[1]
Hellweg, S.; Fischer, U.; Scheringer, M.; Hungerbuhler, K. Environmental assessment of chemicals: methods and application to a case study of organic solvents. Green Chem., 2004, 6, 418-427.
[2]
Tobiszewski, M.; Namiesnik, J.; Pereira, F.P. Environmental risk-based ranking of solvents using the combination of a multimedia model and multi-criteria decision analysis. Green Chem., 2017, 19, 1034-1042.
[3]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
[4]
Gabriel, S.; Weiner, J. Ueber Einige Abkommlinge des Propylamins. Ber. Dtsch. Chem. Ges., 1888, 21, 2669-2679.
[5]
Wilkes, J.S.; Zaworotko, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, 1992(13), 965-967.
[6]
Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater., 2009, 8(8), 621-629.
[7]
Fedorov, M.V.; Kornyshev, A.A. Ionic liquids at electrified interfaces. Chem. Rev., 2014, 114(5), 2978-3036.
[8]
Torriero, A.A.J. Electrochemistry in Ionic Liquids; Springer-Verlag: Berlin, Heidelberg, 2015.
[9]
Shinoda, W.; Hatanaka, Y.; Hirakawa, M.; Okazaki, S.; Tsuzuki, S.; Ueno, K.; Watanabe, M. Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids. J. Chem. Phys., 2018, 148(19), 193809-8.
[10]
Chen, F.; Kerr, R.; Forsyth, M. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt. J. Chem. Phys., 2018, 148(19), 193813-193819.
[11]
Salanne, M. Ionic liquids for supercapacitor applications.Ionic Liquids II; Springer: Cham, 2017.
[12]
Martins, V.L.; Rennie, A.J.R.; Ramirez, N.S.; Torresi, R.M.; Hall, P.J. Improved performance of ionic liquid supercapacitors by using tetracyanoborate anions. ChemElectroChem, 2018, 5(4), 598-604.
[13]
Yu, L.; Chen, G.Z. Ionic liquid-based electrolytes for supercapacitor and supercapattery. Front Chem., 2019, 7, 272.
[14]
Zakrzewska, M.E.; Łukasik, E.B.; Łukasik, R.B. Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block. Chem. Rev., 2011, 111(2), 397-417.
[15]
Wang, H.; Gurau, G.; Rogers, R.D. Ionic liquid processing of cellulose. Chem. Soc. Rev., 2012, 41(4), 1519-1537.
[16]
Passos, H.; Freire, M.G.; Coutinho, J.A. Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem., 2014, 16(12), 4786-4815.
[17]
Sun, X.; Luo, H.; Dai, S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem. Rev., 2012, 112(4), 2100-2128.
[18]
Zhang, Q.; Shreeve, J.M. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem. Rev., 2014, 114(20), 10527-10574.
[19]
Goossens, K.; Lava, K.; Bielawski, C.W.; Binnemans, K. Ionic liquid crystals: versatile materials. Chem. Rev., 2016, 116(8), 4643-4807.
[20]
de María, P.D. “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angew. Chem. Int. Ed. Engl., 2008, 47(37), 6960-6968.
[21]
Dominguez de Maria, P., Ed.; Ionic Liquids in Biotransformations and Organocatalysis: Solvents and Beyond; John Wiley & Sons: Hoboken, 2012.
[22]
Malhotra, S.V., Ed.; Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology; ACS: Washington, DC, 2010.
[23]
Attri, P.; Venkatesu, P.; Kumar, A. Activity and stability of α-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate. Phys. Chem. Chem. Phys., 2011, 13(7), 2788-2796.
[24]
Kumar, A.; Venkatesu, P. Overview of the stability of α-chymotrypsin in different solvent media. Chem. Rev., 2012, 112(7), 4283-4307.
[25]
Dupont, J.; Scholten, J.D. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem. Soc. Rev., 2010, 39(5), 1780-1804.
[26]
Giernoth, R. Task-specific ionic liquids. Angew. Chem. Int. Ed. Engl., 2010, 49(16), 2834-2839.
[27]
Petkovic, M.; Seddon, K.R.; Rebelo, L.P.; Pereira, C.S. Ionic liquids: a pathway to environmental acceptability. Chem. Soc. Rev., 2011, 40(3), 1383-1403.
[28]
Tang, S.; Baker, G.A.; Zhao, H. Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem. Soc. Rev., 2012, 41(10), 4030-4066.
[29]
Chatel, G.; MacFarlane, D.R. Ionic liquids and ultrasound in combination: synergies and challenges. Chem. Soc. Rev., 2014, 43(23), 8132-8149.
[30]
Lei, Z.; Dai, C.; Chen, B. Gas solubility in ionic liquids. Chem. Rev., 2014, 114(2), 1289-1326.
[31]
Lei, Z.; Dai, C.; Zhu, J.; Chen, B. Extractive distillation with ionic liquids: a review. AIChE J., 2014, 60, 3312-3329.
[32]
Smiglak, M.; Pringle, J.M.; Lu, X.; Han, L.; Zhang, S.; Gao, H.; MacFarlane, D.R.; Rogers, R.D. Ionic liquids for energy, materials, and medicine. Chem. Commun. (Camb.), 2014, 50(66), 9228-9250.
[33]
Kim, Y.; Heyne, B.; Abouserie, A.; Pries, C.; Ippen, C.; Günter, C.; Taubert, A.; Wedel, A. CuS nanoplates from ionic liquid precursors-application in organic photovoltaic cells. J. Chem. Phys., 2018, 148(19), 193818-10.
[34]
Hovestadt, M.; Schwegler, J.; Schulz, P.S.; Hartmann, M. Synthesis of the zeolitic imidazolate framework ZIF-4 from the ionic liquid 1-butyl-3-methylimidazolium imidazolate. J. Chem. Phys., 2018, 148(19), 193837-5.
[35]
Wu, B.; Kuroda, K.; Takahashi, K.; Castner, E.W., Jr Structural analysis of zwitterionic liquids vs. homologous ionic liquids. J. Chem. Phys., 2018, 148(19), 193807-193811.
[36]
Wijaya, E.C.; Separovic, F.; Drummond, C.J.; Greaves, T.L. Stability and activity of lysozyme in stoichiometric and non-stoichiometric Protic Ionic Liquid (PIL)-water systems. J. Chem. Phys., 2018, 148(19), 193838-193839.
[37]
Smith, C.J., II; Gehrke, S.; Hollóczki, O.; Wagle, D.V.; Heitz, M.P.; Baker, G.A. NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels. J. Chem. Phys., 2018, 148(19), 193845-13.
[38]
Andreani, L.; Rocha, J.D. Use of ionic liquids in biodiesel production: a review. Braz. J. Chem. Eng., 2012, 29, 1-13.
[39]
Larriba, M.; Navarro, P.; Mellado, N.D.; Stanisci, V.; Garcia, J.; Rodriguez, F. Extraction of aromatic hydrocarbons from pyrolysis gasoline using tetrathiocyanatocobaltate-based ionic liquids: Experimental study and simulation. Fuel Process. Technol., 2017, 159, 96-110.
[40]
Palou, R.M.; Luque, R. Applications of ionic liquids in the removal of contaminants from refinery feedstocks: an industrial perspective. Energy Environ. Sci., 2014, 7, 2414-2447.
[41]
Marrucho, I.M.; Branco, L.C.; Rebelo, L.P. Ionic liquids in pharmaceutical applications. Annu. Rev. Chem. Biomol. Eng., 2014, 5, 527-546.
[42]
Caparica, R.; Julio, A.; Mota, J.P.; Almeida, C.R.T.S. Applicability of ionic liquids in topical drug delivery systems: a mini review. J. Pharmacol. Clin. Res., 2018, 4, 555-649.
[43]
Turosung, U.N.; Ghosh, B. Application of ionic liquids in the upstream oil industry-a review. Int. J. Petrochem. Res., 2017, 1, 50-60.
[44]
Muginova, S.V.; Myasnikova, D.A.; Kazarian, S.G.; Shekhovtsova, T.N. Applications of ionic liquids for the development of optical chemical sensors and biosensors. Anal. Sci., 2017, 33(3), 261-274.
[45]
Zhang, Q.; Zhang, S.; Deng, Y. Recent advances in ionic liquid catalysis. Green Chem., 2011, 13, 2619-2637.
[46]
Zhou, H.C.; Li, X.L.; Liu, J.L.; Peng, C.; Zhang, B.; Chen, J.; Yuan, Y.Z. Preparation of Lewis acid ionic liquids for one-pot synthesis of benzofuranol from pyrocatechol and 3-chloro-2-methylpropene. Chem. Pap., 2015, 69, 1362-1366.
[47]
Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117(10), 7132-7189.
[48]
Hardacre, C.; Parvulescu, V., Eds.; Catalysis in Ionic Liquids: From Catalyst Synthesis to Application; RSC: Cambridge, 2014.
[49]
Lei, Z.; Chen, B.; Koo, Y-M.; MacFarlane, D.R. Introduction: ionic liquids. Chem. Rev., 2017, 117(10), 6633-6635.
[50]
Vekariya, R.L. A review of ionic liquids: applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[53]
Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22, 533-556.
[54]
Irge, D.D. Ionic liquids: a review on greener chemistry applications, quality ionic liquid synthesis and economical viability in a chemical processes. Am. J. Phys. Chem., 2016, 5, 74-79.
[55]
Selva, M.; Perosa, A.; Guidi, S.; Cattelan, L. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates. Beilstein J. Org. Chem., 2016, 12, 1911-1924.
[56]
Cserjesi, P.; Bako, K.B.; Nemestothy, N.; Gubicza, L. Recent trends on application of ionic liquids in organic synthesis. Hung. J. Ind. Chem., 2008, 36, 27-34.
[57]
Shukla, M.; Srivastava, N.; Saha, S. Interactions and Transitions in Imidazolium Cation Based Ionic Liquids. Ionic Liquids - Classes and Properties; Handy, S.T., Ed.; IntechOpen: Rijeka, 2011.
[59]
Fraser, K.J.; MacFarlane, D.R. Phosphonium-based ionic liquids: an overview. Aust. J. Chem., 2009, 62, 309-321.
[60]
Domańska, U. Physico-chemical properties and phase behaviour of pyrrolidinium-based ionic liquids. Int. J. Mol. Sci., 2010, 11(4), 1825-1841.
[61]
Zhou, Q.; Lu, X.; Zhang, S.; Guo, L. Physicochemical Properties of Ionic Liquids; Plechkova, N.V; Seddon, K.R., Ed.; John Wiley & Sons: Hoboken, 2014, pp. 275-307.
[62]
Triolo, A.; Mandanici, A.; Russina, O.; Mora, V.R.; Cutroni, M.; Hardacre, C.; Nieuwenhuyzen, M.; Bleif, H.J.; Keller, L.; Ramos, M.A. Thermodynamics, structure, and dynamics in room temperature ionic liquids: the case of 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF6]). J. Phys. Chem. B, 2006, 110(42), 21357-21364.
[63]
Margulis, C.J. Computational study of imidazolium-based ionic solvents with alkyl substituents of different lengths. Mol. Phys., 2004, 102, 829-838.
[64]
Thomas, M.; Sanz, I.S.; Holloczki, O.; Kirchner, B. Ab initio molecular dynamics simulations of ionic liquids. NIC Symposium, 2016, pp. 117-124.
[65]
Sarangi, S.S.; Raju, S.G.; Balasubramanian, S. Molecular dynamics simulations of ionic liquid-vapour interfaces: effect of cation symmetry on structure at the interface. Phys. Chem. Chem. Phys., 2011, 13(7), 2714-2722.
[66]
Ghumro, S.A.; Saleem, S.; Rashida, M.; Iqbal, N.; Alharthy, R.D.; Ahmed, S.; Moin, S.T.; Hameed, A.N. N-Dimethylpyridin-4-amine (DMAP) based ionic liquids: evaluation of physical properties via molecular dynamics simulations and application as a catalyst for Fisher indole and 1H-tetrazole synthesis. RSC Advances, 2017, 7, 34197-34207.
[67]
Vasiloiu, M.; Rainer, D.; Gaertner, P.; Reichel, C.; Schroder, C.; Bica, K. Basic chiral ionic liquids: a novel strategy for acid-free organocatalysis. Catal. Today, 2013, 200, 80-86.
[68]
Kunz, W.; Hackl, K. The hype with ionic liquids as solvents. Chem. Phys. Lett., 2016, 661, 6-12.
[69]
Zhang, C.; Zhu, L.; Wang, J.; Wang, J.; Zhou, T.; Xu, Y.; Cheng, C. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio). Ecotoxicol. Environ. Saf., 2017, 140, 235-240.
[70]
Pham, T.P.T.; Cho, C.W.; Yun, Y.S. Environmental fate and toxicity of ionic liquids: a review. Water Res., 2010, 44(2), 352-372.
[71]
Cho, C.W.; Pham, T.P.T.; Jeon, Y.C.; Yun, Y.S. Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chem., 2008, 10, 67-72.
[72]
Greaves, T.L.; Drummond, C.J. Protic ionic liquids: properties and applications. Chem. Rev., 2008, 108(1), 206-237.
[73]
Miran, M.S.; Kinoshita, H.; Yasuda, T.; Susan, M.A.B.H.; Watanabe, M. Hydrogen bonds in protic ionic liquids and their correlation with physicochemical properties. Chem. Commun. (Camb.), 2011, 47(47), 12676-12678.
[74]
Du, Z.; Li, Z.; Guo, S.; Zhang, J.; Zhu, L.; Deng, Y. Investigation of physicochemical properties of lactam-based Brønsted acidic ionic liquids. J. Phys. Chem. B, 2005, 109(41), 19542-19546.
[75]
Markusson, H.; Belières, J.P.; Johansson, P.; Angell, C.A.; Jacobsson, P. Prediction of macroscopic properties of protic ionic liquids by ab initio calculations. J. Phys. Chem. A, 2007, 111(35), 8717-8723.
[76]
Chrobok, A.; Baj, S.; Pudlo, W.; Jarzebski, A. Supported hydrogen sulphate ionic liquid catalysis in Baeyer-Villiger reaction. App. Catal. A-Gen., 2009, 366, 22-28.
[77]
Janus, E.; Goc-Maciejewska, I.; Lozynski, M.; Pernak, J. Diels-Alder reaction in protic ionic liquids. Tetrahedron Lett., 2006, 47, 4079-4083.
[78]
Zhu, A.; Jiang, T.; Wang, D.; Han, B.; Liu, L.; Huang, J.; Zhang, J.; Sun, D. Direct Aldol reactions catalysed by 1,1,3,3-tetramethylguanidine lactate without solvent. Green Chem., 2005, 7, 514-517.
[79]
Henderson, L.C.; Byrne, N. Rapid and efficient protic ionic liquid-mediated pinacol rearrangements under microwave irradiation. Green Chem., 2011, 13, 813-816.
[80]
Zhou, H.; Yang, J.; Ye, L.; Lin, H.; Yuan, Y. Effects of acidity and immiscibility of lactam-based bronsted-acidic ionic liquids on their catalytic performance for esterification. Green Chem., 2010, 12, 661-665.
[81]
Esperanca, S.S.M.J.; Lopes, C.N.J.; Tariq, M.; Santos, F.B.N.M.L.; Mangee, W.J.; Rebelo, N.P.L. Volatility of aprotic ionic liquids-a review. J. Chem. Eng. Data, 2010, 55, 3-12.
[82]
Wilkes, J.S. Properties of ionic liquid solvents for catalysis. J. Mol. Catal., 2004, 214, 11-17.
[83]
Meindersma, W.; Podt, A.J.G.; Klaren, M.B.; de Haan, A.B. Separation of aromatic and aliphatic hydrocarbons with ionic liquids. Chem. Eng. Commun., 2006, 193, 1384-1396.
[84]
Sowmiah, S.; Cheng, C.I.; Chu, Y.H. Ionic liquids for green organic synthesis. Curr. Org. Synth., 2012, 9, 74-95.
[85]
Hollóczki, O.; Macchiagodena, M.; Weber, H.; Thomas, M.; Brehm, M.; Stark, A.; Russina, O.; Triolo, A.; Kirchner, B. Triphilic ionic-liquid mixtures: fluorinated and non-fluorinated aprotic ionic-liquid mixtures. ChemPhysChem, 2015, 16(15), 3325-3333.
[87]
Zhao, Y.; Wu, Y.; Yuan, G.; Hao, L.; Gao, X.; Yang, Z.; Yu, B.; Zhang, H.; Liu, Z. Azole-anion-based aprotic ionic liquids: functional solvents for atmospheric CO2 transformation into various heterocyclic compounds. Chem. Asian J., 2016, 11(19), 2735-2740.
[88]
Hajos, Z.G.; Parrish, D.R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem., 1974, 39, 1615-1621.
[89]
Wong, C.H.; Halcomb, R.L.; Ichikawa, Y.; Kajimoto, T. Enzymes in organic synthesis: application to the problems of carbohydrate recognition (Part 1). Angew. Chem. Int. Ed. Engl., 1995, 34, 412-432.
[90]
List, B.; Pojarliev, P.; Castello, C. Proline-catalyzed asymmetric aldol reactions between ketones and α-unsubstituted aldehydes. Org. Lett., 2001, 3(4), 573-575.
[91]
List, B.; Lerner, R.A.; Barbas, C.F. Proline catalysed direct asymmetric aldol condensation. J. Am. Chem. Soc., 2000, 122, 2395-2396.
[92]
List, B.; Castello, C. A novel proline-catalyzed three-component reaction of ketones, aldehydes, and Meldrum’s acid. Synlett, 2001, 11, 1687-1689.
[93]
Martinez, A.; Zumbansen, K.; Dohring, A.; van Gemmeren, M.; List, B. Improved conditions for the proline-catalyzed Aldol reaction of acetone with aliphatic aldehydes. Synlett, 2014, 25, 932-934.
[94]
Giacalone, F.; Gruttadauria, M.; Marculescu, A.M.; Noto, R. Polystyrene- supported proline and prolinamide, versatile heterogeneous organocatalysts both for asymmetric aldol reaction in water and α-selenylation of aldehydes. Tetrahedron Lett., 2007, 48, 255-259.
[95]
Lombardo, M.; Easwar, S.; Pasi, F.; Trombini, C. The Ion tag strategy as a route to highly efficient organocatalysts for the direct asymmetric aldol reaction. Adv. Synth. Catal., 2009, 351, 276-282.
[96]
Gruttadauria, M.; Riela, S.; Meo, P.L.; Anna, F.D.; Noto, R. Supported ionic liquid asymmetric catalysis. A new method for chiral catalysts recycling. The case of proline-catalyzed aldol reaction. Tetrahedron Lett., 2004, 45, 6113-6116.
[97]
Miao, W.; Chan, T.H. Ionic-liquid-supported organocatalyst: Efficient and recyclable ionic-liquid-anchored proline for asymmetric aldol reaction. Adv. Synth. Catal., 2006, 348, 1711-1718.
[98]
Qian, Y.; Zheng, X.; Wang, Y. A green and efficient asymmetric Aldol reaction catalysed by a chiral anion modified ionic liquid. Eur. J. Org. Chem., 2010, 19, 3672-3677.
[99]
Gauchot, V.; Schmitzer, A.R. Asymmetric aldol reaction catalyzed by the anion of an ionic liquid. J. Org. Chem., 2012, 77(11), 4917-4923.
[100]
Gonzalez, L.; Escorihuela, J.; Altava, B.; Burguete, M.I.; Luis, S.V. Chiral room temperature ionic liquid as enantioselective promoter for the asymmetric reaction. Eur. J. Org. Chem., 2014, 24, 5356-5363.
[101]
Obregón-Zúñiga, A.; Milán, M.; Juaristi, E. Improving the catalytic performance of (S)-Proline as an organocatalyst in asymmetric aldol reaction in the presence of solvate ionic liquid: involvement of a supramolecular aggregate. Org. Lett., 2017, 19(5), 1108-1111.
[102]
Siyutkin, D.E.; Kucherenko, A.S.; Zlotin, S.G. A new (S)-prolinamide modified by an ionic liquid moiety-a high performance recoverable catalyst for asymmetric aldol reactions in aqueous media. Tetrahedron, 2010, 66, 513-518.
[103]
Hu, S.; Jiang, T.; Zhang, Z.; Zhu, A.; Han, B.; Song, J.; Xie, Y.; Li, W. Functional ionic liquid from bio renewable materials: synthesis and application as a catalyst in direct Aldol reactions. Tetrahedron Lett., 2007, 48, 5613-5617.
[104]
Kong, Y.; Tan, R.; Zhao, L.; Yin, D. L-Proline supported on ionic liquid-modified magnetic nanoparticles as a highly efficient and reusable organocatalyst for direct asymmetric aldol reaction in water. Green Chem., 2013, 15, 2422-2433.
[105]
Zhang, L.; Zhang, H.; Luo, H.; Zhou, X.; Cheng, G. Novel Chiral Ionic Liquid (CIL) assisted selectivity enhancement to (L)-Proline catalysed asymmetric Aldol reactions. J. Braz. Chem. Soc., 2011, 22, 1736-1741.
[107]
Wang, G.; Li, Z.; Li, C.; Zhang, S. In-situ generated ionic liquid catalyzed aldol condensation of trioxane with ester in mild homogeneous system. Green Energy Environ., 2019, 4, 293-299.
[108]
Rupainwar, R.; Pandey, J. Smrirti; Ruchi. The importance and applications of Knoevenagel reaction (brief review). Orient. J. Chem., 2019, 35, 423-429.
[109]
Tzani, A.; Douka, A.; Papadopoulos, A.; Pavlatou, E.A.; Voutsas, E.; Detsi, A. Synthesis of biscoumarins using recyclable and biodegradable task-specific ionic liquids. ACS Sustain. Chem.& Eng., 2013, 1, 1180-1185.
[110]
Hu, X.; Ngwa, C.; Zheng, Q. A simple and efficient procedure for Knoevenagel reaction promoted by imidazolium-based ionic liquids. Curr. Org. Synth., 2015, 13, 101-110.
[111]
Priede, E.; Brica, S.; Bakis, E.; Udrisa, N.; Zicmanis, A. Ionic liquids as solvents for the Knoevenagel condensation: understanding the role of solvent-solute interactions. New J. Chem., 2015, 39, 9132-9142.
[112]
Wu, K.; Li, C.X. Synthesis of quinolinium ionic compounds and their promotion in Knoevenagel reaction at room temperature. Youji Huaxue, 2011, 31, 119-122.
[113]
Ossowicz, P.; Rozwadowski, Z.; Gano, M.; Janus, E. Efficient method for Knoevenagel condensation in aqueous solution of Amino Acid Ionic Liquids (AAILs). Pol. J. Chem. Technol., 2016, 18, 90-95.
[114]
Ying, A.; Ni, Y.; Xu, S.; Liu, S.; Yang, J.; Li, R. Novel DABCO based ionic liquid: green and efficient catalyst with dual catalytic roles for aqueous Knoevenagel condensation. Ind. Eng. Chem. Res., 2014, 53, 5678-5682.
[115]
Ouyang, F.; Zhou, Y.; Li, Z.; Hu, N.; Tao, D. Tetrabutylphosphonium amino acid ionic liquids as efficient catalysts for solvent-free Knoevenagel condensation reactions. Korean J. Chem. Eng., 2014, 31, 1377-1383.
[116]
Sobrinho, R.C.M.A.; de Oliveira, P.M.; D’Oca, C.R.M.; Russowsky, D.; D’Oca, M.G.M. Solvent-free Knoevenagel reaction catalysed by reusable pyrrolidinium base protic ionic liquids (PyrrILs): synthesis of long-chain alkylidenes. RSC Advances, 2017, 7, 3214-3221.
[117]
Luo, J.; Xin, T.; Wang, Y. A PEG bridged tertiary amine functionalized ionic liquid exhibiting thermoregulated reversible biphasic behaviour with cyclohexane/isopropanol: synthesis and application in Knoevenagel condensation. New J. Chem., 2013, 37, 269-273.
[118]
Doebner, O. Ueber α-Alkylcinchoninsauren und α-Alkylchinoline. Ann., 1887, 242, 265-388.
[119]
Jiang, D.; Wang, Y.Y.; Xu, N.Y.; Dai, Y.L. Doebner condensation in ionic liquids [Bmim]BF4 and [Bpy]BF4 to synthesize α, β-unsaturated carboxylic acid. Chin. Chem. Lett., 2009, 20, 279-282.
[120]
Akbari, J.; Heydari, A.; Reza Kalhor, H.; Kohan, S.A. Sulfonic acid functionalized ionic liquid in combinatorial approach, a recyclable and water tolerant-acidic catalyst for one-pot Friedlander quinoline synthesis. J. Comb. Chem., 2010, 12(1), 137-140.
[121]
Bharate, J.B.; Bharate, S.B.; Vishwakarma, R.A. Metal-free, ionic liquid-mediated synthesis of functionalized quinolines. ACS Comb. Sci., 2014, 16(11), 624-630.
[122]
Reformatsky, S. Neue Synthese zweiatomiger einbasischer Sauren aus den Ketonen. Ber. Dtsch. Chem. Ges., 1887, 20, 1210-1211.
[123]
Kitazume, T.; Kasai, K. The Synthesis and reaction of Zn reagents in ionic liquids. Green Chem., 2001, 3, 30-32.
[124]
Bar, G.; Parsons, A.F.; Thomas, C.B. Manganese (III) acetate mediated radical reactions in the presence of an ionic liquid. Chem. Commun., 2001, 15(15), 1350-1351.
[125]
Liu, C.; Yuan, J.; Tan, P.; Jin, D. Reformatsky reaction promoted by [bmim]Cl-CrCl2 ionic liquid. Youji Huaxue, 2009, 29, 1650-1653.
[126]
Zhao, B.; Fan, M-J.; Liu, Z.; Hu, L-F.; Song, B.; Wang, L-Y.; Deng, Q-G. Reformatsky reaction promoted by an ionic liquid ([Bmim]Cl) in the synthesis of β-hydroxyl ketone derivatives bearing a coumarin unit. J. Chem. Res., 2012, 36, 393-395.
[127]
Fischer, E.; Jourdan, F. Ueber die Hydrazine der Brenztraubensaure. Ber. Dtsch. Chem. Ges., 1883, 16, 2241-2245.
[128]
Robeiro, G.L.; Khadilkar, B.M. Chloroaluminate ionic liquid for Fischer indole synthesis. Synthesis, 2000, 3, 370-372.
[129]
Xu, D.Q.; Wu, J.; Luo, S.P.; Zhang, J.X.; Wu, J.Y.; Du, X.H.; Xu, Z.Y. Fischer indole synthesis catalyzed by novel SO3H-functionalized ionic liquids in water. Green Chem., 2009, 11, 1239-1246.
[130]
Sefat, M.N.; Saberi, D.; Niknam, K. Preparation of silica-based ionic liquid an efficient and recyclable catalyst for one-pot synthesis of α-aminonitriles. Catal. Lett., 2011, 141, 1713-1720.
[131]
Baghernejad, M.; Niknam, K. Synthesis of 4,4′-(Ary- lmethylene) bis(1H-pyrazol-5-ols) using silica-bonded ionic liquid as recyclable catalyst. Int. J. Chem., 2012, 4, 52-60.
[132]
Gore, S.; Baskaran, S.; König, B. Fischer indole synthesis in low melting mixtures. Org. Lett., 2012, 14(17), 4568-4571.
[133]
Yu, J.; Xu, J.; Zhiqun, Y.; Zin, Y.; Li, J.; Lv, Y. A continuous-flow Fischer indole synthesis of 3-methylindole in an ionic liquid. J. Flow Chem., 2017, 7, 33-36.
[134]
Mannich, C.; Krosche, W. Ueber ein Kondensations produkt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. (Weinheim), 1912, 250, 647-667.
[135]
Córdova, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Barbas, C.F. III A highly enantioselective route to either enantiomer of both α- and β-amino acid derivatives. J. Am. Chem. Soc., 2002, 124(9), 1866-1867.
[136]
Fang, D.; Gong, K.; Zhang, D-Z.; Liu, Z-L. One-pot three-component Mannich-type reaction catalysed by functionalized ionic liquid. Monatsh. Chem., 2009, 140, 1325-1329.
[137]
Vale, J.A.; Zanchetta, D.F.; Moran, P.J.S.; Augusto, J.; Rodrigues, R. Efficient α-methylenation of carbonyl compounds in ionic liquids at room temperature. Synlett, 2009, 2009(1), 75-78.
[138]
Zheng, X.; Qian, Y.B.; Wang, Y. 2-Pyrrolidinecarboxylic acid ionic liquid as a highly efficient organocatalyst for the asymmetric one-pot Mannich reaction. Eur. J. Org. Chem., 2010, 2010(3), 515-522.
[139]
Jagadale, M.; Naikwade, A.; Salunkhe, R.; Rajmane, M.; Rashinkar, G. Ionic liquid gel: a heterogeneous catalyst for Erlenmeyer-Plochl and Henry reaction. New J. Chem., 2018, 42, 10993-11005.
[140]
Keithellakpam, S.; Laitonjam, W.S. Henry reaction catalyzed by recyclable [C4dabco]OH ionic liquid. Indian J. Chem., 2016, 55B, 110-113.
[141]
Lambat, T.L.; Deo, S.S. Basic ionic liquid [BMIM][OH] as heterogeneous catalyst mediated solvent-free Stobbe condensation applying grindstone technique for the synthesis of novel β-arylidene-β-benzoylpropionic acid derivatives. J. Chinese Adv. Mat. Soc., 2017, 5, 65-78.
[142]
Mofrad, R.T.; Ahadzadeh, I.; Nazari, M.G.; Esmati, S.; Shahrisa, A. Synthesis of Betti base derivatives catalyzed by nano CuO ionic liquid and experimental and quantum chemical studies on corrosion inhibition performance of them. Res. Chem. Intermed., 2018, 44, 2913-2917.
[143]
Zhang, Y.; Zhen, B.; Li, H.; Feng, Y. Basic ionic liquid as catalyst and surfactant: green synthesis of quinazolinone in aqueous media. RSC Advances, 2018, 8, 36769-36774.
[144]
Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J-P. Functionalized chiral ionic liquids as highly efficient asymmetric organocatalysts for Michael addition to nitroolefins. Angew. Chem. Int. Ed. Engl., 2006, 45(19), 3093-3097.
[145]
Luo, S.; Zhang, L.; Mi, X.; Qiao, Y.; Cheng, J-P. Functionalized chiral ionic liquid catalyzed enantioselective desymmetrizations of prochiral ketones via asymmetric Michael addition reaction. J. Org. Chem., 2007, 72(24), 9350-9352.
[146]
Luo, S.; Mi, X.; Liu, S.; Xu, H.; Cheng, J-P. Surfactant-type asymmetric organocatalyst: organocatalytic asymmetric Michael addition to nitrostyrenes in water. Chem. Commun. (Camb.), 2006, 2006(35), 3687-3689.
[147]
Ni, B.; Zhang, Q.; Headley, A.D. Functionalized chiral ionic liquid as recyclable organocatalyst for asymmetric Michael addition to nitrostyrenes. Green Chem., 2007, 9, 737-739.
[148]
Zhang, Q.; Ni, B.; Headley, A.D. Asymmetric Michael addition reactions of aldehydes and nitrostyrenes catalyzed by functionalized chiral ionic liquids. Tetrahedron, 2008, 64, 5091-5097.
[149]
Ni, B.; Zhang, Q.; Dhungana, K.; Headley, A.D. Ionic Liquid-Supported (ILS) (S)-pyrrolidine sulfonamide, a recyclable organocatalyst for the highly enantioselective Michael addition to nitroolefins. Org. Lett., 2009, 11(4), 1037-1040.
[150]
Li, P.; Wang, L.; Zhang, Y.; Wang, G. Silica gel supported pyrrolidine-based chiral ionic liquid as recyclable organocatalyst for asymmetric Michael addition to nitrostyrenes. Tetrahedron, 2008, 64, 7633-7638.
[151]
Li, P.; Wang, L.; Wang, M.; Zhang, Y. Polymer-immobilized pyrrolidine-based chiral ionic liquids as recyclable organocatalysts for asymmetric Michael additions to nitrostyrenes under solvent-free reaction conditions. Eur. J. Org. Chem., 2008, 2008(7), 1157-1160.
[152]
Wang, Z.; Wang, Q.; Zhang, Y.; Bao, W. Synthesis of new chiral ionic liquids from natural acids and their applications in enantioselective Michael addition. Tetrahedron Lett., 2005, 46, 4657-4660.
[153]
Ni, B.; Zhang, Q.; Headly, A.D. Pyrrolidine-based chiral pyridinium Ionic Liquids (ILs) as recyclable and highly efficient organocatalysts for the asymmetric Michael addition reactions. Tetrahedron Lett., 2008, 49, 1249-1252.
[154]
Wang, G.; Sun, H.; Cao, X.; Chen, L. Pyrrolidine-based chiral quaternary alkylammonium ionic liquids as organocatalysts for asymmetric Michael additions. Catal. Lett., 2011, 141, 1324-1331.
[155]
Xu, D.Z.; Liu, Y.; Shi, S.; Wang, Y. Chiral quaternary alkylammonium ionic liquid [Pro-dabco][BF4]: as a recyclable and highly efficient organocatalyst for asymmetric Michael addition reactions. Tetrahedron Asymmetry, 2010, 21, 2530-2534.
[156]
Zlotin, S.G.; Kuherenko, A.S.; Malstev, O.V.; Chizhov, A.O. Chiral ionic liquid/ESI-MS methodology as an efficient tool for the study of transformations of supported organocatalysts. Top. Catal., 2013, 56, 923-932.
[157]
Tukhvatshin, R.S.; Kucherenko, A.S.; Nelyubina, Y.V.; Zlotin, S.G. Tertiary amine-derived ionic liquid-supported squaramide as a recyclable organocatalyst for noncovalent “on water” Catalysis. ACS Catal., 2017, 7, 2981-2989.
[158]
Truong, T.K.T.; Thanh, G.V. Synthesis of functionalized chiral ammonium, imidazolium, and pyridinium-based ionic liquids derived from (-)-ephedrine using solvent-free microwave activation. Applications for the asymmetric Michael addition. Tetrahedron, 2013, 66, 5277-5282.
[159]
Nobuoka, K.; Kitaoka, S.; Kojima, T.; Kawano, Y.; Hirano, K.; Tange, M.; Obata, S.; Yamamoto, Y.; Harran, T.; Ishikawa, Y. Proline based chiral ionic liquids for enantioselective Michael reaction. Org. Chem. Int., 2014, 2014, 1-9.
[160]
Jaeger, D.A.; Tucker, C.E. Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Lett., 1989, 30, 1785-1788.
[161]
Fischer, T.; Sethi, A.; Welton, T.; Woolf, J. Diels-Alder reactions in room-temperature ionic liquids. Tetrahedron Lett., 1999, 40, 793-796.
[162]
Tiwari, S.; Khupse, N.; Kumar, A. Intramolecular Diels-Alder reaction in ionic liquids: effect of ion-specific solvent friction. J. Org. Chem., 2008, 73(22), 9075-9083.
[163]
Bini, R.; Chiappe, C.; Mestre, V.L.; Pomelli, C.S.; Welton, T. A rationalization of the solvent effect on the Diels-Alder reaction in ionic liquids using multiparameter linear solvation energy relationships. Org. Biomol. Chem., 2008, 6(14), 2522-2529.
[164]
Buu, O.N.V.; Aupoix, A.; Vo-Thanh, G. Synthesis of novel chiral imidazolium-based ionic liquids derived from isosorbide and their applications in an asymmetric aza Diels-Alder reaction. Tetrahedron, 2009, 65, 2260-2265.
[165]
Lu, H.; An, X.; Yu, J.; Song, X. Diels-Alder reaction in microemulsions with ionic liquid. J. Phys. Org. Chem., 2012, 25, 1210-1216.
[166]
Zheng, X.; Qian, Y.; Wang, Y. Direct asymmetric aza Diels-Alder reaction catalyzed by chiral 2-pyrrolidinecarboxylic acid ionic liquid. Catal. Commun., 2010, 11, 567-570.
[167]
Shen, Z.L.; Cheong, H.L.; Lai, Y.C.; Loo, W.Y.; Loh, T.P. Application of recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective Diels-Alder reactions. Green Chem., 2012, 14, 2626-2630.
[168]
Matuszek, K.; Chrobok, A.; Latos, P.; Markiton, M.; Szymanska, K.; Jarzebski, A.; Kwasny, M.S. Silica-supported chlorometallate(III) ionic liquids as recyclable catalysts for Diels-Alder reaction under solvent less conditions. Catal. Sci. Technol., 2016, 6, 8129-8137.
[169]
Matuszek, K.; Coffie, S.; Chrobok, A.; Kwasny, M.S. Borenium ionic liquids as catalysts for Diels-Alder reaction: tuneable Lewis superacids for catalytic applications. Catal. Sci. Technol., 2017, 7, 1045-1049.
[170]
Goodrich, P.; Nimal Gunaratne, H.Q.; Hall, L.; Wang, Y.; Jin, L.; Muldoon, M.J.; Ribeiro, A.P.C.; Pombeiro, A.J.L.; Pârvulescu, V.I.; Davey, P.; Hardacre, C. Using chiral ionic liquid additives to enhance asymmetric induction in a Diels-Alder reaction. Dalton Trans., 2017, 46(5), 1704-1713.
[171]
Boon, J.A.; Levisky, J.A.; Pflug, J.L.; Wilkes, J.S. Friedel-Crafts reactions in ambient-temperature molten salts. J. Org. Chem., 1986, 51, 480-483.
[172]
Adams, C.J.; Earle, M.J.; Roberts, G.; Seddon, K.R. Friedel-Crafts reactions in room temperature ionic liquids. Chem. Commun. (Camb.), 1998, 1998(19), 2097-2098.
[173]
Earle, M.J.; Hakala, U.; McAuley, B.J.; Nieuwenhuyzen, M.; Ramani, A.; Seddon, K.R. Metal bis[trifluoromethyl)sulfonyl]amide complexes: highly efficient Friedel-Crafts acylation catalysts. Chem. Commun. (Camb.), 2004, 2004(12), 1368-1369.
[174]
Csihony, S.; Mehdi, H.; Horvath, I.T. In-situ infrared spectroscopic studies of the Friedel-Crafts acetylation of benzene in ionic liquids using AlCl3 and FeCl3. Green Chem., 2001, 3, 307-309.
[175]
Wasserscheid, P.; Sesing, M.; Korth, W. Hydrogensulfate and tetrakis(hydrogensulfato)borate ionic liquids: synthesis and catalytic application in highly Bronsted-acidic systems for Friedel-Crafts alkylation. Green Chem., 2002, 4, 134-138.
[176]
Baleizao, C.; Pires, N.; Gigante, B.; Curto, M.J.M. Friedel-Crafts reactions in ionic liquids: the counter-ion effect on the dealkylation and acylation of methyl dehydroabietate. Tetrahedron Lett., 2004, 45, 4375-4377.
[177]
Xiao, Y.; Malhotra, S.V. Friedel-Crafts acylation reactions in pyridinium based ionic liquids. J. Organomet. Chem., 2005, 690, 3609-3613.
[178]
Xin-hua, Y.; Min, C.; Qi-xun, D.; Xiao-nong, C. Friedel-Crafts acylation of anthracene with oxalyl chloride catalyzed by ionic liquid of [bmim]Cl/AlCl3. Chem. Eng. J., 2009, 146, 266-269.
[179]
Yibo, H.; Chao, W.; Qinghua, Z.; Xiaoli, Z.; Dang-guo, C.; Fengqiu, C. Durability enhanced ionic liquid catalyst for Friedel-Crafts reaction between benzene and 1-dodecene: insight into catalyst deactivation. RSC Advances, 2016, 5, 62241-62247.
[180]
Trost, B.M.; Strege, P.E. Asymmetric induction in catalytic allylic alkylation. J. Am. Chem. Soc., 1977, 96, 1649-1651.
[181]
Busacca, C.A.; Fandrick, D.R.; Song, J.J.; Senanayake, C.H. The growing impact of catalysis in the pharmaceutical industry. Adv. Synth. Catal., 2011, 353, 1825-1864.
[182]
Favier, I.; Castillo, A.B.; Godard, C.; Castillón, S.; Claver, C.; Gómez, M.; Teuma, E. Efficient recycling of a chiral palladium catalytic system for asymmetric allylic substitutions in ionic liquid. Chem. Commun. (Camb.), 2011, 47(27), 7869-7871.
[183]
Guerrero-Ríos, I.; Ortiz-Ramírez, A.H.; van Leeuwen, P.W.N.M.; Martin, E. A protic ionic liquid as an atom economical solution for palladium catalyzed asymmetric allylic alkylation. Dalton Trans., 2018, 47(11), 3739-3744.
[184]
Qureshi, Z.S.; Deshmukh, K.M.; Dhake, K.P.; Bhanage, B.M. Bronsted acidic ionic liquid: a simple, efficient and recyclable catalyst for regioselective alkylation of phenols and anti-Markovnikov addition of thiols to alkenes. RSC Advances, 2011, 2011(6), 1106-1112.
[185]
Chen, G.; Ye, M.; Qiao, H.; Qiu, X. The synthesis of an aryl alkyl ionic liquid and its application in catalyzing Suzuki-Miyaura coupling reaction. Russ. J. Phys. Chem. A, 2014, 88, 1317-1322.
[186]
Hejazifar, M.; Earle, M.; Seddon, K.R.; Weber, S.; Zirbs, R.; Bica, K. Ionic liquid-based microemulsions in catalysis. J. Org. Chem., 2016, 81(24), 12332-12339.
[187]
Meric, N.; Aydemir, M.; Isik, U.; Ocak, Y.S.; Rafikova, K.; Pasa, S.; Kayan, C.; Durap, F.; Zazybin, A.; Temel, H. Cross‐coupling reactions in water using ionic liquid‐based palladium (II)-phosphinite complexes as outstanding catalysts. Appl. Organomet. Chem., 2014, 28, 818-825.
[188]
Pham, P.D.; Vitz, J.; Chamignon, C.; Martel, A.; Legoupy, S. Stille cross‐coupling reactions with tin reagents supported on ionic liquids. Eur. J. Org. Chem., 2009, 19, 3249-3257.
[189]
Kude, K.; Hayase, S.; Kawatsura, M.; Itoh, T. Iron‐catalyzed quick homocoupling reaction of aryl or alkynyl Grignard reagents using a phosphonium ionic liquid solvent system. Heteroatom Chem., 2011, 22, 397-404.
[190]
Nagano, T.; Hayashi, T. Iron-catalyzed oxidative homo-coupling of aryl Grignard reagents. Org. Lett., 2005, 7(3), 491-493.
[191]
Strecker, A. On the artificial formation of lactic acid and a new substance homologous to glycine. Annalen der Chemie und Pharmacie, 1850, 75, 27-45.
[192]
Hauser, C.R.; Taylor, H.M.; Ledford, T.G. Benzylation and related alkylations of α-dimethylaminophenylacetonitrile by means of alkyl amides. dehydrocyanation of products to form enamines. J. Am. Chem. Soc., 1960, 82, 1786-1789.
[193]
Akbari, J. Synthesis of α-amino nitriles through Strecker-type reaction using SO3H-functionalized ionic liquid as a homogeneous and water tolerant-acidic catalyst. C. R. Chim., 2012, 15, 471-473.
[194]
Mojtahedi, M.M.; Abaee, M.S.; Abbasi, H. Environmentally friendly room temperature Strecker reaction: one pot synthesis of α-Aminonitriles in ionic liquids. J. Iran. Chem. Soc., 2006, 3, 93-97.
[195]
Fang, D.; Cao, Y.; Yang, J. Clean procedure for the synthesis of α-aminophosphonates catalyzed by biodegradable ionic liquid. Phosphorus Sulfur Silicon Relat. Elem., 2013, 188, 826-832.
[196]
Peng, H.; Sun, S.; Hu, Y.; Xing, R.; Fang, D. Clean procedure for the synthesis of α-aminophosphonates catalyzed by choline-based ionic liquid. Heteroatom Chem., 2014, 26, 215-223.
[197]
Fu, R.; Yang, Y.; Ma, X.; Sun, Y.; Li, J.; Gao, H.; Hu, H.; Zeng, X.; Yi, J. An efficient, eco-friendly and sustainable one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones directly from alcohols catalysed by heteropolyanion-based ionic liquids. Molecules, 2017, 22, 1531.
[198]
Freitas, E.F.; Souza, R.Y.; Passos, S.T.A.; Dias, J.A.; Dias, S.C.L.; Neto, B.A.D. Tuning the Biginelli reaction mechanism by the ionic liquid effect: the combined role of supported heteropolyacid derivatives and acidic strength. RSC Advances, 2019, 9, 27125-27135.
[199]
Ramos, L.M.; Tobio, A.Y.P.L.; Santos, M.R.; Oliveira, H.C.B.; Gomes, A.F.; Gozzo, F.C.; Oliveira, A.L.; Neto, B.A.D. Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents. J. Org. Chem., 2012, 77(22), 10184-10193.
[200]
Suarez, E.J.G.; Khokarale, S.G.; Bu, O.N.V.; Fehrmann, R.; Riisager, A. Pd-catalysed ethylene methoxycarbonylation with Bronsted acid ionic liquids as promoter and phase-separable reaction media. Green Chem., 2014, 16, 161-166.