Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Voltammetric Determination of Diazepam on Antimony Film Screen- Printed Electrode in Pharmaceutical Formulations

Author(s): Vesna Antunović, Rada Baošić and Aleksandar Lolić*

Volume 17, Issue 7, 2021

Published on: 30 July, 2020

Page: [945 - 950] Pages: 6

DOI: 10.2174/1573412916999200730234925

Price: $65

Abstract

Background: Diazepam belongs to the group of 1,4-benzodiapines. It is used for the treatment of anxiety, convulsions and as muscle relaxants. The presence of a 4,5-azomethine group enables its electrochemical detection.

Introduction: A screen-printed electrode modified with antimony film was used for the determination of diazepam in pharmaceutical preparations.

Methods: Electrode modification was done by ex-situ deposition of antimony on a commercially available screen-printed electrode. Parameters affecting the electroanalytical response of the sensor, such as deposition potential, deposition time, and antimony concentration, were examined and optimized. The modified electrode showed enhanced electroactivity for diazepam reduction compared to the unmodified electrode. Under optimal conditions, linear sweep voltammetry was used for the determination of the analyte.

Results: The sensor showed linear dependence in the range from 0.5 to 10 μmol/L, the correlation coefficient was 0.9992. The limit of detection was 0.33 μmol/L, the corresponding limit of quantification was 1.08 μmol/L. The modification enabled the determination of diazepam in the presence of oxygen.

Conclusion: The modified electrode was used for the determination of diazepam in tablets. Results confirmed the applicability of the electrochemical sensor.

Keywords: Diazepam determination, antimony film electrode, screen-printed electrode, linear sweep voltammetry.

« Previous
Graphical Abstract

[1]
Honeychurch, K.C.; Crew, A.; Northall, H.; Radbourne, S.; Davies, O.; Newman, S.; Hart, J.P. The redox behaviour of diazepam (Valium®) using a disposable screen-printed sensor and its determination in drinks using a novel adsorptive stripping voltammetric assay. Talanta, 2013, 116, 300-307.
[http://dx.doi.org/10.1016/j.talanta.2013.05.017] [PMID: 24148407]
[2]
Watson, W.A.; Litovitz, T.L.; Klein-Schwartz, W.; Rodgers, G.C., Jr; Youniss, J.; Reid, N.; Rouse, W.G.; Rembert, R.S.; Borys, D. 2003 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am. J. Emerg. Med., 2004, 22(5), 335-404.
[http://dx.doi.org/10.1016/j.ajem.2004.06.001] [PMID: 15490384]
[3]
Abduh Mutair, A.; Koya, P.A.; Al-Areqi, N.A.S. Spectrophotometric Determination of diazepam in pharmaceutical forms by ion-pairing with ferrithiocyanide complex. Sci. J. Anal. Chem., 2016, 4(4), 52.
[http://dx.doi.org/10.11648/j.sjac.20160404.12]
[4]
El-Hawary, W.F.; Issa, Y.M.; Talat, A. Spectrophotometric determination of diazepam in pure form, tablets and ampoules. Int. J. Biomed. Sci., 2007, 3(1), 50-55.
[PMID: 23675021]
[5]
Umezawa, H.; Lee, X.P.; Arima, Y.; Hasegawa, C.; Marumo, A.; Kumazawa, T.; Sato, K. Determination of diazepam and its metabolites in human urine by liquid chromatography/tandem mass spectrometry using a hydrophilic polymer column. Rapid Commun. Mass Spectrom., 2008, 22(15), 2333-2341.
[http://dx.doi.org/10.1002/rcm.3613] [PMID: 18618924]
[6]
Vani, N.; Mohan, B.; Nagendrappa, G. A new high-performance thin-layer chromatographic method for determination of diazepam in spiked blood samples. J. Planar Chromatogr. Mod. TLC, 2013, 26(4), 343-348.
[http://dx.doi.org/10.1556/JPC.26.2013.4.9]
[7]
Honeychurch, K.C.; Chong, A.T.; Elamin, K.; Hart, J.P. Novel electrode reactions of diazepam, flunitrazepam and lorazepam and their exploitation in a new redox mode LC-DED assay for serum. Anal. Methods, 2012, 4(1), 132-140.
[http://dx.doi.org/10.1039/C1AY05419H]
[8]
Rahimi-Nasrabadi, M.; Khoshroo, A.; Mazloum-Ardakani, M. Electrochemical determination of diazepam in real samples based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens. Actuators B Chem., 2017, 240, 125-131.
[http://dx.doi.org/10.1016/j.snb.2016.08.144]
[9]
Lund, W.; Hannisdal, M.; Greibrokk, T. Evaluation of amperometric detectors for high-performance liquid chromatography: analysis of benzodiazepines. J. Chromatogr. A, 1979, 173(2), 249-261.
[http://dx.doi.org/10.1016/S0021-9673(00)92294-5]
[10]
Economou, A.; Fielden, P.R. Mercury film electrodes: developments, trends and potentialities for electroanalysis. Analyst (Lond.), 2003, 128(3), 205-212.
[http://dx.doi.org/10.1039/b201130c] [PMID: 12705375]
[11]
Królicka, A.; Bobrowski, A. Bismuth film electrode for adsorptive stripping voltammetry – electrochemical and microscopic study. Electrochem. Commun., 2004, 6(2), 99-104.
[http://dx.doi.org/10.1016/j.elecom.2003.10.025]
[12]
Wang, J.; Lu, J.; Hocevar, S.B.; Ogorevc, B. Bismuth-coated screen-printed electrodes for stripping voltammetric measurements of trace lead. Electroanalysis, 2001, 13(1), 13-16.
[http://dx.doi.org/10.1002/1521-4109(200101)13:1<13:AID-ELAN13>3.0.CO;2-F]
[13]
Banks, C.E.; Kruusma, J.; Hyde, M.E.; Salimi, A.; Compton, R.G. Sonoelectroanalysis: investigation of bismuth-film-modified glassy carbon electrodes. Anal. Bioanal. Chem., 2004, 379(2), 277-282.
[http://dx.doi.org/10.1007/s00216-004-2553-x] [PMID: 15071713]
[14]
Demetriades, D.; Economou, A.; Voulgaropoulos, A. A study of pencil-lead bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Anal. Chim. Acta, 2004, 519(2), 167-172.
[http://dx.doi.org/10.1016/j.aca.2004.05.008]
[15]
Guo, Z.; Feng, F.; Hou, Y.; Jaffrezic-Renault, N. Quantitative determination of zinc in milkvetch by anodic stripping voltammetry with bismuth film electrodes. Talanta, 2005, 65(4), 1052-1055.
[http://dx.doi.org/10.1016/j.talanta.2004.08.060] [PMID: 18969909]
[16]
Banks, C.E.; Kruusma, J.; Moore, R.R.; Tomcík, P.; Peters, J.; Davis, J.; Komorsky-Lovrić, S.; Compton, R.G. Manganese detection in marine sediments: anodic vs. cathodic stripping voltammetry. Talanta, 2005, 65(2), 423-429.
[http://dx.doi.org/10.1016/j.talanta.2004.06.038] [PMID: 18969815]
[17]
Lin, L.; Lawrence, N.S.; Thongngamdee, S.; Wang, J.; Lin, Y. Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode. Talanta, 2005, 65(1), 144-148.
[http://dx.doi.org/10.1016/J.TALANTA.2004.05.044] [PMID: 18969776]
[18]
Morfobos, M.; Economou, A.; Voulgaropoulos, A. Simultaneous Determination of Nickel(II) and Cobalt(II) by square wave adsorptive stripping voltammetry on a rotating-disc bismuth-film electrode. Anal. Chim. Acta, 2004, 519(1), 57-64.
[http://dx.doi.org/10.1016/j.aca.2004.05.022]
[19]
Hocevar, S.B.; Wang, J.; Deo, R.P.; Ogorevc, B. Potentiometric stripping analysis at bismuth-film electrode. Electroanalysis, 2002, 14(2), 112-115.
[http://dx.doi.org/10.1002/1521-4109(200201)14:2<112:AID-ELAN112>3.0.CO;2-5]
[20]
Vytřas, K.; Švancara, I.; Metelka, R. A novelty in potentiometric stripping analysis: total replacement of mercury by bismuth. Electroanalysis, 2002, 14(19–20), 1359-1364.
[http://dx.doi.org/10.1002/1521-4109(200211)14:19/20<1359:AID-ELAN1359>3.0.CO;2-P]
[21]
Kadara, R.O.; Tothill, I.E. Stripping chronopotentiometric measurements of lead(II) and cadmium(II) in soils extracts and wastewaters using a bismuth film screen-printed electrode assembly. Anal. Bioanal. Chem., 2004, 378(3), 770-775.
[http://dx.doi.org/10.1007/s00216-003-2351-x] [PMID: 14658027]
[22]
Catarino, R.I.L.; Leal, M.F.C.; Pimenta, A.M.; Souto, M.R.S.; Lopes, J.R.T. Cathodic voltammetric detection of diltiazem at a bismuth film electrode: application to human urine and pharmaceuticals. J. Braz. Chem. Soc., 2014, 25(5), 961-968.
[http://dx.doi.org/10.5935/0103-5053.20140067]
[23]
Dehghanzade, M.; Alipour, E. Voltammetric determination of diazepam using a bismuth modified pencil graphite electrode. Anal. Methods, 2016, 8(9), 1995-2004.
[http://dx.doi.org/10.1039/C6AY00098C]
[24]
Pauliukaitė, R.; Brett, C.M.A. Characterization and application of bismuth-film modified carbon film electrodes. Electroanalysis, 2005, 17(15–16), 1354-1359.
[http://dx.doi.org/10.1002/elan.200403282]
[25]
Hocevar, S.B.; Svancara, I.; Ogorevc, B.; Vytras, K. Antimony film electrode for electrochemical stripping analysis. Anal. Chem., 2007, 79(22), 8639-8643.
[http://dx.doi.org/10.1021/ac070478m] [PMID: 17949057]
[26]
Naseri, N.G.; Baldock, S.J.; Economou, A.; Goddard, N.J.; Fielden, P.R. Disposable electrochemical flow cells for catalytic adsorptive stripping voltammetry (CAdSV) at a bismuth film electrode (BiFE). Anal. Bioanal. Chem., 2008, 391(4), 1283-1292.
[http://dx.doi.org/10.1007/s00216-008-1948-5] [PMID: 18351328]
[27]
Hutton, E.A.; Ogorevc, B.; Smyth, M.R. Cathodic electrochemical detection of nitrophenols at a bismuth film electrode for use in flow analysis. Electroanalysis, 2004, 16(19), 1616-1621.
[http://dx.doi.org/10.1002/elan.200402979]
[28]
Sattayasamitsathit, S.; Thavarungkul, P.; Kanatharana, P. Bismuth Film Electrode for Analysis of Tetracycline in Flow Injection System. Electroanalysis, 2007, 19(4), 502-505.
[http://dx.doi.org/10.1002/elan.200603726]
[29]
Rezaei, B.; Damiri, S. Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(II) electrocatalyst system as a sensor for determination of captopril. Sens. Actuators B Chem., 2008, 134(1), 324-331.
[http://dx.doi.org/10.1016/j.snb.2008.05.004]
[30]
Nogueira Nunes, C.; Egéa dos Anjos, V.; Pércio Quináia, S. Determination of diazepam and clonazepam in natural water - a voltammetric study. Electroanalysis, 2018, 30(1), 109-118.
[http://dx.doi.org/10.1002/elan.201700566]
[31]
Tyszczuk-Rotko, K.; Maj, J. A lead film electrode for adsorptive stripping voltammetric analysis of ultratrace tungsten(vi) in acidic medium. Electroanalysis, 2012, 24(1), 101-106.
[http://dx.doi.org/10.1002/elan.201100436]

© 2024 Bentham Science Publishers | Privacy Policy