04973K]
[213]
Kanyong, P. Polydopamine-functionalized graphene nanoplatelet smart conducting electrode for bio-sensing applications. Arab. J. Chem., 2018, 13(1), 1669-1677.
[214]
Zaidi, S.A. Utilization of an environmentally-friendly monomer for an efficient and sustainable adrenaline imprinted electrochemical sensor using graphene. Electrochim. Acta, 2018, 274, 370-377.
[http://dx.doi.org/10.1016/j.electacta.2018.04.119]
[215]
Qianwen, M. Electrospun MoS2 composite carbon nanofibers for determination of vanillin. J. Electroanal. Chem. (Lausanne Switz.), 2019, 833, 297-303.
[http://dx.doi.org/10.1016/j.jelechem.2018.09.040]
[216]
Wallans, T.P.; Compton, R.G. Chemical A simple method to detect the stimulant moda fi nil in authentic saliva using a carbon-nanotube screen-printed electrode with adsorptive stripping voltammetry. Sens. Actuators B Chem., 2018, 2019(285), 137-144.
[217]
Shetti, N.P. Nanostructured silver doped TiO 2/CNTs hybrid as an efficient electrochemical sensor for detection of anti-inflammatory drug, cetirizine. Microchem. J., 2019, 150(June)104124
[http://dx.doi.org/10.1016/j.microc.2019.104124]
[218]
Akhter, S. Hybrid nanocellulose/f -MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and Bogical fluids. Electrochim. Acta, 2019, 304, 323-333.
[http://dx.doi.org/10.1016/j.electacta.2019.03.003]
[219]
Ghalkhani, M. Materials Science & Engineering C Klonopin assay using modi fi ed electrode with multiwalled carbon nanotubes and poly melamine nanocomposite. Mater. Sci. Eng. C, 2018, 2019(99), 121-128.
[220]
Farag, A.S.; Bakirhan, N.K.; Švancara, I.; Ozkan, S.A. A new sensing platform based on NH2fMWCNTs for the determination of antiarrhythmic drug Propafenone in pharmaceutical dosage forms. J. Pharm. Biomed. Anal., 2019, 174, 534-540.
[http://dx.doi.org/10.1016/j.jpba.2019.06.026] [PMID: 31252310]
[221]
Devarushi, U.S. Science direct electro oxidation and analytical applications of nimesulide at graphene oxide and reduced graphene oxide modified carbon paste electrode. Mater. Today Proc., 2019, 18, 751-758.
[http://dx.doi.org/10.1016/j.matpr.2019.06.488]
[222]
Talikoti, N.G. Electrochemical behavior of mefenamic acid at graphene oxide modified carbon paste electrode. Mater. Today Proc., 2019, 18, 582-589.
[http://dx.doi.org/10.1016/j.matpr.2019.06.451]
[223]
Teradal, N.L. Materials Science for Energy Technologies Carbon nanopowder for sensing of an anticancer drug, raloxifene. Mater. Sci. Energy Technol., 2019, 2(2), 337-344.
[224]
Lot, S.; Veisi, H.C. Pd nanoparticles decorated poly-methyldopa @ GO/Fe3O4 nanocomposite modified glassy carbon electrode as a new electrochemical sensor for simultaneous determination of acetaminophen and phenylephrine. Mater. Sci. Eng., 2019, 105, 1-10.
[225]
Thakkar, J.B.; Gupta, S.; Prabha, C.R. Acetylcholine esterase enzyme doped multiwalled carbon nanotubes for the detection of organophosphorus pesticide using cyclic voltammetry. Int. J. B. Macromol., 2019, 137, 895-903.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.162] [PMID: 31247229]
[226]
Chen, L. Rapid electrochemical detection of vanillin in natural vanilla. Electroanalysis, 2019, 31(6), 1067-1074.
[http://dx.doi.org/10.1002/elan.201900037]
[227]
Prasad, A. Application of derivative voltammetry in the quantitative determination of alloxan at single-walled carbon nanotubes modi fi ed electrode. Electrochim. Acta, 2019, 317, 182-190.
[http://dx.doi.org/10.1016/j.electacta.2019.05.163]
[228]
Oghli, A.H.; Soleymanpour, A. Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in Bogical and pharmaceutical media. Mater. Sci. Eng. C, 2020, 108110407
[229]
Shumyantseva, V.V. All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study their electrocatalytical conversion by cytochromes P450. Electrochim. Acta, 2019, 2019135579
[230]
Salamanca-Neto, C.A.R.; Olean-Oliveira, A.; Scremin, J.; Ceravolo, G.S.; Dekker, R.F.H.; Barbosa-Dekker, A.M.; Teixeira, M.F.S.; Sartori, E.R. Carboxymethyl-botryosphaeran stabilized carbon nanotubes aqueous dispersion: A new platform design for electrochemical sensing of desloratadine. Talanta, 2020, 210120642
[http://dx.doi.org/10.1016/j.talanta.2019.120642] [PMID: 31987177]
[231]
Chen, T.W. Sonochemical synthesis and fabrication of neodymium sesquioxide entrapped with graphene oxide based hierarchical nanocomposite for highly sensitive electrochemical sensor of anti-cancer (raloxifene) drug. Ultrason. Sonochem., 2020, 64104717
[232]
Magro, M.; Baratella, D.; Colò, V.; Vallese, F.; Nicoletto, C.; Santagata, S.; Sambo, P.; Molinari, S.; Salviulo, G.; Venerando, A.; Basso, C.R.; Pedrosa, V.A.; Vianello, F. Electrocatalytic nanostructured ferric tannate as platform for enzyme conjugation: Electrochemical determination of phenolic compounds. Bioelectrochemistry, 2020, 132, 107418.,
[http://dx.doi.org/10.1016/j.bioelechem.2019.107418] [PMID: 31835109]
[233]
Lu, Z. A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chem. Eng. J., 2020, 389124417
[http://dx.doi.org/10.1016/j.cej.2020.124417]
[234]
Narayana, V. Electrochemical sensitive determination of acetaminophen in pharmaceutical formulations at iron oxide/graphene composite modified electrode. Arab. J. Chem., 2020, 13(2), 4350-4357.
[http://dx.doi.org/10.1016/j.arabjc.2019.08.001]
[235]
Feyziazar, M. An innovative method to electrochemical branching of chitosan in the presence of copper nanocubics on the surface of glassy carbon and its electrical behaviour study: A new platform for pharmaceutical analysis using electrochemical sensors. React. Funct. Polym., 2020, 146104402
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104402]
[236]
Arumugam, B. Ultrasonication-aided synthesis of nanoplates-like Iron molybdate: Fabricated over electroanalysis. Ultrason. Sonochem., 2020, 2020104977
[http://dx.doi.org/10.1016/j.ultsonch.2020.104977] [PMID: 32315841]
[237]
Bahrami, G. Fabrication of a sensitive electrochemical sensor based on electrospun magnetic nano fi bers for morphine analysis in Bogical samples. Mater. Sci. Eng. C, 2020, 106110183
[238]
Shaikshavali, P. A simple sonochemical assisted synthesis of nanocomposite (ZnO/MWCNTs) for electrochemical sensing of Epinephrine in human serum and pharmaceutical formulation. Colloids Surfaces A, 2020, 584124038
[239]
Parsa, A.; Heli, H. Electrodeposition of nickel wrinkled nanostructure from choline chloride: Urea deep eutectic solvent (reline) and application for electroanalysis of simvastatin. Microchem. J., 2020, 152, 1-10.
[240]
Suvina, V. Ecotoxicology and Environmental safety unraveling the electrochemical properties of lanthanum cobaltite decorated halloysite nanotube nanocomposite: An advanced electrocatalyst for determination of flutamide in environmental samples. Ecotoxicol. Environ. Saf., 2020, 190, 1-10.
[241]
Zhang, C. Fabrication of hollow ZnO-Co3O4 nanocomposite derived from bimetallic- organic frameworks capped with Pd nanoparticles and MWCNTs for highly sensitive detection of tanshinol drug. Mater. Sci. Eng. C, 2019, 2020, 108.
[http://dx.doi.org/10.1016/j.msea.2019.03.132]
[242]
Zhang, X.; Zheng, J. Talanta High-index { hk0 } facets platinum concave nanocubes loaded on multiwall carbon nanotubes and graphene oxide nanocomposite for highly sensitive simultaneous detection of dopamine and uric acid. Talanta, 2020, 207120296
[243]
Aftab, S. NH 2 -fMWCNT-titanium dioxide nanocomposite based electrochemical sensor for the voltammetric assay of antibiotic drug nadi fl oxacin and its in vitro permeation study. J. Electroanal. Chem. (Lausanne Switz.), 2020, 859113857
[http://dx.doi.org/10.1016/j.jelechem.2020.113857]
[244]
Wan, X.; Yang, S.; Cai, Z.; He, Q.; Ye, Y.; Xia, Y.; Li, G.; Liu, J. Facile synthesis of MnO2 nanoflowers/N-doped reduced graphene oxide composite and its application for simultaneous determination of dopamine and uric acid. Nanomaterials (Basel), 2019, 9(6), 1-16.
[http://dx.doi.org/10.3390/nano9060847] [PMID: 31159490]
[245]
Cai, Z.; Ye, Y.; Wan, X.; Liu, J.; Yang, S.; Xia, Y.; Li, G.; He, Q. Morphology-dependent electrochemical sensing properties of iron oxide-graphene oxide nanohybrids for dopamine and uric acid. Nanomaterials (Basel), 2019, 9(6), 1-19.
[http://dx.doi.org/10.3390/nano9060835] [PMID: 31159377]
[246]
Li, G. Review-recent developments on graphene-based electrochemical sensors toward nitrite. J. Electrochem. Soc., 2019, 166(12), B881-B895.
[http://dx.doi.org/10.1149/2.0171912jes]
[247]
Li, G. A Highly Sensitive and stable dopamine sensor using shuttle-like α-Fe2O3 nanoparticles/electro-reduced graphene oxide composites. J. Electrochem. Soc., 2019, 166(15), B1552-B1561.
[http://dx.doi.org/10.1149/2.1071915jes]
[248]
He, Q.; Liu, J.; Liu, X.; Li, G.; Deng, P.; Liang, J. Manganese dioxide Nanorods/electrochemically reduced graphene oxide nanocomposites modified electrodes for cost-effective and ultrasensitive detection of Amaranth. Colloids Surf. B Biointerf, 2018, 172, 565-572.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.005] [PMID: 30218982]
[249]
He, Q. A promising sensing platform toward dopamine using MnO2 nanowires/electro-reduced graphene oxide composites. Electrochim. Acta, 2019, 296, 683-692.
[http://dx.doi.org/10.1016/j.electacta.2018.11.096]
[250]
Li, Q. Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Mater. Sci. Eng. C, 2020, 109, 1-10.
[251]
Li, G.; Wu, J.; Jin, H.; Xia, Y.; Liu, J.; He, Q.; Chen, D. Titania/electro-reduced graphene oxide nanohybrid as an efficient electrochemical sensor for the determination of allura red. Nanomaterials (Basel), 2020, 10(2), 1-15.
[http://dx.doi.org/10.3390/nano10020307] [PMID: 32054018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy