Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Moringa Oleifera: A Review of Its Occurrence, Pharmacological Importance and Oxidative Stress

Author(s): Kenan Ercan, Omer Faruk Gecesefa, Muhammed Enes Taysi, Omeed Akbar Ali Ali and Seyithan Taysi*

Volume 21, Issue 3, 2021

Published on: 28 July, 2020

Page: [380 - 396] Pages: 17

DOI: 10.2174/1389557520999200728162453

Price: $65

Abstract

Oxidative/nitrosative stress can be caused by excessive production of ROS and RNS with metabolic reactions that change the balance in favor of oxidants in cases where oxidants increase and antioxidants decrease in organisms using oxygen. ROS and RNS react with several biological macromolecules in cells, such as carbohydrates, nucleic acids, lipids, and proteins, and alter their functions. Some natural antioxidants are constantly being researched for their benefits in terms of human health, which can strengthen the body's antioxidant defense system and have the potential to scavenger free radicals. It is a well-known and practical strategy to prevent and / or treat diseases due to the consumption of more suitable fruits, herbs, spices and vegetables, and the presence of bioactive antioxidant compounds. Moringa oleifera, a new and important one of these plants, has a wide range of bioactive compounds that can be obtained in different herbal structures such as leaves, seeds, stems and shells. It consists of bioactive molecules, such as phenolic compounds, fats, fatty acids, carbohydrates, proteins, functional peptides, vitamins, minerals and essential amino acids as well as a number of glycosides and has great potential for use in various formulations in various health and food products. This review highlights the formation of MO, its importance in natural medicine, its pharmacological value, and its role as a possible anti-proliferative agent against cancer and its use in some diseases.

Keywords: Moringa oleifera, nitrosative stress, oxidative stress, free radicals, antioxidants.

« Previous
Graphical Abstract

[1]
Mayne, S.T. Antioxidant nutrients and chronic disease: Use of biomarkers of exposure and oxidative stress status in epidemiologic research. J. Nutr., 2003, 133(3)(Suppl. 3), 933S-940S.
[http://dx.doi.org/10.1093/jn/133.3.933S] [PMID: 12612179]
[2]
Firas, S. Synthesis of New Spiro, Fused Ring and Imine Derivatives of D-Glucofuranose at C-3 and Study Their Effect on Serum (ALP and GGT). Ph.D; Baghdad University, 2006.
[3]
Taysi, S.; Tascan, A.S.; Ugur, M.G.; Demir, M. Radicals, oxidative/ 9nitrosative stress and preeclampsia. Mini Rev. Med. Chem., 2019, 19(3), 178-193.
[http://dx.doi.org/10.2174/1389557518666181015151350] [PMID: 30324879]
[4]
Aktan, B.; Taysi, S.; Gumustekin, K.; Bakan, N.; Sutbeyaz, Y. Evaluation of oxidative stress in erythrocytes of guinea pigs with experimental otitis media and effusion. Ann. Clin. Lab. Sci., 2003, 33(2), 232-236.
[PMID: 12817629]
[5]
Taysi, S.; Sari, R.A.; Dursun, H.; Yilmaz, A.; Keles, M.; Cayir, K.; Akyuz, M.; Uyanik, A.; Guvenc, A. Evaluation of nitric oxide synthase activity, nitric oxide, and homocysteine levels in patients with active Behcet’s disease. Clin. Rheumatol., 2008, 27(12), 1529-1534.
[6]
Baysal, E.; Gulsen, S.; Aytac, I.; Celenk, F.; Ensari, N.; Taysi, S.; Binici, H.; Durucu, C.; Mumbuc, S.; Kanlikama, M. Oxidative stress in otosclerosis Redox Rep., 2017, 22(5), 235-239.
[http://dx.doi.org/10.1080/13510002.2016.1207920] [PMID: 27387094]
[7]
Memisoğullari, R.; Taysi, S.; Bakan, E.; Capoglu, I. Antioxidant status and lipid peroxidation in type II diabetes mellitus. Cell Biochem. Funct., 2003, 21(3), 291-296.
[http://dx.doi.org/10.1002/cbf.1025] [PMID: 12910484]
[8]
Cogalgil, S.; Taysi, S. Levels of antioxidant proteins and soluble intercellular adhesion molecule-1 in serum of patients with rheumatoid arthritis. Ann. Clin. Lab. Sci., 2002, 32(3), 264-270.
[PMID: 12175089]
[9]
Sezer, U.; Şenyurt, S.Z.; Gündoğar, H.; Erciyas, K.; Üstün, K.; Kimyon, G.; Kırtak, N.; Taysi, S.; Onat, A.M. Effect of chronic periodontitis on oxidative status in patients with psoriasis and psoriatic arthritis. J. Periodontol., 2016, 87(5), 557-565.
[http://dx.doi.org/10.1902/jop.2015.150337] [PMID: 26693694]
[10]
Taysi, S.; Gul, M.; Sari, R.A.; Akcay, F.; Bakan, N. Serum oxidant/antioxidant status of patients with systemic lupus erythematosus. Clin. Chem. Lab. Med., 2002, 40(7), 684-688.
[http://dx.doi.org/10.1515/CCLM.2002.117] [PMID: 12241014]
[11]
Taysi, S.; Memisogullari, R.; Koc, M.; Yazici, A.T.; Aslankurt, M.; Gumustekin, K.; Al, B.; Ozabacigil, F.; Yilmaz, A.; Tahsin Ozder, H. Melatonin reduces oxidative stress in the rat lens due to radiation-induced oxidative injury. Int. J. Radiat. Biol., 2008, 84(10), 803-808.
[http://dx.doi.org/10.1080/09553000802390932] [PMID: 18979314]
[12]
Ertekin, M.V.; Koçer, I.; Karslioğlu, I.; Taysi, S.; Gepdiremen, A.; Sezen, O.; Balci, E.; Bakan, N. Effects of oral Ginkgo biloba supplementation on cataract formation and oxidative stress occurring in lenses of rats exposed to total cranium radiotherapy. Jpn. J. Ophthalmol., 2004, 48(5), 499-502.
[http://dx.doi.org/10.1007/s10384-004-0101-z] [PMID: 15486777]
[13]
Taysi, S.; Uslu, C.; Akcay, F.; Sutbeyaz, M.Y. Malondialdehyde and nitric oxide levels in the plasma of patients with advanced laryngeal cancer. Surg. Today, 2003, 33(9), 651-654.
[http://dx.doi.org/10.1007/s00595-002-2562-3] [PMID: 12928839]
[14]
Akyuz, M.; Taysi, S.; Baysal, E.; Demir, E.; Alkis, H.; Akan, M.; Binici, H.; Karatas, Z.A. Radioprotective effect of thymoquinone on salivary gland of rats exposed to total cranial irradiation. Head Neck, 2017, 39(10), 2027-2035.
[http://dx.doi.org/10.1002/hed.24861] [PMID: 28708300]
[15]
Kshetrimayum, G.; Adhikarimayum, H.; Maibam, D. Evaluation of antioxidant and antifungal activities of the fruit hull of Garcinia peduculata Roxb. J. Food Agric. Environ., 2007, 5(1), 22-25.
[16]
Halliwell, B.; Gutteridge, J.M.C. Free radicals in biology and medicine; Oxford University Press Inc.: New York, US, 1999.
[17]
Kehrer, J.P.; Klotz, L-O. Free radicals and related reactive species as mediators of tissue injury and disease: Implications for Health. Crit. Rev. Toxicol., 2015, 45(9), 765-798.
[http://dx.doi.org/10.3109/10408444.2015.1074159] [PMID: 26610815]
[18]
Surh, Y-J. Oxidative stress, inflammation, and health; CRC press, 2005.
[http://dx.doi.org/10.1201/9781420028256]
[19]
Demir, E.; Taysi, S.; Al, B.; Demir, T.; Okumus, S.; Saygili, O.; Saricicek, E.; Dirier, A.; Akan, M.; Tarakcioglu, M.; Bagci, C. The effects of Nigella sativa oil, thymoquinone, propolis, and caffeic acid phenethyl ester on radiation-induced cataract. Wien. Klin. Wochenschr., 2016, 128(Suppl. 8), 587-595.
[http://dx.doi.org/10.1007/s00508-015-0736-4] [PMID: 25860848]
[20]
Cikman, O.; Taysi, S.; Gulsen, M.T.; Demir, E.; Akan, M.; Diril, H.; Kiraz, H.A.; Karaayvaz, M.; Tarakcioglu, M. The radioprotective effects of caffeic acid phenethyl ester and thymoquinone on oxidative and nitrosative stress in liver tissue of rats exposed to total head irradiation. West Indian Med. J., 2015, 65(1), 1-7.
[PMID: 26716794]
[21]
Sinha, M.; Das, D.K.; Bhattacharjee, S.; Majumdar, S.; Dey, S. Leaf extract of Moringa oleifera prevents ionizing radiation-induced oxidative stress in mice. J. Med. Food, 2011, 14(10), 1167-1172.
[http://dx.doi.org/10.1089/jmf.2010.1506] [PMID: 21861723]
[22]
Firas, S Synthesis and modification of salicyloyl, acetyl salicyloyl and 2-(4-isobutyl phenyl) propionyl derivatives of L-ascorbic acid as a possible prodrug.. Master.,
[23]
Goymen, M.; Sokucu, O.; Taysi, S.; Topcuoglu, T.; Tarakcioglu, M. Comparison of the effects of different retention appliances on the oxidant-antioxidant system. J. Adhes. Sci. Technol., 2016, 30(15), 1671-1680.
[http://dx.doi.org/10.1080/01694243.2016.1157433]
[24]
Vongsak, B.; Mangmool, S.; Gritsanapan, W. Antioxidant activity and induction of mRNA expressions of antioxidant enzymes in HEK-293 cells of Moringa oleifera leaf extract. Planta Med., 2015, 81(12-13), 1084-1089.
[http://dx.doi.org/10.1055/s-0035-1546168] [PMID: 26166137]
[25]
R.B Redox Biochemistry, John Wiley & Sons, Inc: Hoboken, New Jersey , 2008.
[26]
Lei, Y.; Wang, K.; Deng, L.; Chen, Y.; Nice, E.C.; Huang, C. Redox regulation of inflammation: Old elements, a new story. Med. Res. Rev., 2015, 35(2), 306-340.
[http://dx.doi.org/10.1002/med.21330] [PMID: 25171147]
[27]
Materska, M.; Konopacka, M.; Rogoliński, J.; Ślosarek, K. Antioxidant activity and protective effects against oxidative damage of human cells induced by X-radiation of phenolic glycosides isolated from pepper fruits Capsicum annuum L. Food Chem, 2015, 16, 546-553.
[http://dx.doi.org//10.1016/j.foodchem.2014.07.023] [PMID: 25172746]
[28]
Niki, E. Assessment of antioxidant capacity in vitro and in vivo.Free Radic. Biol. Med, 2010, 49(4), 503-515.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.04.016] [PMID: 20416370]
[29]
Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition Nutrition,., 2002, 18(10), 872-879.
[http://dx.doi.org/10.1016/S0899-9007(02)00916-4] [PMID: 12361782]
[30]
Gumustekin, K.; Taysi, S.; Alp, H.H.; Aktas, O.; Oztasan, N.; Akcay, F.; Suleyman, H.; Akar, S.; Dane, S.; Gul, M. Vitamin E and Hippophea rhamnoides L. extract reduce nicotine-induced oxidative stress in rat heart. Cell Biochem. Funct., 2010, 28(4), 329-333.
[http://dx.doi.org/10.1002/cbf.1663] [PMID: 20517898]
[31]
Taysi, S.; Akcay, F.; Uslu, C.; Dogru, Y.; Gulcin, I. Trace elements and some extracellular antioxidant protein levels in serum of patients with laryngeal cancer. Biol. Trace Elem. Res., 2003, 91(1), 11-18.
[http://dx.doi.org/10.1385/BTER:91:1:11] [PMID: 12713025]
[32]
Rawat, I.; Sharma, D.; Goel, H.C. Antioxidant and anti-inflammatory potential of some dietary cucurbits. Oxid. Antioxid. Med. Sci., 2014, 3, 65-72.
[http://dx.doi.org/10.5455/oams.050314.or.059]
[33]
Taysi, S.; Koc, M.; Büyükokuroğlu, M.E.; Altinkaynak, K.; Sahin, Y.N. Melatonin reduces lipid peroxidation and nitric oxide during irradiation-induced oxidative injury in the rat liver. J. Pineal Res, 2003, 34(3), 173-177.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00024.x] [PMID: 12614476]
[34]
Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[35]
Lagos, A.; Reyes, J. Grafting onto chitosan. I. Graft copolymerization of methyl methacrylate onto chitosan with Fenton’s reagent (Fe2+−H2O2) as a redox initiator. J. Polym. Sci. A Polym. Chem., 1988, 26(4), 985-991.
[36]
Kehrer, J.P. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol., 1993, 23(1), 21-48.
[http://dx.doi.org/10.3109/10408449309104073] [PMID: 8471159]
[37]
Tong, L.; Chuang, C.C.; Wu, S.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett., 2015, 367(1), 18-25.
[http://dx.doi.org/10.1016/j.canlet.2015.07.008] [PMID: 26187782]
[38]
Ziech, D.; Franco, R.; Georgakilas, A.G.; Georgakila, S.; Malamou-Mitsi, V.; Schoneveld, O.; Pappa, A.; Panayiotidis, M.I. The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem. Biol. Interact., 2010, 188(2), 334-339.
[http://dx.doi.org/10.1016/j.cbi.2010.07.010] [PMID: 20637748]
[39]
Valluru, L.; Dasari, S.; Wudayagiri, R. Role of free radicals and antioxidants in gynecological cancers: Current status and future prospects. Oxid. Antioxid. Med. Sci., 2014, 3, 15-26.
[http://dx.doi.org/10.5455/oams.201113.rv.011]
[40]
Gülçin, İ. Antioxidant activity of food constituents: an overview. Arch. Toxicol., 2012, 86(3), 345-391.
[http://dx.doi.org/10.1007/s00204-011-0774-2] [PMID: 22102161]
[41]
Kermanizadeh, A.; Chauché, C.; Brown, D.M.; Loft, S.; Møller, P. The role of intracellular redox imbalance in nanomaterial induced cellular damage and genotoxicity: A review. Environ. Mol. Mutagen., 2015, 56(2), 111-124.
[http://dx.doi.org/10.1002/em.21926] [PMID: 25427446]
[42]
Alici, D.; Bulbul, F.; Virit, O.; Unal, A.; Altindag, A.; Alpak, G.; Alici, H.; Ermis, B.; Orkmez, M.; Taysi, S.; Savas, H. Evaluation of oxidative metabolism and oxidative DNA damage in patients with obsessive-compulsive disorder. Psychiatry Clin. Neurosci., 2016, 70(2), 109-115.
[http://dx.doi.org/10.1111/pcn.12362] [PMID: 26388322]
[43]
Aksoy, H.; Taysi, S.; Altinkaynak, K.; Bakan, E.; Bakan, N.; Kumtepe, Y. Antioxidant potential and transferrin, ceruloplasmin, and lipid peroxidation levels in women with preeclampsia. J. Investig. Med., 2003, 51(5), 284-287.
[http://dx.doi.org/10.1136/jim-51-05-15] [PMID: 14577518]
[44]
Uslu, C.; Taysi, S.; Bakan, N. Lipid peroxidation and antioxidant enzyme activities in experimental maxillary sinusitis. Ann. Clin. Lab. Sci., 2003, 33(1), 18-22.
[PMID: 12661894]
[45]
Khayyo, N.; Taysi, M.E.; Demir, E.; Ulusal, H.; Cinar, K.; Tarakcioglu, M.; Taysi, S. Radioprotective Effect of Caffeic Acid Phenethyl Ester on the Brain Tissue in Rats Who Underwent Total-Head Irradiation. Eur J Ther, 2019, 25(4), 265-272.
[http://dx.doi.org/10.5152/EurJTher.2019.18052]
[46]
Poljšak, B; Fink, R The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. Oxidative medicine cellular longevity 2014, 2014.
[47]
Kaya, H.; Delibas, N.; Serteser, M.; Ulukaya, E.; Ozkaya, O. The effect of melatonin on lipid peroxidation during radiotherapy in female rats. Strahlenther. Onkol., 1999, 175(6), 285-288.
[http://dx.doi.org/10.1007/BF02743581] [PMID: 10392170]
[48]
Kamel, N.S.; Gammack, J.; Cepeda, O.; Flaherty, J.H. Antioxidants and hormones as antiaging therapies: high hopes, disappointing results. Cleve. Clin. J. Med., 2006, 73(12), 1049-1056, 1058.
[http://dx.doi.org/10.3949/ccjm.73.12.1049] [PMID: 17190308]
[49]
Zhang, Y.; Martin, S.G. Redox proteins and radiotherapy. Clin. Oncol. (R. Coll. Radiol.), 2014, 26(5), 289-300.
[http://dx.doi.org/10.1016/j.clon.2014.02.003] [PMID: 24581945]
[50]
Hudson, B.J. Food antioxidants; Springer Science & Business Media, 2012.
[51]
Tiloke, C.; Anand, K.; Gengan, R.M.; Chuturgoon, A.A. Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomed. Pharmacother., 2018, 108, 457-466.
[http://dx.doi.org/10.1016/j.biopha.2018.09.060] [PMID: 30241049]
[52]
Madi, N.; Dany, M.; Abdoun, S.; Usta, J. Moringa oleifera’s Nutritious Aqueous Leaf Extract Has Anticancerous Effects by Compromising Mitochondrial Viability in an ROS-Dependent Manner. J. Am. Coll. Nutr, 2016, 35(7), 604-613.
[http://dx.doi.org/10.1080/07315724.2015.1080128] [PMID: 27314649]
[53]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules, 2016, 21(5)E559
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[54]
Rice-Evans, C.; Miller, N. Antioxidant activities of flavonoids as bioactive components of food; Portland Press Limited, 1996.
[http://dx.doi.org/10.1042/bst0240790]
[55]
Rock, C.L.; Jacob, R.A.; Bowen, P.E. Update on the biological characteristics of the antioxidant micronutrients: vitamin C, vitamin E, and the carotenoids. J. Am. Diet. Assoc., 1996, 96(7), 693-702.
[http://dx.doi.org/10.1016/S0002-8223(96)00190-3] [PMID: 8675913]
[56]
Sies, H.; Stahl, W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr., 1995, 62(6)(Suppl.), 1315S-1321S.
[http://dx.doi.org/10.1093/ajcn/62.6.1315S] [PMID: 7495226]
[57]
Luqman, S.; Srivastava, S.; Kumar, R.; Maurya, A.K.; Chanda, D. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays. Evid. Based Complement. Alternat. Med., 2012.2012519084
[http://dx.doi.org/10.1155/2012/519084] [PMID: 22216055]
[58]
Al-Asmari, A.K.; Albalawi, S.M.; Athar, M.T.; Khan, A.Q.; Al-Shahrani, H.; Islam, M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS One, 2015, 10(8)e0135814
[http://dx.doi.org/10.1371/journal.pone.0135814] [PMID: 26288313]
[59]
Sasikala, V.; Rooban, B.N.; Priya, S.G.; Sahasranamam, V.; Abraham, A. Moringa oleifera prevents selenite-induced cataractogenesis in rat pups. J. Ocul. Pharmacol. Ther., 2010, 26(5), 441-447.
[http://dx.doi.org/10.1089/jop.2010.0049] [PMID: 20879807]
[60]
Nwidu, L.L.; Elmorsy, E.; Aprioku, J.S.; Siminialayi, I.; Carter, W.G. In Vitro Anti-Cholinesterase and Antioxidant Activity of Extracts of Moringa oleifera Plants from Rivers State, Niger Delta, Nigeria. Medicines (Basel), 2018, 5(3), 71.
[http://dx.doi.org/10.3390/medicines5030071] [PMID: 29976887]
[61]
Luqman, S.; Srivastava, S.; Kumar, R.; Maurya, AK. Chanda, D Experimental assessment of Moringa oleifera leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays. Evid. Based Complement. Alternat. Med., 2012.
[62]
Nwosu, M.O.; Okafor, J.I. Preliminary studies of the antifungal activities of some medicinal plants against Basidiobolus and some other pathogenic fungi. Mycoses,, 1995, 38(5-6), 191-195.
[http://dx.doi.org/10.1111/j.1439-0507.1995.tb00048.x] [PMID: 8531930]
[63]
Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res., 2007, 21(1), 17-25.
[http://dx.doi.org/10.1002/ptr.2023] [PMID: 17089328]
[64]
Faizi, S.; Siddiqui, B.S.; Saleem, R.; Siddiqui, S.; Aftab, K.; Gilani, A.H. Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure. J. Nat. Prod., 1994, 57(9), 1256-1261.
[http://dx.doi.org/10.1021/np50111a011] [PMID: 7798960]
[65]
Hamed, H.S.; El-Sayed, Y.S. Antioxidant activities of Moringa oleifera leaf extract against pendimethalin-induced oxidative stress and genotoxicity in Nile tilapia, Oreochromis niloticus (L.). Fish Physiol. Biochem., 2019, 45(1), 71-82.
[PMID: 29982916]
[66]
Paikra, B.K.; Dhongade, H.K.J.; Gidwani, B. Phytochemistry and pharmacology of Moringa oleifera Lam. J. Pharmacopuncture, 2017, 20(3), 194-200.
[http://dx.doi.org/10.3831/KPI.2017.20.022] [PMID: 30087795]
[67]
Masurekari, T.; Kadam, V.; Jadhav, V. Roles of Moringa oleifera in medicine–A review. World of Pharmacy Pharmaceutical Sciences, 2015, 4(1), 375-385.
[68]
Asiedu-Gyekye, I.J.; Frimpong-Manso, S.; Awortwe, C.; Antwi, D.A.; Nyarko, A.K. Micro- and macroelemental composition and safety evaluation of the nutraceutical Moringa oleifera leaves. J. Toxicol., 2014.786979
[http://dx.doi.org/10.1155/2014/786979] [PMID: 25136361]
[69]
Kumssa, D.B.; Joy, E.J.; Young, S.D.; Odee, D.W.; Ander, E.L.; Broadley, M.R. Variation in the mineral element concentration of Moringa oleifera Lam. and M. stenopetala (Bak. f.) Cuf.: Role in human nutrition. PLoS One, 2017, 12(4)e0175503
[http://dx.doi.org/10.1371/journal.pone.0175503] [PMID: 28388674]
[70]
Sadek, K.M.; Abouzed, T.K.; Abouelkhair, R.; Nasr, S. The chemo-prophylactic efficacy of an ethanol Moringa oleifera leaf extract against hepatocellular carcinoma in rats Pharm. Biol., 2017, 55(1), 1458-1466.
[http://dx.doi.org/10.1080/13880209.2017.1306713] [PMID: 28345375]
[71]
Khan, W.; Parveen, R.; Chester, K.; Parveen, S.; Ahmad, S. Hypoglycemic potential of aqueous extract of Moringa oleifera leaf and in vivo GC-MS metabolomics. Front. Pharmacol., 2017, 8, 577.
[http://dx.doi.org/10.3389/fphar.2017.00577] [PMID: 28955221]
[72]
Lim, T. Edible Medicinal and Non–Medicinal Plants; Springer, 2012.
[73]
Paliwal, R.; Sharma, V.; Abdulkarim, S.; Long, K.; Lai, O.; Muhammad, S.; Ghazali, H.; Adebayo, A.; Akintoye, H.; Olufolaji, A. Phytochemical analysis and evaluation of antioxidant activities of hydro-ethanolic extract of Moringa oleifera Lam. Asian Journal of Biotechnology, 2005, 3(4), 253-263.
[74]
Sreelatha, S.; Padma, P.R. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity.Plant Foods Hum. Nutr., 2009, 64(4), 303-311.
[http://dx.doi.org/10.1007/s11130-009-0141-0] [PMID: 19904611]
[75]
Gupta, S.; Jain, R.; Kachhwaha, S.; Kothari, S.L. Nutritional and medicinal applications of Moringa oleifera Lam—Review of current status and future possibilities. J. Herb. Med., 2018, 11, 1-11.
[http://dx.doi.org/10.1016/j.hermed.2017.07.003]
[76]
Planta MedicaPlanta MedicaAbdallah EM. Antibacterial properties of leaf extracts of Moringa oleifera Lam. Growing in Sudan. J. Adv. Med. Pharm. Sci., 2015, 5(1), 1-5.
[77]
Zaffer, M.; Ahmad, S.; Sharma, R.; Mahajan, S.; Gupta, A.; Agnihotri, R.K. Antibacterial activity of bark extracts of Moringa oleifera Lam. against some selected bacteria. Pak. J. Pharm. Sci., 2014, 27(6), 1857-1862.
[PMID: 25362592]
[78]
Singh, K.; Tafida, G. Antibacterial activity of Moringa oleifera (Lam.) leaves extracts against some selected bacteria. Int. J. Pharm. Pharm. Sci., 2014, 6(9), 52-54.
[79]
Pal, S.K.; Mukherjee, P.K.; Saha, K.; Pal, M.; Saha, B.P. Antimicrobial action of the leaf extract of Moringa oleifera lam. Anc. Sci. Life, 1995, 14(3), 197-199.
[PMID: 22556699]
[80]
Burger, D.; Fuglie, L.; Herzig, J. The possible role of Moringa oleifera in HIV/AIDS supportive treatment. In: International Conference on AIDS,, 2002.
[81]
Aljofan, M.; Netter, H.J.; Aljarbou, A.N.; Hadda, T.B.; Orhan, I.E.; Sener, B.; Mungall, B.A. Anti-hepatitis B activity of isoquinoline alkaloids of plant origin. Arch. Virol., 2014, 159(5), 1119-1128.
[http://dx.doi.org/10.1007/s00705-013-1937-7] [PMID: 24311152]
[82]
Jaiswal, D.; Kumar Rai, P.; Kumar, A.; Mehta, S.; Watal, G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J. Ethnopharmacol., 2009, 123(3), 392-396.
[http://dx.doi.org/10.1016/j.jep.2009.03.036] [PMID: 19501271]
[83]
Ganie, SA; Zaffer, M; Gulia, SS; Yadav, SS; Singh, R Ganguly, S Antifungal Efficacy of Moringa oleifera Lam. Int. J. Med. Res. Rev. 2015, 3(1), 028-033.
[84]
Gupta, R.; Mathur, M.; Bajaj, V.K.; Katariya, P.; Yadav, S.; Kamal, R.; Gupta, R.S. Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetes. J. Diabetes, 2012, 4(2), 164-171.
[http://dx.doi.org/10.1111/j.1753-0407.2011.00173.x] [PMID: 22103446]
[85]
Gilani, A.H.; Aftab, K.; Suria, A.; Siddiqui, S.; Salem, R.; Siddiqui, B.S.; Faizi, S. Pharmacological studies on hypotensive and spasmolytic activities of pure compounds from Moringa oleifera. Phytother. Res., 1994, 8(2), 87-91.
[http://dx.doi.org/10.1002/ptr.2650080207]
[86]
Ghasi, S.; Nwobodo, E.; Ofili, J.O. Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats J. Ethnopharmacol, 2000, 69(1), 21-2.
[http://dx.doi.org/10.1016/S0378-8741(99)00106-3] [PMID: 10661880]
[87]
Mehta, K.; Balaraman, R.; Amin, A.H.; Bafna, P.A.; Gulati, O.D. Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits. J. Ethnopharmacol 2003, 86(2-3), 191-195.
[http://dx.doi.org/10.1016/S0378-8741(03)00075-8] [PMID: 12738086]
[88]
Randriamboavonjy, J.I.; Rio, M.; Pacaud, P.; Loirand, G.; Tesse, A. Moringa oleifera seeds attenuate vascular oxidative and nitrosative stresses in spontaneously hypertensive rats. Oxid. Med. Cell. Longev., 2017.20174129459
[http://dx.doi.org/10.1155/2017/4129459] [PMID: 28713487]
[89]
Ijioma, S.N.; Nwaogazi, E.N.; Nwankwo, A.A.; Oshilonya, H.; Ekeleme, C.M.; Oshilonya, L.U. Histological exhibition of the gastroprotective effect of Moringa oleifera leaf extract. Comp. Clin. Pathol., 2018, 27(2), 327-332.
[http://dx.doi.org/10.1007/s00580-017-2594-0] [PMID: 29527150]
[90]
Taşkın, A.; Tarakçıoğlu, M.; Ulusal, H.; Örkmez, M.; Taysı, S. Idarubicin-bromelain combination sensitizes cancer cells to conventional chemotherapy. Iran. J. Basic Med. Sci., 2019, 22(10), 1172-1178.
[PMID: 31998459]
[91]
Demir, E.; Taysi, S.; Ulusal, H.; Kaplan, D.S.; Cinar, K.; Tarakcioglu, M. Nigella sativa oil and thymoquinone reduce oxidative stress in the brain tissue of rats exposed to total head irradiation. Int. J. Radiat. Biol., 2020, 96(2), 228-235.
[http://dx.doi.org/10.1080/09553002.2020.1683636] [PMID: 31638880]
[92]
Jaja-Chimedza, A.; Graf, B.L.; Simmler, C.; Kim, Y.; Kuhn, P.; Pauli, G.F.; Raskin, I. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS One, 2017, 12(8)e0182658
[http://dx.doi.org/10.1371/journal.pone.0182658] [PMID: 28792522]
[93]
Brunelli, D.; Tavecchio, M.; Falcioni, C.; Frapolli, R.; Erba, E.; Iori, R.; Rollin, P.; Barillari, J.; Manzotti, C.; Morazzoni, P.; D’Incalci, M. The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem. Pharmacol., 2010, 79(8), 1141-1148.
[http://dx.doi.org/10.1016/j.bcp.2009.12.008] [PMID: 20006591]
[94]
Bharali, R.; Tabassum, J.; Azad, M.R. Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pac. J. Cancer Prev., 2003, 4(2), 131-139.
[PMID: 12875626]
[95]
Karim, N.A.A.; Ibrahim, M.D.; Kntayya, S.B.; Rukayadi, Y.; Hamid, H.A.; Razis, A.F.A. Moringa oleifera Lam: Targeting chemoprevention. Asian Pac. J. Cancer Prev., 2016, 17(8), 3675-3686.
[PMID: 27644601]
[96]
Yamaguchi, F.; Takata, M.; Kamitori, K.; Nonaka, M.; Dong, Y.; Sui, L.; Tokuda, M. Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. Int. J. Oncol., 2008, 32(2), 377-385.
[http://dx.doi.org/10.3892/ijo.32.2.377] [PMID: 18202760]
[97]
Al-Sharif, I.; Remmal, A.; Aboussekhra, A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer, 2013, 13, 600.
[http://dx.doi.org/10.1186/1471-2407-13-600] [PMID: 24330704]
[98]
Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Palaniswami, R.; Nishigaki, Y.; Nishigaki, I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem., 2014, 86, 103-112.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.011] [PMID: 25147152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy