Mini-Review Article

Falcipain-2 和 Falcipain-3 抑制剂作为有前景的抗疟药

卷 28, 期 15, 2021

发表于: 30 July, 2020

页: [3010 - 3031] 页: 22

弟呕挨: 10.2174/0929867327666200730215316

价格: $65

摘要

疟疾仍然是全球公共卫生中的一个严重问题,特别是在南美洲以及非洲和亚洲的热带地区普遍存在。化疗实际上是治疗这种与贫困有关的疾病的唯一方法,因为目前还没有有效的疫苗。然而,对最常见的抗疟药物产生耐药性有时会使当前的治疗方案出现问题。因此,为新药发现过程确定新靶点是当务之急。在这种情况下,恶性疟原虫的 falcipain-2 和 falcipain-3 代表了寄生虫生命周期中的关键酶。 falcipain-2 和 falcipain-3 都参与血红蛋白水解,这是为寄生虫代谢需要提供游离氨基酸的重要途径。此外,falcipain-2 参与切割锚蛋白和条带 4.1 蛋白,它们是红细胞膜稳定性必不可少的细胞骨架元件。这篇综述文章重点介绍最新和最有效的 falcipain-2 和 falcipain-3 抑制剂,特别关注肽、拟肽或非肽抑制剂,它们靶向一种或两种疟疾半胱氨酸蛋白酶,对疟原虫具有一致的活性。恶性疟原虫。

关键词: Falcipain-2、falcipain-3、疟疾、恶性疟原虫、半胱氨酸蛋白酶抑制剂、治疗剂。

[1]
WHO, The "World malaria report 2019" at a glance. Available at: https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019 [accessed on: April 15th 2021].
[2]
WHO, Emergency response to artemisinin resistance in the Greater Mekong subregion. Regional framework for action 2013-2015 (archived). Available at: https://www.who.int/malaria/publications/atoz/9789241505321/en/ [accessed on: April 15th 2021].
[3]
Ettari, R.; Bova, F.; Zappalà, M.; Grasso, S.; Micale, N. Falcipain-2 inhibitors. Med. Res. Rev., 2010, 30(1), 136-167.
[http://dx.doi.org/10.1002/med.20163] [PMID: 19526594]
[4]
Liu, J.; Istvan, E.S.; Gluzman, I.Y.; Gross, J.; Goldberg, D.E. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc. Natl. Acad. Sci. USA, 2006, 103(23), 8840-8845.
[http://dx.doi.org/10.1073/pnas.0601876103] [PMID: 16731623]
[5]
Sherman, I.W.; Tanigoshi, L. Incorporation of 14C-amino-acids by malaria (Plasmodium lophurae) IV.in vivo utilization of host cell haemoglobin. Int. J. Biochem., 1970, 1(5), 635-637.
[http://dx.doi.org/10.1016/0020-711X(70)90033-9]
[6]
Sherman, I.W. Amino acid metabolism and protein synthesis in malarial parasites. Bull. World Health Organ., 1977, 55(2-3), 265-276.
[PMID: 338183]
[7]
Greenbaum, D.C.; Baruch, A.; Grainger, M.; Bozdech, Z.; Medzihradszky, K.F.; Engel, J.; DeRisi, J.; Holder, A.A.; Bogyo, M. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science, 2002, 298(5600), 2002-2006.
[http://dx.doi.org/10.1126/science.1077426] [PMID: 12471262]
[8]
Shenai, B.R.; Sijwali, P.S.; Singh, A.; Rosenthal, P.J. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J. Biol. Chem., 2000, 275(37), 29000-29010.
[http://dx.doi.org/10.1074/jbc.M004459200] [PMID: 10887194]
[9]
Ramjee, M.K.; Flinn, N.S.; Pemberton, T.P.; Quibell, M.; Wang, Y.; Watts, J.P. Substrate mapping and inhibitor profiling of falcipain-2, falcipain-3 and berghepain-2: implications for peptidase anti-malarial drug discovery. Biochem. J., 2006, 399(1), 47-57.
[http://dx.doi.org/10.1042/BJ20060422] [PMID: 16776649]
[10]
Hanspal, M.; Dua, M.; Takakuwa, Y.; Chishti, A.H.; Mizuno, A. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood, 2002, 100(3), 1048-1054.
[http://dx.doi.org/10.1182/blood-2002-01-0101] [PMID: 12130521]
[11]
Dahl, E.L.; Rosenthal, P.J. Biosynthesis, localization, and processing of falcipain cysteine proteases of Plasmodium falciparum. Mol. Biochem. Parasitol., 2005, 139(2), 205-212.
[http://dx.doi.org/10.1016/j.molbiopara.2004.11.009] [PMID: 15664655]
[12]
Wang, S.X.; Pandey, K.C.; Somoza, J.R.; Sijwali, P.S.; Kortemme, T.; Brinen, L.S.; Fletterick, R.J.; Rosenthal, P.J.; McKerrow, J.H. Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease. Proc. Natl. Acad. Sci. USA, 2006, 103(31), 11503-11508.
[http://dx.doi.org/10.1073/pnas.0600489103] [PMID: 16864794]
[13]
Kerr, I.D.; Lee, J.H.; Pandey, K.C.; Harrison, A.; Sajid, M.; Rosenthal, P.J.; Brinen, L.S. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. J. Med. Chem., 2009, 52(3), 852-857.
[http://dx.doi.org/10.1021/jm8013663] [PMID: 19128015]
[14]
Machin, J.M.; Kantsadi, A.L.; Vakonakis, I. The complex of Plasmodium falciparum falcipain-2 protease with an (E)-chalcone-based inhibitor highlights a novel, small, molecule-binding site. Malar. J., 2019, 18(1), 388-388.
[http://dx.doi.org/10.1186/s12936-019-3043-0] [PMID: 31791339]
[15]
Hogg, T.; Nagarajan, K.; Herzberg, S.; Chen, L.; Shen, X.; Jiang, H.; Wecke, M.; Blohmke, C.; Hilgenfeld, R.; Schmidt, C.L. Structural and functional characterization of Falcipain-2, a hemoglobinase from the malarial parasite Plasmodium falciparum. J. Biol. Chem., 2006, 281(35), 25425-25437.
[http://dx.doi.org/10.1074/jbc.M603776200] [PMID: 16777845]
[16]
Kerr, I.D.; Lee, J.H.; Farady, C.J.; Marion, R.; Rickert, M.; Sajid, M.; Pandey, K.C.; Caffrey, C.R.; Legac, J.; Hansell, E.; McKerrow, J.H.; Craik, C.S.; Rosenthal, P.J.; Brinen, L.S. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J. Biol. Chem., 2009, 284(38), 25697-25703.
[http://dx.doi.org/10.1074/jbc.M109.014340] [PMID: 19620707]
[17]
Pandey, K.C.; Wang, S.X.; Sijwali, P.S.; Lau, A.L.; McKerrow, J.H.; Rosenthal, P.J. The Plasmodium falciparum cysteine protease falcipain-2 captures its substrate, hemoglobin, via a unique motif. Proc. Natl. Acad. Sci. USA, 2005, 102(26), 9138-9143.
[http://dx.doi.org/10.1073/pnas.0502368102] [PMID: 15964982]
[18]
Sijwali, P.S.; Shenai, B.R.; Rosenthal, P.J. Folding of the Plasmodium falciparum cysteine protease falcipain-2 is mediated by a chaperone-like peptide and not the prodomain. J. Biol. Chem., 2002, 277(17), 14910-14915.
[http://dx.doi.org/10.1074/jbc.M109680200] [PMID: 11827964]
[19]
Rosenthal, P.J. Falcipain cysteine proteases of malaria parasites: an update. Biochim. Biophys. Acta. Proteins Proteomics, 2020, 1868(3), 140362.
[http://dx.doi.org/10.1016/j.bbapap.2020.140362] [PMID: 31927030]
[20]
Rosenthal, P.J.; McKerrow, J.H.; Aikawa, M.; Nagasawa, H.; Leech, J.H. A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J. Clin. Invest., 1988, 82(5), 1560-1566.
[http://dx.doi.org/10.1172/JCI113766] [PMID: 3053784]
[21]
Rosenthal, P.J.; Wollish, W.S.; Palmer, J.T.; Rasnick, D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J. Clin. Invest., 1991, 88(5), 1467-1472.
[http://dx.doi.org/10.1172/JCI115456] [PMID: 1939639]
[22]
Rosenthal, P.J.; Lee, G.K.; Smith, R.E. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J. Clin. Invest., 1993, 91(3), 1052-1056.
[http://dx.doi.org/10.1172/JCI116262] [PMID: 8450035]
[23]
Rosenthal, P.J.; Olson, J.E.; Lee, G.K.; Palmer, J.T.; Klaus, J.L.; Rasnick, D. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. Antimicrob. Agents Chemother., 1996, 40(7), 1600-1603.
[http://dx.doi.org/10.1128/AAC.40.7.1600] [PMID: 8807047]
[24]
Olson, J.E.; Lee, G.K.; Semenov, A.; Rosenthal, P.J. Antimalarial effects in mice of orally administered peptidyl cysteine protease inhibitors. Bioorg. Med. Chem., 1999, 7(4), 633-638.
[http://dx.doi.org/10.1016/S0968-0896(99)00004-8] [PMID: 10353642]
[25]
Lee, B.J.; Singh, A.; Chiang, P.; Kemp, S.J.; Goldman, E.A.; Weinhouse, M.I.; Vlasuk, G.P.; Rosenthal, P.J. Antimalarial activities of novel synthetic cysteine protease inhibitors. Antimicrob. Agents Chemother., 2003, 47(12), 3810-3814.
[http://dx.doi.org/10.1128/AAC.47.12.3810-3814.2003] [PMID: 14638488]
[26]
Chakka, S.K.; Kalamuddin, M.; Sundararaman, S.; Wei, L.; Mundra, S.; Mahesh, R.; Malhotra, P.; Mohmmed, A.; Kotra, L.P. Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents. Bioorg. Med. Chem., 2015, 23(9), 2221-2240.
[http://dx.doi.org/10.1016/j.bmc.2015.02.062] [PMID: 25840796]
[27]
Singh, A.; Shenai, B.R.; Choe, Y.; Gut, J.; Sijwali, P.S.; Craik, C.S.; Rosenthal, P.J. Critical role of amino acid 23 in mediating activity and specificity of vinckepain-2, a papain-family cysteine protease of rodent malaria parasites. Biochem. J., 2002, 368(Pt 1), 273-281.
[http://dx.doi.org/10.1042/bj20020753] [PMID: 12169096]
[28]
Nizi, E.; Sferrazza, A.; Fabbrini, D.; Nardi, V.; Andreini, M.; Graziani, R.; Gennari, N.; Bresciani, A.; Paonessa, G.; Harper, S. Peptidomimetic nitrile inhibitors of malarial protease falcipain-2 with high selectivity against human cathepsins. Bioorg. Med. Chem. Lett., 2018, 28(9), 1540-1544.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.069] [PMID: 29615344]
[29]
Coterón, J.M.; Catterick, D.; Castro, J.; Chaparro, M.J.; Díaz, B.; Fernández, E.; Ferrer, S.; Gamo, F.J.; Gordo, M.; Gut, J.; de las Heras, L.; Legac, J.; Marco, M.; Miguel, J.; Muñoz, V.; Porras, E.; de la Rosa, J.C.; Ruiz, J.R.; Sandoval, E.; Ventosa, P.; Rosenthal, P.J.; Fiandor, J.M. Falcipain inhibitors: optimization studies of the 2-pyrimidinecarbonitrile lead series. J. Med. Chem., 2010, 53(16), 6129-6152.
[http://dx.doi.org/10.1021/jm100556b] [PMID: 20672841]
[30]
Ang, K.K.; Ratnam, J.; Gut, J.; Legac, J.; Hansell, E.; Mackey, Z.B.; Skrzypczynska, K.M.; Debnath, A.; Engel, J.C.; Rosenthal, P.J.; McKerrow, J.H.; Arkin, M.R.; Renslo, A.R. Mining a cathepsin inhibitor library for new antiparasitic drug leads. PLoS Negl. Trop. Dis., 2011, 5(5), e1023.
[http://dx.doi.org/10.1371/journal.pntd.0001023] [PMID: 21572521]
[31]
Royo, S.; Schirmeister, T.; Kaiser, M.; Jung, S.; Rodríguez, S.; Bautista, J.M.; González, F.V. Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates. Bioorg. Med. Chem., 2018, 26(16), 4624-4634.
[http://dx.doi.org/10.1016/j.bmc.2018.07.015] [PMID: 30037754]
[32]
Weldon, D.J.; Shah, F.; Chittiboyina, A.G.; Sheri, A.; Chada, R.R.; Gut, J.; Rosenthal, P.J.; Shivakumar, D.; Sherman, W.; Desai, P.; Jung, J.C.; Avery, M.A. Synthesis, biological evaluation, hydration site thermodynamics, and chemical reactivity analysis of α-keto substituted peptidomimetics for the inhibition of Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2014, 24(5), 1274-1279.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.062] [PMID: 24507921]
[33]
Stolze, S.C.; Deu, E.; Kaschani, F.; Li, N.; Florea, B.I.; Richau, K.H.; Colby, T.; van der Hoorn, R.A.L.; Overkleeft, H.S.; Bogyo, M.; Kaiser, M. The antimalarial natural product symplostatin 4 is a nanomolar inhibitor of the food vacuole falcipains. Chem. Biol., 2012, 19(12), 1546-1555.
[http://dx.doi.org/10.1016/j.chembiol.2012.09.020] [PMID: 23261598]
[34]
Conroy, T.; Guo, J.T.; Hunt, N.H.; Payne, R.J. Total synthesis and antimalarial activity of symplostatin 4. Org. Lett., 2010, 12(23), 5576-5579.
[http://dx.doi.org/10.1021/ol1024663] [PMID: 21049908]
[35]
Conroy, T.; Guo, J.T.; Elias, N.; Cergol, K.M.; Gut, J.; Legac, J.; Khatoon, L.; Liu, Y.; McGowan, S.; Rosenthal, P.J.; Hunt, N.H.; Payne, R.J. Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials. J. Med. Chem., 2014, 57(24), 10557-10563.
[http://dx.doi.org/10.1021/jm501439w] [PMID: 25412465]
[36]
Stoye, A.; Juillard, A.; Tang, A.H.; Legac, J.; Gut, J.; White, K.L.; Charman, S.A.; Rosenthal, P.J.; Grau, G.E.R.; Hunt, N.H.; Payne, R.J. Falcipain inhibitors based on the natural product gallinamide A are potent in vitro andin vivo antimalarials. J. Med. Chem., 2019, 62(11), 5562-5578.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00504] [PMID: 31062592]
[37]
Previti, S.; Ettari, R.; Cosconati, S.; Amendola, G.; Chouchene, K.; Wagner, A.; Hellmich, U.A.; Ulrich, K.; Krauth-Siegel, R.L.; Wich, P.R.; Schmid, I.; Schirmeister, T.; Gut, J.; Rosenthal, P.J.; Grasso, S.; Zappalà, M. Development of novel peptide-based michael acceptors targeting rhodesain and falcipain-2 for the treatment of neglected tropical diseases (NTDs). J. Med. Chem., 2017, 60(16), 6911-6923.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00405] [PMID: 28763614]
[38]
Ettari, R.; Pinto, A.; Previti, S.; Tamborini, L.; Angelo, I.C.; La Pietra, V.; Marinelli, L.; Novellino, E.; Schirmeister, T.; Zappalà, M.; Grasso, S.; De Micheli, C.; Conti, P. Development of novel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation. Bioorg. Med. Chem., 2015, 23(21), 7053-7060.
[http://dx.doi.org/10.1016/j.bmc.2015.09.029] [PMID: 26432608]
[39]
Adessi, C.; Soto, C. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr. Med. Chem., 2002, 9(9), 963-978.
[http://dx.doi.org/10.2174/0929867024606731] [PMID: 11966456]
[40]
Werner, H.M.; Cabalteja, C.C.; Horne, W.S. Peptide backbone composition and protease susceptibility: impact of modification type, position, and tandem substitution. ChemBioChem, 2016, 17(8), 712-718.
[http://dx.doi.org/10.1002/cbic.201500312] [PMID: 26205791]
[41]
Lauffer, D.J.; Mullican, M.D. A practical synthesis of (S) 3-tert-butoxycarbonylamino-2-oxo-2,3,4,5-tetrahydro-1,5-benzodiazepine-1-acetic acid methyl ester as a conformationally restricted dipeptido-mimetic for caspase-1 (ICE) inhibitors. Bioorg. Med. Chem. Lett., 2002, 12(8), 1225-1227.
[http://dx.doi.org/10.1016/S0960-894X(02)00107-5] [PMID: 11934593]
[42]
Micale, N.; Kozikowski, A.P.; Ettari, R.; Grasso, S.; Zappalà, M.; Jeong, J.J.; Kumar, A.; Hanspal, M.; Chishti, A.H. Novel peptidomimetic cysteine protease inhibitors as potential antimalarial agents. J. Med. Chem., 2006, 49(11), 3064-3067.
[http://dx.doi.org/10.1021/jm060405f] [PMID: 16722625]
[43]
Ettari, R.; Nizi, E.; Di Francesco, M.E.; Dude, M.A.; Pradel, G.; Vicík, R.; Schirmeister, T.; Micale, N.; Grasso, S.; Zappalà, M. Development of peptidomimetics with a vinyl sulfone warhead as irreversible falcipain-2 inhibitors. J. Med. Chem., 2008, 51(4), 988-996.
[http://dx.doi.org/10.1021/jm701141u] [PMID: 18232656]
[44]
Ettari, R.; Nizi, E.; Di Francesco, M.E.; Micale, N.; Grasso, S.; Zappalà, M.; Vicík, R.; Schirmeister, T. Nonpeptidic vinyl and allyl phosphonates as falcipain-2 inhibitors. ChemMedChem, 2008, 3(7), 1030-1033.
[http://dx.doi.org/10.1002/cmdc.200800050] [PMID: 18428116]
[45]
Ettari, R.; Micale, N.; Schirmeister, T.; Gelhaus, C.; Leippe, M.; Nizi, E.; Di Francesco, M.E.; Grasso, S.; Zappalà, M. Novel peptidomimetics containing a vinyl ester moiety as highly potent and selective falcipain-2 inhibitors. J. Med. Chem., 2009, 52(7), 2157-2160.
[http://dx.doi.org/10.1021/jm900047j] [PMID: 19296600]
[46]
Ettari, R.; Zappalà, M.; Micale, N.; Schirmeister, T.; Gelhaus, C.; Leippe, M.; Evers, A.; Grasso, S. Synthesis of novel peptidomimetics as inhibitors of protozoan cysteine proteases falcipain-2 and rhodesain. Eur. J. Med. Chem., 2010, 45(7), 3228-3233.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.003] [PMID: 20434817]
[47]
Ettari, R.; Zappalà, M.; Micale, N.; Grazioso, G.; Giofrè, S.; Schirmeister, T.; Grasso, S. Peptidomimetics containing a vinyl ketone warhead as falcipain-2 inhibitors. Eur. J. Med. Chem., 2011, 46(6), 2058-2065.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.058] [PMID: 21420760]
[48]
Ettari, R.; Micale, N.; Grazioso, G.; Bova, F.; Schirmeister, T.; Grasso, S.; Zappalà, M. Synthesis and molecular modeling studies of derivatives of a highly potent peptidomimetic vinyl ester as falcipain-2 inhibitors. ChemMedChem, 2012, 7(9), 1594-1600.
[http://dx.doi.org/10.1002/cmdc.201200274] [PMID: 22753258]
[49]
Shenai, B.R.; Lee, B.J.; Alvarez-Hernandez, A.; Chong, P.Y.; Emal, C.D.; Neitz, R.J.; Roush, W.R.; Rosenthal, P.J. Structure-activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones. Antimicrob. Agents Chemother., 2003, 47(1), 154-160.
[http://dx.doi.org/10.1128/AAC.47.1.154-160.2003] [PMID: 12499184]
[50]
Ettari, R.; Tamborini, L.; Angelo, I.C.; Grasso, S.; Schirmeister, T.; Lo Presti, L.; De Micheli, C.; Pinto, A.; Conti, P. Development of rhodesain inhibitors with a 3-bromoisoxazoline warhead. ChemMedChem, 2013, 8(12), 2070-2076.
[http://dx.doi.org/10.1002/cmdc.201300390] [PMID: 24243827]
[51]
Ettari, R.; Previti, S.; Cosconati, S.; Kesselring, J.; Schirmeister, T.; Grasso, S.; Zappalà, M. Synthesis and biological evaluation of novel peptidomimetics as rhodesain inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1184-1191.
[http://dx.doi.org/10.3109/14756366.2015.1108972] [PMID: 26572904]
[52]
Ettari, R.; Pinto, A.; Tamborini, L.; Angelo, I.C.; Grasso, S.; Zappalà, M.; Capodicasa, N.; Yzeiraj, L.; Gruber, E.; Aminake, M.N.; Pradel, G.; Schirmeister, T.; De Micheli, C.; Conti, P. Synthesis and biological evaluation of papain-family cathepsin L-like cysteine protease inhibitors containing a 1,4-benzodiazepine scaffold as antiprotozoal agents. ChemMedChem, 2014, 9(8), 1817-1825.
[http://dx.doi.org/10.1002/cmdc.201402079] [PMID: 24919925]
[53]
Schmidt, I.; Pradel, G.; Sologub, L.; Golzmann, A.; Ngwa, C.J.; Kucharski, A.; Schirmeister, T.; Holzgrabe, U. Bistacrine derivatives as new potent antimalarials. Bioorg. Med. Chem., 2016, 24(16), 3636-3642.
[http://dx.doi.org/10.1016/j.bmc.2016.06.003] [PMID: 27316542]
[54]
Knapp, M.J.; Knopman, D.S.; Solomon, P.R.; Pendlebury, W.W.; Davis, C.S.; Gracon, S.I. The Tacrine Study Group. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. JAMA, 1994, 271(13), 985-991.
[http://dx.doi.org/10.1001/jama.1994.03510370037029] [PMID: 8139083]
[55]
Bell, A.; Wernli, B.; Franklin, R.M. Effects of microtubule inhibitors on protein synthesis in Plasmodium falciparum. Parasitol. Res., 1993, 79(2), 146-152.
[http://dx.doi.org/10.1007/BF00932261] [PMID: 8475033]
[56]
Sharma, K.; Shrivastava, A.; Mehra, R.N.; Deora, G.S.; Alam, M.M.; Zaman, M.S.; Akhter, M. Synthesis of novel benzimidazole acrylonitriles for inhibition of Plasmodium falciparum growth by dual target inhibition. Arch. Pharm. (Weinheim), 2018, 351(1), 1700251.
[http://dx.doi.org/10.1002/ardp.201700251] [PMID: 29227011]
[57]
Singh, A.K.; Rajendran, V.; Pant, A.; Ghosh, P.C.; Singh, N.; Latha, N.; Garg, S.; Pandey, K.C.; Singh, B.K.; Rathi, B. Design, synthesis and biological evaluation of functionalized phthalimides: a new class of antimalarials and inhibitors of falcipain-2, a major hemoglobinase of malaria parasite. Bioorg. Med. Chem., 2015, 23(8), 1817-1827.
[http://dx.doi.org/10.1016/j.bmc.2015.02.029] [PMID: 25766631]
[58]
Chen, M.; Theander, T.G.; Christensen, S.B.; Hviid, L.; Zhai, L.; Kharazmi, A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob. Agents Chemother., 1994, 38(7), 1470-1475.
[http://dx.doi.org/10.1128/AAC.38.7.1470] [PMID: 7979274]
[59]
Belluti, F.; Uliassi, E.; Veronesi, G.; Bergamini, C.; Kaiser, M.; Brun, R.; Viola, A.; Fato, R.; Michels, P.A.; Krauth-Siegel, R.L.; Cavalli, A.; Bolognesi, M.L. Toward the development of dual-targeted glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma brucei and Trypanosoma cruzi. ChemMedChem, 2014, 9(2), 371-382.
[http://dx.doi.org/10.1002/cmdc.201300399] [PMID: 24403089]
[60]
Lamb, K.M. G-Dayanandan, N.; Wright, D.L.; Anderson, A.C. Elucidating features that drive the design of selective antifolates using crystal structures of human dihydrofolate reductase. Biochemistry, 2013, 52(41), 7318-7326.
[http://dx.doi.org/10.1021/bi400852h] [PMID: 24053334]
[61]
Barnett, D.S.; Guy, R.K. Antimalarials in development in 2014. Chem. Rev., 2014, 114(22), 11221-11241.
[http://dx.doi.org/10.1021/cr500543f] [PMID: 25340626]
[62]
Huang, H.; Lu, W.; Li, X.; Cong, X.; Ma, H.; Liu, X.; Zhang, Y.; Che, P.; Ma, R.; Li, H.; Shen, X.; Jiang, H.; Huang, J.; Zhu, J. Design and synthesis of small molecular dual inhibitor of falcipain-2 and dihydrofolate reductase as antimalarial agent. Bioorg. Med. Chem. Lett., 2012, 22(2), 958-962.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.011] [PMID: 22192590]
[63]
Chen, W.; Huang, Z.; Wang, W.; Mao, F.; Guan, L.; Tang, Y.; Jiang, H.; Li, J.; Huang, J.; Jiang, L.; Zhu, J. Discovery of new antimalarial agents: Second-generation dual inhibitors against FP-2 and PfDHFR via fragments assembely. Bioorg. Med. Chem., 2017, 25(24), 6467-6478.
[http://dx.doi.org/10.1016/j.bmc.2017.10.017] [PMID: 29111368]
[64]
Nzila, A.; Rottmann, M.; Chitnumsub, P.; Kiara, S.M.; Kamchonwongpaisan, S.; Maneeruttanarungroj, C.; Taweechai, S.; Yeung, B.K.; Goh, A.; Lakshminarayana, S.B.; Zou, B.; Wong, J.; Ma, N.L.; Weaver, M.; Keller, T.H.; Dartois, V.; Wittlin, S.; Brun, R.; Yuthavong, Y.; Diagana, T.T. Preclinical evaluation of the antifolate QN254, 5-chloro- N’6′-(2,5-dimethoxy-benzyl)-quinazoline-2,4,6-triamine, as an antimalarial drug candidate. Antimicrob. Agents Chemother., 2010, 54(6), 2603-2610.
[http://dx.doi.org/10.1128/AAC.01526-09] [PMID: 20350951]
[65]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[66]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[67]
Shah, F.; Wu, Y.; Gut, J.; Pedduri, Y.; Legac, J.; Rosenthal, P.J.; Avery, M.A. Design, synthesis and biological evaluation of novel benzothiazole and triazole analogs as falcipain inhibitors. MedChemComm, 2011, 2(12), 1201-1207.
[http://dx.doi.org/10.1039/c1md00129a]
[68]
Singh, A.; Kalamuddin, M.; Mohmmed, A.; Malhotra, P.; Hoda, N. Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development of Plasmodium falciparum at the trophozoite stage. RSC Advances, 2019, 9(67), 39410-39421.
[http://dx.doi.org/10.1039/C9RA06571G]
[69]
Rana, D.; Kalamuddin, M.; Sundriyal, S.; Jaiswal, V.; Sharma, G.; Das Sarma, K.; Sijwali, P.S.; Mohmmed, A.; Malhotra, P.; Mahindroo, N. Identification of antimalarial leads with dual falcipain-2 and falcipain-3 inhibitory activity. Bioorg. Med. Chem., 2020, 28(1), 115155.
[http://dx.doi.org/10.1016/j.bmc.2019.115155] [PMID: 31744777]
[70]
Shah, F.; Mukherjee, P.; Gut, J.; Legac, J.; Rosenthal, P.J.; Tekwani, B.L.; Avery, M.A. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library. J. Chem. Inf. Model., 2011, 51(4), 852-864.
[http://dx.doi.org/10.1021/ci200029y] [PMID: 21428453]
[71]
Ciapetti, P.; Giethlen, B. Chapter 15- Molecular variation based on isosteric replacements. In:The Practice of Medicinal Chemistry, 3rd ed; Wermuth, C.G., Ed.; Elsevier: Amsterdam, 2008.
[http://dx.doi.org/10.1016/B978-0-12-374194-3.00015-9]
[72]
Shah, F.; Wu, Y.; Gut, J.; Pedduri, Y.; Legac, J.; Rosenthal, P.J.; Avery, M.A. Design, synthesis and biological avaluation of novel benzothiazole and triazole analogs as falcipain inhibitors. Med. Chem., 2011, 2, 1201-1207.
[http://dx.doi.org/10.1039/C1MD00129A]
[73]
Hasne, M.; Barrett, M.P. Drug uptake via nutrient transporters in Trypanosoma brucei. J. Appl. Microbiol., 2000, 89(4), 697-701.
[http://dx.doi.org/10.1046/j.1365-2672.2000.01168.x] [PMID: 11054175]
[74]
Landfear, S.M. Drugs and transporters in kinetoplastid protozoa. Adv. Exp. Med. Biol., 2008, 625, 22-32.
[http://dx.doi.org/10.1007/978-0-387-77570-8_3] [PMID: 18365656]
[75]
Santos-Magalhães, N.S.; Mosqueira, V.C. Nanotechnology applied to the treatment of malaria. Adv. Drug Deliv. Rev., 2010, 62(4-5), 560-575.
[http://dx.doi.org/10.1016/j.addr.2009.11.024] [PMID: 19914313]
[76]
Torchilin, V.P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev., 2006, 58(14), 1532-1555.
[http://dx.doi.org/10.1016/j.addr.2006.09.009] [PMID: 17092599]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy