Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Mechano-chemo-biological Computational Models for Arteries in Health, Disease and Healing: From Tissue Remodelling to Drug-eluting Devices

Author(s): Michele Marino*, Giuseppe Vairo and Peter Wriggers

Volume 27, Issue 16, 2021

Published on: 28 July, 2020

Page: [1904 - 1917] Pages: 14

DOI: 10.2174/1381612826666200728145752

Price: $65

Abstract

This review aims to highlight urgent priorities for the computational biomechanics community in the framework of mechano-chemo-biological models. Recent approaches, promising directions and open challenges on the computational modelling of arterial tissues in health and disease are introduced and investigated, together with in silico approaches for the analysis of drug-eluting stents that promote pharmacological-induced healing. The paper addresses a number of chemo-biological phenomena that are generally neglected in biomechanical engineering models but are most likely instrumental for the onset and the progression of arterial diseases. An interdisciplinary effort is thus encouraged for providing the tools for an effective in silico insight into medical problems. An integrated mechano-chemo-biological perspective is believed to be a fundamental missing piece for crossing the bridge between computational engineering and life sciences, and for bringing computational biomechanics into medical research and clinical practice.

Keywords: Mechano-chemo-biological models, growth and remodelling, drug-eluting stents, arterial diseases, pharmacological-induced healing, computational biomechanics.

[1]
Timmis A, Townsend N, Gale CP, et al. European Society of Cardiology. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur Heart J 2020; 41(1): 12-85.
[http://dx.doi.org/10.1093/eurheartj/ehz859] [PMID: 31820000]
[2]
European Commission. The 2015 Ageing Report: Economic and budgetary projections for the 28 EU Member States.European Union. 2015; pp. 2013-60.
[3]
Kent KC, Zwolak RM, Jaff MR, et al. Society for Vascular Surgery; American Association of Vascular Surgery; Society for Vascular Medicine and Biology. Screening for abdominal aortic aneurysm: a consensus statement. J Vasc Surg 2004; 39(1): 267-9.
[http://dx.doi.org/10.1016/j.jvs.2003.08.019] [PMID: 14718853]
[4]
Finn AV, Nakazawa G, Joner M, et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vasc Biol 2007; 27(7): 1500-10.
[http://dx.doi.org/10.1161/ATVBAHA.107.144220] [PMID: 17510464]
[5]
Reimers AM, Reimers AC. The steady-state assumption in oscillating and growing systems. J Theor Biol 2016; 406: 176-86.
[http://dx.doi.org/10.1016/j.jtbi.2016.06.031] [PMID: 27363728]
[6]
Vardulaki KA, Prevost TC, Walker NM, et al. Growth rates and risk of rupture of abdominal aortic aneurysms. Br J Surg 1998; 85(12): 1674-80.
[http://dx.doi.org/10.1046/j.1365-2168.1998.00946.x] [PMID: 9876073]
[7]
Panwar P, Lamour G, Mackenzie NCW, et al. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications. J Biol Chem 2015; 290(38): 23291-306.
[http://dx.doi.org/10.1074/jbc.M115.644310] [PMID: 26224630]
[8]
Robertson AM, Duan X, Aziz KM, Hill MR, Watkins SC, Cebral JR. Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms. Ann Biomed Eng 2015; 43(7): 1502-15.
[http://dx.doi.org/10.1007/s10439-015-1252-4] [PMID: 25632891]
[9]
Carmo M, Colombo L, Bruno A, et al. Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2002; 23(6): 543-9.
[http://dx.doi.org/10.1053/ejvs.2002.1620] [PMID: 12093072]
[10]
Sherman E, Barr V, Manley S, et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 2011; 35(5): 705-20.
[http://dx.doi.org/10.1016/j.immuni.2011.10.004] [PMID: 22055681]
[11]
Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 2002; 90(3): 251-62.
[http://dx.doi.org/10.1161/res.90.3.251] [PMID: 11861412]
[12]
van Varik BJ, Rennenberg RJ, Reutelingsperger CP, Kroon AA, de Leeuw PW, Schurgers LJ. Mechanisms of arterial remodeling: lessons from genetic diseases. Front Genet 2012; 3: 290.
[http://dx.doi.org/10.3389/fgene.2012.00290] [PMID: 23248645]
[13]
Wang M, Kim SH, Monticone RE, Lakatta EG. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension 2015; 65(4): 698-703.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.03618] [PMID: 25667214]
[14]
Gaballa MA, Jacob CT, Raya TE, Liu J, Simon B, Goldman S. Large artery remodeling during aging: biaxial passive and active stiffness. Hypertension 1998; 32(3): 437-43.
[http://dx.doi.org/10.1161/01.HYP.32.3.437] [PMID: 9740608]
[15]
Jones JA, Spinale FG, Ikonomidis JS. Transforming growth factor-beta signaling in thoracic aortic aneurysm development: a paradox in pathogenesis. J Vasc Res 2009; 46(2): 119-37.
[http://dx.doi.org/10.1159/000151766] [PMID: 18765947]
[16]
Tang PCY, Coady MA, Lovoulos C, et al. Hyperplastic cellular remodeling of the media in ascending thoracic aortic aneurysms. Circulation 2005; 112(8): 1098-105.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.511717] [PMID: 16116068]
[17]
McGloughlin T. Biomechanics and Mechanobiology of Aneurysms. Berlin: Springer 2011.
[http://dx.doi.org/10.1007/978-3-642-18095-8]
[18]
Dai J, Michineau S, Franck G, et al. Long term stabilization of expanding aortic aneurysms by a short course of cyclosporine A through transforming growth factor-beta induction. PLoS One 2011; 6(12): e28903.
[http://dx.doi.org/10.1371/journal.pone.0028903] [PMID: 22194945]
[19]
Ruddy JM, Jones JA, Spinale FG, Ikonomidis JS. Regional heterogeneity within the aorta: relevance to aneurysm disease. J Thorac Cardiovasc Surg 2008; 136(5): 1123-30.
[http://dx.doi.org/10.1016/j.jtcvs.2008.06.027] [PMID: 19026791]
[20]
Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25(1): 29-38.
[http://dx.doi.org/10.1161/01.ATV.0000150649.39934.13] [PMID: 15539615]
[21]
Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 2014; 237(1): 208-19.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.09.001] [PMID: 25244505]
[22]
Yalameha B. Antioxidant therapy to improve or resolve atherosclerosis; new hopes and current trends. J Nephropharmacol 2019; 8(2): e18.
[23]
Dee KC, Puleo DA, Bizios R. An Introduction to Tissue-Biomaterial Interactions. Hoboken, New Jersey: John Wiley & Sons 2002.
[http://dx.doi.org/10.1002/0471270598]
[24]
Petreus T, Antoniac I, Sirbu P, Cotrutz CE. Molecular Scissors: From Biomaterials Implant to Tissue Remodeling.Biologically Responsive Biomaterials for Tissue Engineering Springer Science+ Business Media New York. 2013.
[http://dx.doi.org/10.1007/978-1-4614-4328-5_2]
[25]
Lüscher TF, Steffel J, Eberli FR, et al. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation 2007; 115(8): 1051-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.675934] [PMID: 17325255]
[26]
Byrne RA, Joner M, Kastrati A. Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. Eur Heart J 2015; 36(47): 3320-31.
[http://dx.doi.org/10.1093/eurheartj/ehv511] [PMID: 26417060]
[27]
Braeu FA, Seitz A, Aydin RC, Cyron CJ. Homogenized constrained mixture models for anisotropic volumetric growth and remodeling. Biomech Model Mechanobiol 2017; 16(3): 889-906.
[http://dx.doi.org/10.1007/s10237-016-0859-1] [PMID: 27921189]
[28]
Fereidoonnezhada B, Naghdabadia R, Sohrabpoura S, Holzapfel GA. A Mechanobiological Model for Damage-induced Growth in Arterial Tissue with Application to In-stent Restenosis. J Mech Phsyics Sol 2017; 101: 311-27.
[http://dx.doi.org/10.1016/j.jmps.2017.01.016]
[29]
Bianchi D, Monaldo E, Gizzi A, Marino M, Filippi S, Vairo G. A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy. Med Eng Phys 2017; 47: 25-37.
[http://dx.doi.org/10.1016/j.medengphy.2017.06.028] [PMID: 28690045]
[30]
Aparício P, Thompson MS, Watton PN. A novel chemo-mechano-biological model of arterial tissue growth and remodelling. J Biomech 2016; 49(12): 2321-30.
[http://dx.doi.org/10.1016/j.jbiomech.2016.04.037] [PMID: 27184922]
[31]
Cyron CJ, Aydin RC, Humphrey JD. A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomech Model Mechanobiol 2016; 15(6): 1389-403.
[http://dx.doi.org/10.1007/s10237-016-0770-9] [PMID: 27008346]
[32]
Figueroa CA, Baek S, Taylor CA, Humphrey JD. A computational framework for coupled fluid-solid growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 2009; 198(45-46): 3583-602.
[http://dx.doi.org/10.1016/j.cma.2008.09.013] [PMID: 20160923]
[33]
Volokh KY, Vorp DA. A model of growth and rupture of abdominal aortic aneurysm. J Biomech 2008; 41(5): 1015-21.
[http://dx.doi.org/10.1016/j.jbiomech.2007.12.014] [PMID: 18255074]
[34]
Vorp DA. Biomechanics of abdominal aortic aneurysm. J Biomech 2007; 40(9): 1887-902.
[http://dx.doi.org/10.1016/j.jbiomech.2006.09.003] [PMID: 17254589]
[35]
Gasser CT, Holzapfel GA. Finite element modeling of balloon angioplasty by considering overstretch of remnant non-diseased tissues in lesions. Comput Mech 2007; 40: 47-60.
[http://dx.doi.org/10.1007/s00466-006-0081-6]
[36]
Humphrey JD, Rajagopal KR. A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 2002; 12(3): 407-30.
[http://dx.doi.org/10.1142/S0218202502001714]
[37]
Anderson AE, Ellis BJ, Weiss JA. Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Engin 2007; 10(3): 171-84.
[http://dx.doi.org/10.1080/10255840601160484] [PMID: 17558646]
[38]
ASME. V&V-40: verification and validation in computational modeling of medical devices Available at: https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=100003367
[39]
Marino M. Constitutive modeling of soft tissues Encyclopedia of Biomedical Engineering: 81-110. Elsevier 2019.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.99926-4]
[40]
Witthoft A, Yazdani A, Peng Z, Bellini C, Humphrey JD, Karniadakis GE. A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall. J R Soc Interface 2016; 13(114): 20150964.
[http://dx.doi.org/10.1098/rsif.2015.0964] [PMID: 26790998]
[41]
Auricchio F, Conti M, Ferrara A. How constitutive model complexity can affect the capability to fit experimental data: a focus on human carotid arteries and extension/inflation data. Arch Comput Methods Eng 2014; 21: 273-92.
[http://dx.doi.org/10.1007/s11831-014-9105-0]
[42]
Holzapfel GA, Ogden RW. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J R Soc Interface 2010; 7(46): 787-99.
[http://dx.doi.org/10.1098/rsif.2009.0357] [PMID: 19828496]
[43]
Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 2000; 61: 1-48.
[http://dx.doi.org/10.1023/A:1010835316564]
[44]
Marino M, von Hoegen M, Schröder J, Wriggers P. Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 1: micro- and nanostructure of collagen fibers. Biomech Model Mechanobiol 2018; 17(4): 1011-36.
[http://dx.doi.org/10.1007/s10237-018-1009-8] [PMID: 29492724]
[45]
Hamdia KM, Marino M, Zhuang X, Wriggers P, Rabczuk T. Sensitivity analysis for the mechanics of tendons and ligaments: Investigation on the effects of collagen structural properties via a multiscale modeling approach. Int J Numer Methods Biomed Eng 2019; 35(8): e3209.
[http://dx.doi.org/10.1002/cnm.3209] [PMID: 30989796]
[46]
von Hoegen M, Marino M, Schröder J, Wriggers P. Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 2: dispersed arrangement of collagen fibers. Biomech Model Mechanobiol 2019; 18(4): 897-920.
[http://dx.doi.org/10.1007/s10237-019-01119-3] [PMID: 30737633]
[47]
Comellas E, Gasser TC, Bellomo FJ, Oller S. A homeostatic-driven turnover remodelling constitutive model for healing in soft tissues. J R Soc Interface 2016; 13(116): 20151081.
[http://dx.doi.org/10.1098/rsif.2015.1081] [PMID: 27009177]
[48]
Humphrey JD. Vascular mechanics, mechanobiology, and remodeling. J Mech Med Biol 2009; 9(2): 243-57.
[http://dx.doi.org/10.1142/S021951940900295X] [PMID: 20209075]
[49]
Watton PN, Ventikos Y, Holzapfel GA. Modelling the growth and stabilization of cerebral aneurysms. Math Med Biol 2009; 26(2): 133-64.
[http://dx.doi.org/10.1093/imammb/dqp001] [PMID: 19234094]
[50]
Baek S, Rajagopal KR, Humphrey JD. A theoretical model of enlarging intracranial fusiform aneurysms. J Biomech Eng 2006; 128(1): 142-9.
[http://dx.doi.org/10.1115/1.2132374] [PMID: 16532628]
[51]
Fratzl P. Collagen: Structure and Mechanics. New York: Springer 2008.
[http://dx.doi.org/10.1007/978-0-387-73906-9]
[52]
van der Slot AJ, van Dura EA, de Wit EC, et al. Elevated formation of pyridinoline cross-links by profibrotic cytokines is associated with enhanced lysyl hydroxylase 2b levels. Biochim Biophys Acta 2005; 1741(1-2): 95-102.
[http://dx.doi.org/10.1016/j.bbadis.2004.09.009] [PMID: 15955452]
[53]
Tsamis A, Krawiec JT, Vorp DA. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface 2013; 10(83): 20121004.
[54]
Brüel A, Ørtoft G, Oxlund H. Inhibition of cross-links in collagen is associated with reduced stiffness of the aorta in young rats. Atherosclerosis 1998; 140(1): 135-45.
[http://dx.doi.org/10.1016/S0021-9150(98)00130-0] [PMID: 9733224]
[55]
Geers MGD, Kouznetsova VG. Homogenization Methods and Multiscale Modeling: Nonlinear ProblemsErwin Stein, Ren’e de Borst and Thomas JR Hughes, Encyclopedia of Computational Mechanics. Second Edition. John Wiley Sons, Ltd 2017.
[56]
Balzani DD, Brands D, Klawonn A, Rheinbach O, Schr¨oder J. On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies. Arch Appl Mech 2010; 80: 479-88.
[http://dx.doi.org/10.1007/s00419-009-0379-x]
[57]
Chevalier J, Morelle XP, Bailly C, Camanho PP, Pardoen T, Lani F. Micro-mechanics based pressure dependent failure model for highly cross-linked epoxy resins. Eng Fract Mech 2016; 158: 1-12.
[http://dx.doi.org/10.1016/j.engfracmech.2016.02.039]
[58]
Eskandari S, Andrade Pires FM, Camanho PP, Marques AT. Damage analysis of out of plane undulated fiber composites. Compos Struct 2016; 152: 464-76.
[http://dx.doi.org/10.1016/j.compstruct.2016.05.062]
[59]
Tavares RP, Melro AR, Bessa MA, Turon A, Liu WK, Camanho PP. Mechanics of hybrid polymer composites: analytical and computational study. Comput Mech 2016; 57: 405-21.
[http://dx.doi.org/10.1007/s00466-015-1252-0]
[60]
Vogler M, Rolfes R, Camanho PP. Modeling the inelastic deformation and fracture of polymer composites - Part I: Plasticity model. Mech Mater 2013; 59: 50-64.
[http://dx.doi.org/10.1016/j.mechmat.2012.12.002]
[61]
Pardoen T, Hutchinson JW. Micromechanics-based model for trends in toughness of ductile metals. Acta Mater 2003; 51: 133-48.
[http://dx.doi.org/10.1016/S1359-6454(02)00386-5]
[62]
Comninou M, Yannas IV. Dependence of stress-strain nonlinearity of connective tissues on the geometry of collagen fibers. J Biomech 1976; 9(7): 427-33.
[http://dx.doi.org/10.1016/0021-9290(76)90084-1] [PMID: 939764]
[63]
Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J Biomech 1979; 12(6): 423-36.
[http://dx.doi.org/10.1016/0021-9290(79)90027-7] [PMID: 457696]
[64]
Freed AD, Doehring TC. Elastic model for crimped collagen fibrils. J Biomech Eng 2005; 127(4): 587-93.
[http://dx.doi.org/10.1115/1.1934145] [PMID: 16121528]
[65]
Maceri F, Marino M, Vairo G. A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J Biomech 2010; 43(2): 355-63.
[http://dx.doi.org/10.1016/j.jbiomech.2009.07.040] [PMID: 19837410]
[66]
Maceri F, Marino M, Vairo G. Age-dependent arterial mechanics via a multiscale elastic approach. Int J Comput Methods Eng Sci Mech 2013; 14: 141-51.
[http://dx.doi.org/10.1080/15502287.2012.744114]
[67]
Marino M, Vairo G. Multiscale Elastic Models of Collagen Bio-structures: From Cross-Linked Molecules to Soft Tissues. In: Gefen A, Ed. Multiscale Computer Modeling in Biomechanics and Biomedical Engineering Studies in Mechanobiology, Tissue Engineering and Biomaterials, 14. Springer: Berlin, Heidelberg 2013.
[http://dx.doi.org/10.1007/8415_2012_154]
[68]
Marino M, Vairo G. Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach. Comput Methods Biomech Biomed Engin 2014; 17(1): 11-30.
[http://dx.doi.org/10.1080/10255842.2012.658043] [PMID: 22525051]
[69]
Maceri F, Marino M, Vairo G. An insight on multiscale tendon modeling in muscle-tendon integrated behavior. Biomech Model Mechanobiol 2012; 11(3-4): 505-17.
[http://dx.doi.org/10.1007/s10237-011-0329-8] [PMID: 21739087]
[70]
Maceri F, Marino M, Vairo G. Elasto-damage modelling of biopolymer molecules response. Comput Model Eng Sci 2012; 87(5): 461-82.
[71]
Marino M, Vairo G. Influence of inter-molecular interactions on the elasto-damage mechanics of collagen fibrils: a bottom-up approach towards macroscopic tissue modeling. J Mech Phys Solids 2014; 73: 38-54.
[http://dx.doi.org/10.1016/j.jmps.2014.08.009]
[72]
Marino M. Molecular and intermolecular effects in collagen fibril mechanics: a multiscale analytical model compared with atomistic and experimental studies. Biomech Model Mechanobiol 2016; 15(1): 133-54.
[http://dx.doi.org/10.1007/s10237-015-0707-8] [PMID: 26220454]
[73]
Marino M, Converse MI, Monson KL, Wriggers P. Molecular-level collagen damage explains softening and failure of arterial tissues: A quantitative interpretation of CHP data with a novel elasto-damage model. J Mech Behav Biomed Mater 2019; 97: 254-71.
[http://dx.doi.org/10.1016/j.jmbbm.2019.04.022] [PMID: 31132662]
[74]
Marino M, Wriggers P. Finite strain response of crimped fibers under uniaxial traction: an analytical approach applied to collagen. J Mech Phys Solids 2017; 98: 429-53.
[http://dx.doi.org/10.1016/j.jmps.2016.05.010]
[75]
Marino M, Wriggers P. Micro-macro constitutive modeling and finite element analytical-based formulations for fibrous materials: A multiscale structural approach for crimped fibers. Comput Methods Appl Mech Eng 2019; 344: 938-69.
[http://dx.doi.org/10.1016/j.cma.2018.10.016]
[76]
Brown RA, Prajapati R, McGrouther DA, Yannas IV, Eastwood M. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J Cell Physiol 1998; 175(3): 323-32.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199806)175:3<323:AID-JCP10>3.0.CO;2-6] [PMID: 9572477]
[77]
Ezra DG, Ellis JS, Beaconsfield M, Collin R, Bailly M. Changes in fibroblast mechanostat set point and mechanosensitivity: an adaptive response to mechanical stress in floppy eyelid syndrome. Invest Ophthalmol Vis Sci 2010; 51(8): 3853-63.
[http://dx.doi.org/10.1167/iovs.09-4724] [PMID: 20220050]
[78]
Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 2014; 15(12): 802-12.
[http://dx.doi.org/10.1038/nrm3896] [PMID: 25355505]
[79]
Ambrosi D, Ben Amar M, Cyron CJ, et al. Growth and remodelling of living tissues: perspectives, challenges and opportunities. J R Soc Interface 2019; 16(157): 20190233.
[http://dx.doi.org/10.1098/rsif.2019.0233] [PMID: 31431183]
[80]
Menzel A, Kuhl E. Frontiers in growth and remodeling. Mech Res Commun 2012; 42: 1-14.
[http://dx.doi.org/10.1016/j.mechrescom.2012.02.007] [PMID: 22919118]
[81]
Ambrosi D, Ateshian GA, Arruda EM, et al. Perspectives on biological growth and remodeling. J Mech Phys Solids 2011; 59(4): 863-83.
[http://dx.doi.org/10.1016/j.jmps.2010.12.011] [PMID: 21532929]
[82]
Taylor CA, Humphrey JD. Open problems in computational vascular biomechanics: Hemodynamics and arterial wall mechanics. Comput Methods Appl Mech Eng 2009; 198(45-46): 3514-23.
[http://dx.doi.org/10.1016/j.cma.2009.02.004] [PMID: 20161129]
[83]
Cyron CJ, Humphrey JD. Growth and remodeling of load-bearing biological soft tissues. Meccanica 2017; 52(3): 645-64.
[http://dx.doi.org/10.1007/s11012-016-0472-5] [PMID: 28286348]
[84]
Byrne H, Drasdo D. Individual-based and continuum models of growing cell populations: a comparison. J Math Biol 2009; 58(4-5): 657-87.
[http://dx.doi.org/10.1007/s00285-008-0212-0] [PMID: 18841363]
[85]
Pappalardo F, Cincotti A, Motta A, Pennisi M. Agent Based Modeling of Atherosclerosis: A Concrete Help in Personalized TreatmentsEmerging Intelligent Computing Technology and Applications With Aspects of Artificial Intelligence ICIC 2009 Lecture Notes in Computer ScienceBerlin. Heidelberg: Springer 2009; p. 5755.
[http://dx.doi.org/10.1007/978-3-642-04020-7_41]
[86]
Thorne BC, Hayenga HN, Humphrey JD, Peirce SM. 2011; Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent-based model. Frontiers Phys 2011; 2: 20.
[http://dx.doi.org/10.3389/fphys.2011.00020]
[87]
Tahir H, Niculescu I, Bona-Casas C, Merks RM, Hoekstra AG. An in silico study on the role of smooth muscle cell migration in neointimal formation after coronary stenting. J R Soc Interface 2015; 12: 20150358.
[88]
Pontrelli G, De Monte F. Mass diffusion through two-layer porous media: an application to the drug-eluting stent. Int J Heat Mass Transf 2007; 50: 3658-69.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.11.003]
[89]
Dabagh M, Jalali P, Tarbell JM. The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension. Am J Physiol Heart Circ Physiol 2009; 297(3): H983-96.
[http://dx.doi.org/10.1152/ajpheart.00324.2009] [PMID: 19592615]
[90]
Leemasawatdigul K, Gappa-Fahlenkamp H. Development of a mathematical model to describe the transport of monocyte chemoattractant protein-1 through a three-dimensional collagen matrix. Cardiovasc Pathol 2012; 21(3): 219-28.
[http://dx.doi.org/10.1016/j.carpath.2011.09.002] [PMID: 22100989]
[91]
Demirkoparan H, Pence TJ, Wineman A. Chemomechanics and homeostasis in active strain stabilized hyperelastic fibrous microstructures. Int J Non-linear Mech 2013; 56: 86-93.
[http://dx.doi.org/10.1016/j.ijnonlinmec.2013.05.005]
[92]
Marino M, Pontrelli G, Vairo G, Wriggers P. A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling. J R Soc Interface 2017; 14(136): 20170615.
[http://dx.doi.org/10.1098/rsif.2017.0615] [PMID: 29118114]
[93]
Wilstein Z, Alligood DM, McLure VL, Miller AC, Miller AC. Mathematical model of hypertension-induced arterial remodeling: A chemo-mechanical approach. Math Biosci 2018; 303: 10-25.
[http://dx.doi.org/10.1016/j.mbs.2018.05.002] [PMID: 29758218]
[94]
Zahedmanesh H, Lally C. A multiscale mechanobiological modelling framework using agent-based models and finite element analysis: application to vascular tissue engineering. Biomech Model Mechanobiol 2012; 11(3-4): 363-77.
[http://dx.doi.org/10.1007/s10237-011-0316-0] [PMID: 21626394]
[95]
Boyle CJ, Lennon AB, Prendergast PJ. Application of a mechanobiological simulation technique to stents used clinically. J Biomech 2013; 46(5): 918-24.
[http://dx.doi.org/10.1016/j.jbiomech.2012.12.014] [PMID: 23398970]
[96]
Zahedmanesh H, Van Oosterwyck H, Lally C. A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes. Comput Methods Biomech Biomed Engin 2014; 17(8): 813-28.
[http://dx.doi.org/10.1080/10255842.2012.716830] [PMID: 22967148]
[97]
Garbey M, Casarin S, Berceli S. A Versatile Hybrid Agent-Based, Particle and Partial Differential Equations Method to Analyze Vascular AdaptationComputational Science ICCS 2018 ICCS 2018 Lecture Notes in Computer ScienceCham. Springer 2018; p. 10861.
[http://dx.doi.org/10.1007/978-3-319-93701-4_68]
[98]
Keshavarzian M, Meyer CA, Hayenga HN. Mechanobiological model of arterial growth and remodeling. Biomech Model Mechanobiol 2018; 17(1): 87-101.
[http://dx.doi.org/10.1007/s10237-017-0946-y] [PMID: 28823079]
[99]
Ruiz-Baier R. Primal-mixed formulations for reactiondiffusion systems on deforming domains. J Comput Phys 2015; 299: 320-38.
[http://dx.doi.org/10.1016/j.jcp.2015.07.018]
[100]
Wang W, Prosperetti A. Flow of spatially non-uniform suspensions. Part III. Closure relations for porous media and spinning particles. Int J Multiph Flow 2001; 27(9): 1627-53.
[http://dx.doi.org/10.1016/S0301-9322(01)00018-0]
[101]
Miehe C, Mauthe S. Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Comput Methods Appl Mech Eng 2016; 304: 619-55.
[http://dx.doi.org/10.1016/j.cma.2015.09.021]
[102]
Truskey GA, Yuan F, Katz DF. Transport phenomena in biological systems. Indiana, Lebanon: Pearson Prentice Hall Bioengineering 2010.
[103]
Buganza Tepole A, Kuhl E. Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing. Comput Methods Biomech Biomed Engin 2016; 19(1): 13-30.
[http://dx.doi.org/10.1080/10255842.2014.980821] [PMID: 25421487]
[104]
Tepole AB. Computational systems mechanobiology of wound healing. Comput Methods Appl Mech Eng 2017; 314: 46-70.
[http://dx.doi.org/10.1016/j.cma.2016.04.034]
[105]
Zitnay JL, Li Y, Qin Z, et al. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. Nat Commun 2017; 8: 14913.
[http://dx.doi.org/10.1038/ncomms14913] [PMID: 28327610]
[106]
Nasu Y, Benke A, Arakawa S, et al. In Situ Characterization of Bak Clusters Responsible for Cell Death Using Single Molecule Localization Microscopy. Sci Rep 2016; 6: 27505.
[http://dx.doi.org/10.1038/srep27505] [PMID: 27293178]
[107]
Reed D, Reed C, Stemmermann G, Hayashi T. Are aortic aneurysms caused by atherosclerosis? Circulation 1992; 85(1): 205-11.
[http://dx.doi.org/10.1161/01.CIR.85.1.205] [PMID: 1728451]
[108]
Manley S, Gillette JM, Patterson GH, et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 2008; 5(2): 155-7.
[http://dx.doi.org/10.1038/nmeth.1176] [PMID: 18193054]
[109]
Sandow SL, Gzik DJ, Lee RMKW. Arterial internal elastic lamina holes: relationship to function? J Anat 2009; 214(2): 258-66.
[http://dx.doi.org/10.1111/j.1469-7580.2008.01020.x] [PMID: 19207987]
[110]
Moncada S, Higgs A. The Vascular Endothelium I. Springer-Verlag Berlin Heidelberg 2006.
[http://dx.doi.org/10.1007/3-540-32967-6]
[111]
Tarbell JM. Mass transport in arteries and the localization of atherosclerosis. Annu Rev Biomed Eng 2003; 5: 79-118.
[http://dx.doi.org/10.1146/annurev.bioeng.5.040202.121529] [PMID: 12651738]
[112]
Renard Ph, de Marsily G. Calculating equivalent permeability: a review. Adv Water Resour 1997; 20: 253-78.
[http://dx.doi.org/10.1016/S0309-1708(96)00050-4]
[113]
Chinappi M, Melchionna S, Casiola CM, Succi S. Massflux through asymmetric nanopores: Microscopic versus hydrodynamic motion. J Chem Phys 2008; 129(12)
[114]
Sun N, Leung JH, Wood NB, et al. Computational analysis of oxygen transport in a patient-specific model of abdominal aortic aneurysm with intraluminal thrombus. Br J Radiol 2009; 82(Spec No 1): S18-23.
[http://dx.doi.org/10.1259/bjr/89466318] [PMID: 20348531]
[115]
Vorp DA, Wank DHJ, Webster MW, Federspiel WJ. Effect of Intraluminal Thrombus Thickness and Bulge Diameter on the Oxygen Diffusion in Abdominal Aortic Aneurysm. J Biomech Eng 1998; 120(5): 579-83.
[116]
Iori F, Grechy L, Corbett RW, et al. The effect of in-plane arterial curvature on blood flow and oxygen transport in arterio-venous fistulae. Phys Fluids (1994) 2015; 27(3): 031903.
[http://dx.doi.org/10.1063/1.4913754] [PMID: 25829837 ]
[117]
Avci B, Wriggers P. A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J Applied Mechanics 2012.
[118]
Nakahashi TK, Hoshina K, Tsao PS, et al. Flow loading induces macrophage antioxidative gene expression in experimental aneurysms. Arterioscler Thromb Vasc Biol 2002; 22(12): 2017-22.
[http://dx.doi.org/10.1161/01.ATV.0000042082.38014.EA] [PMID: 12482828]
[119]
Sho E, Sho M, Hoshina K, Kimura H, Nakahashi TK, Dalman RL. Hemodynamic forces regulate mural macrophage infiltration in experimental aortic aneurysms. Exp Mol Pathol 2004; 76(2): 108-16.
[http://dx.doi.org/10.1016/j.yexmp.2003.11.003] [PMID: 15010288]
[120]
Pasterkamp G, de Kleijn DPV, Borst C. Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications. Cardiovasc Res 2000; 45(4): 843-52.
[http://dx.doi.org/10.1016/S0008-6363(99)00377-6] [PMID: 10728409]
[121]
Wang C, Baker BM, Chen CS, Schwartz MA. Endothelial cell sensing of flow direction. Arterioscler Thromb Vasc Biol 2013; 33(9): 2130-6.
[http://dx.doi.org/10.1161/ATVBAHA.113.301826] [PMID: 23814115]
[122]
Colciago CM, Deparis S, Quarteroni A. Comparisons between reduced order models and full 3D models for fluidstructure interaction problems in haemodynamics. J Comput Appl Math 2014; 265: 120-38.
[http://dx.doi.org/10.1016/j.cam.2013.09.049]
[123]
de Tullio MD, Nam J, Pascazio G, Balaras E, Verzicco R. Computational prediction of mechanical hemolysis in aortic valved prostheses. Eur J Mech BFluids 2012; 35: 47-53.
[http://dx.doi.org/10.1016/j.euromechflu.2012.01.009]
[124]
Kung EO, Les AS, Figueroa CA, et al. In vitro validation of finite element analysis of blood flow in deformable models. Ann Biomed Eng 2011; 39(7): 1947-60.
[http://dx.doi.org/10.1007/s10439-011-0284-7] [PMID: 21404126]
[125]
Cristallo A, Verzicco R. Combined immersed boundary/large-eddy-simulations of incompressible three dimensional complex flows. Flow Turbul Combus 2006; 77(1): 3-26.
[http://dx.doi.org/10.1007/s10494-006-9034-6]
[126]
Duarte F, Gormaz R, Natesan S. Arbitrary LagrangianEulerian method for NavierStokes equations with moving boundaries. Comput Methods Appl Mech Eng 2004; 193: 4819-36.
[http://dx.doi.org/10.1016/j.cma.2004.05.003]
[127]
Donea J, Huerta A, Ponthot J-Ph, Rodr’ıguez-Ferran A. John Wiley Sons 2004; Volume 1: Fundamentals.Arbitrary LagrangianEulerian Methods.E Stein, R de Borst, TJR Hughes Encyclopedia of Computational Mechanics.
[128]
Sun P, Xu J, Zhang L. Full Eulerian finite element method of a phase field model for fluidstructure interaction problem. Comput Fluids 2014; 90: 1-8.
[http://dx.doi.org/10.1016/j.compfluid.2013.11.010]
[129]
Kim W, Choi H. Immersed boundary methods for fluid-structure interaction: A review. Int J Heat Fluid Flow 2019; 75: 301-9.
[http://dx.doi.org/10.1016/j.ijheatfluidflow.2019.01.010]
[130]
Causin P, Gerbeau JF, Nobile F. Added-mass effect in the design of partitioned algorithms for fluidstructure problems. Comput Methods Appl Mech Eng 2005; 194: 4506-27.
[http://dx.doi.org/10.1016/j.cma.2004.12.005]
[131]
Deparis S, Discacciati M, Fourestey G, Quarteroni A. Fluidstructure algorithms based on SteklovPoincar’e operators. Comput Methods Appl Mech Eng 2006; 195: 5797-812.
[http://dx.doi.org/10.1016/j.cma.2005.09.029]
[132]
Guan D, Liang F, Gremaud PA. Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model. J Biomech 2016; 49(9): 1583-92.
[http://dx.doi.org/10.1016/j.jbiomech.2016.03.037] [PMID: 27062594]
[133]
Ku¨ttler U, Gee MW, F¨orster C, Comerford A, Wall WA. Coupling strategies for biomedical fluidstructure interaction problems. Int J Numer Methods Biomed Eng 2010; 26(3-4): 305321.
[http://dx.doi.org/10.1002/cnm.1281]
[134]
Deparis S, Forti D, Heinlein A, Klawonn A, Quarteroni A, Rheinbach O. A comparison of preconditioners for the SteklovPoincare formulation of the fluidstructure coupling in hemodynamics. Proc Appl Math Mech 2015; 15: 93-4.
[http://dx.doi.org/10.1002/pamm.201510037]
[135]
Crosetto P, Deparis S, Fourestey G, Quarteroni A. Parallel algorithms for fluidstructure interaction problems in haemodynamics. SIAM J Sci Comput 2011; 33: 1598-622.
[http://dx.doi.org/10.1137/090772836]
[136]
Tricerri P, Ded’e L, Deparis S, Quarteroni A, Robertson AM, Sequeira A. Fluidstructure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws. Comput Mech 2015; 55: 479-98.
[http://dx.doi.org/10.1007/s00466-014-1117-y]
[137]
Di Martino ES, Guadagni G, Fumero A, et al. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 2001; 23(9): 647-55.
[http://dx.doi.org/10.1016/S1350-4533(01)00093-5] [PMID: 11755809]
[138]
Wolters BJ, Rutten MC, Schurink GW, Kose U, de Hart J, van de Vosse FN. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms. Med Eng Phys 2005; 27(10): 871-83.
[http://dx.doi.org/10.1016/j.medengphy.2005.06.008] [PMID: 16157501]
[139]
Auricchio F, Conti M, Ferrara A, Morganti S, Reali A. Patient-specific finite element analysis of carotid artery stenting: a focus on vessel modeling. Int J Numer Methods Biomed Eng 2013; 29(6): 645-64.
[http://dx.doi.org/10.1002/cnm.2511] [PMID: 23729192]
[140]
Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann Biomed Eng 2008; 36(6): 921-32.
[http://dx.doi.org/10.1007/s10439-008-9490-3] [PMID: 18398680]
[141]
White CJ, Gray WA. Endovascular therapies for peripheral arterial disease: an evidence-based review. Circulation 2007; 116(19): 2203-15.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.621391] [PMID: 17984390]
[142]
Schillinger M, Minar E. Percutaneous treatment of peripheral artery disease: novel techniques. Circulation 2012; 126(20): 2433-40.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.036574] [PMID: 23147770]
[143]
Vrints CJM. Spontaneous coronary artery dissection. Heart 2010; 96(10): 801-8.
[http://dx.doi.org/10.1136/hrt.2008.162073] [PMID: 20448134]
[144]
Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 2001; 103(8): 1051-6.
[http://dx.doi.org/10.1161/01.CIR.103.8.1051] [PMID: 11222465]
[145]
Karimi A, Navidbakhsh M, Razaghi R. A finite element study of balloon expandable stent for plaque and arterial wall vulnerability assessment. J Appl Phys 2014; 116: 044701.
[http://dx.doi.org/10.1063/1.4891019]
[146]
Schillinger M, Haumer M, Schlerka G, et al. Restenosis after percutaneous transluminal angioplasty in the femoropopliteal segment: the role of inflammation. J Endovasc Ther 2001; 8(5): 477-83.
[http://dx.doi.org/10.1177/152660280100800509] [PMID: 11718406]
[147]
Koizumi A, Kumakura H, Kanai H, et al. Ten-year patency and factors causing restenosis after endovascular treatment of iliac artery lesions. Circ J 2009; 73(5): 860-6.
[http://dx.doi.org/10.1253/circj.CJ-08-0765] [PMID: 19282607]
[148]
Kuntz RE, Baim DS. Defining coronary restenosis. Newer clinical and angiographic paradigms. Circulation 1993; 88(3): 1310-23.
[http://dx.doi.org/10.1161/01.CIR.88.3.1310] [PMID: 8353892]
[149]
Dottori S, Flamini V, Vairo G. Mechanical behavior of peripheral stents and stent-vessel interaction: A computational study. Int J Comput Meth Eng Sci Mech 2016; 17(3): 196-210.
[http://dx.doi.org/10.1080/15502287.2016.1188530]
[150]
Baerlocher MO, Kennedy SA, Rajebi MR, et al. Meta-analysis of drug-eluting balloon angioplasty and drug-eluting stent placement for infrainguinal peripheral arterial disease. J Vasc Interv Radiol 2015; 26(4): 459-73.e4.
[http://dx.doi.org/10.1016/j.jvir.2014.12.013] [PMID: 25703839]
[151]
Fattori R, Piva T. Drug-eluting stents in vascular intervention. Lancet 2003; 361(9353): 247-9.
[http://dx.doi.org/10.1016/S0140-6736(03)12275-1] [PMID: 12547552]
[152]
O’Connell BM, McGloughlin TM, Walsh MT. Factors that affect mass transport from drug eluting stents into the artery wall. Biomed Eng Online 2010; 9: 15.
[http://dx.doi.org/10.1186/1475-925X-9-15] [PMID: 20214774]
[153]
Weiser JR, Saltzman WM. Controlled release for local delivery of drugs: barriers and models. J Control Release 2014; 190: 664-73.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.048] [PMID: 24801251]
[154]
Yang C, Burt HM. Drug-eluting stents: factors governing local pharmacokinetics. Adv Drug Deliv Rev 2006; 58(3): 402-11.
[http://dx.doi.org/10.1016/j.addr.2006.01.017] [PMID: 16616969]
[155]
Sousa JE, Costa MA, Abizaid AC, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation 2001; 104(17): 2007-11.
[http://dx.doi.org/10.1161/hc4201.098056] [PMID: 11673337]
[156]
Grube E, Silber S, Hauptmann KE, et al. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation 2003; 107(1): 38-42.
[http://dx.doi.org/10.1161/01.CIR.0000047700.58683.A1] [PMID: 12515740]
[157]
Nakazawa G, Finn AV, Ladich E, et al. Drug-eluting stent safety: findings from preclinical studies. Expert Rev Cardiovasc Ther 2008; 6(10): 1379-91.
[http://dx.doi.org/10.1586/14779072.6.10.1379] [PMID: 19018691]
[158]
Huang Y, Venkatraman SS, Boey FYC, et al. In vitro and in vivo performance of a dual drug-eluting stent (DDES). Biomaterials 2010; 31(15): 4382-91.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.147] [PMID: 20189244]
[159]
Schwarzmaier-D’Assie A, Nyolczas N, Hemetsberger R, et al. Comparison of short- and long-term results of drug-eluting vs. bare metal stenting in the porcine internal carotid artery. J Endovasc Ther 2011; 18(4): 547-58.
[http://dx.doi.org/10.1583/10-3347.1] [PMID: 21861747]
[160]
Ma X, Oyamada S, Gao F, et al. Paclitaxel/sirolimus combination coated drug-eluting stent: in vitro and in vivo drug release studies. J Pharm Biomed Anal 2011; 54(4): 807-11.
[http://dx.doi.org/10.1016/j.jpba.2010.10.027] [PMID: 21126843]
[161]
Khan W, Farah S, Nyska A, Domb AJ. Carrier free rapamycin loaded drug eluting stent: in vitro and in vivo evaluation. J Control Release 2013; 168(1): 70-6.
[http://dx.doi.org/10.1016/j.jconrel.2013.02.012] [PMID: 23462671]
[162]
Seidlitz A, Nagel S, Semmling B, Sternberg K, Kroemer HK, Weitschies W. In vitro dissolution testing of drug-eluting stents. Curr Pharm Biotechnol 2013; 14(1): 67-75.
[PMID: 23092259]
[163]
Semmling B, Nagel S, Sternberg K, Weitschies W, Seidlitz A. Impact of different tissue-simulating hydrogel compartments on in vitro release and distribution from drug-eluting stents. Eur J Pharm Biopharm 2014; 87(3): 570-8.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.010] [PMID: 24801065]
[164]
Habib A, Finn AV. Endothelialization of drug eluting stents and its impact on dual anti-platelet therapy duration. Pharmacol Res 2015; 93: 22-7.
[http://dx.doi.org/10.1016/j.phrs.2014.12.003] [PMID: 25533811]
[165]
Liu Y, Gao L, Song Y, et al. Efficacy and safety of limus-eluting versus paclitaxel-eluting coronary artery stents in patients with diabetes mellitus: A meta-analysis. Int J Cardiol 2015; 184: 680-91.
[http://dx.doi.org/10.1016/j.ijcard.2015.02.002] [PMID: 25777069]
[166]
Lovich MA, Edelman ER. Computational simulations of local vascular heparin deposition and distribution. Am J Physiol 1996; 271(5 Pt 2): H2014-24.
[PMID: 8945921]
[167]
Costantini S, Maceri F, Vairo G. Un modello del rilascio di farmaco in stent coronarici (in Italian). Proc XVII National Congress of Computational Mechanics Group (GIMC).
[168]
Hwang CW, Wu D, Edelman ER. Physiological transport forces govern drug distribution for stent-based delivery. Circulation 2001; 104(5): 600-5.
[http://dx.doi.org/10.1161/hc3101.092214] [PMID: 11479260]
[169]
Zunino P. Multidimensional pharmacokinetic models applied to the design of drug-eluting stents. Cardiovasc Eng 2004; 4: 181-91.
[http://dx.doi.org/10.1023/B:CARE.0000031547.39178.cb]
[170]
Grassi M, Pontrelli G, Teresi L, et al. Novel design of drug delivery in stented arteries: a numerical comparative study. Math Biosci Eng 2009; 6(3): 493-508.
[http://dx.doi.org/10.3934/mbe.2009.6.493] [PMID: 19566122]
[171]
Vairo G, Cioffi M, Cottone R, Dubini G, Migliavacca F. Drug release from coronary eluting stents: A multidomain approach. J Biomech 2010; 43(8): 1580-9.
[http://dx.doi.org/10.1016/j.jbiomech.2010.01.033] [PMID: 20185137]
[172]
Zhu X, Pack DW, Braatz RD. Modelling intravascular delivery from drug-eluting stents with biodurable coating: investigation of anisotropic vascular drug diffusivity and arterial drug distribution. Comput Methods Biomech Biomed Engin 2014; 17(3): 187-98.
[http://dx.doi.org/10.1080/10255842.2012.672815] [PMID: 22512464]
[173]
Mongrain R, Faik I, Leask RL, Rodés-Cabau J, Larose E, Bertrand OF. Effects of diffusion coefficients and struts apposition using numerical simulations for drug eluting coronary stents. J Biomech Eng 2007; 129(5): 733-42.
[http://dx.doi.org/10.1115/1.2768381] [PMID: 17887899]
[174]
Hose DR, Narracott AJ, Griffiths B, et al. A thermal analogy for modelling drug elution from cardiovascular stents. Comput Methods Biomech Biomed Engin 2004; 7(5): 257-64.
[http://dx.doi.org/10.1080/10255840412331303140] [PMID: 15621648]
[175]
Migliavacca F, Gervaso F, Prosi M, et al. Expansion and drug elution model of a coronary stent. Comput Methods Biomech Biomed Engin 2007; 10(1): 63-73.
[http://dx.doi.org/10.1080/10255840601071087] [PMID: 18651272]
[176]
Cutrì E, Zunino P, Morlacchi S, Chiastra C, Migliavacca F. Drug delivery patterns for different stenting techniques in coronary bifurcations: a comparative computational study. Biomech Model Mechanobiol 2013; 12(4): 657-69.
[http://dx.doi.org/10.1007/s10237-012-0432-5] [PMID: 22936016]
[177]
Zunino P, D’Angelo C, Petrini L, Vergara C, Capelli C, Migliavacca F. Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comput Methods Appl Mech Eng 2009; 198: 3633-44.
[http://dx.doi.org/10.1016/j.cma.2008.07.019]
[178]
Cattaneo L, Chiastra C, Cutr’ı E, Migliavacca F, Morlacchi S, Zunino P. An Immersed Boundary Method for Drug Release Applied to Drug Eluting Stents Dedicated to Arterial Bifurcations. Numer Math Adv Appl 2013; 198: 401-9.
[http://dx.doi.org/10.1007/978-3-642-33134-3_43]
[179]
Creel CJ, Lovich MA, Edelman ER. Arterial paclitaxel distribution and deposition. Circ Res 2000; 86(8): 879-84.
[http://dx.doi.org/10.1161/01.RES.86.8.879] [PMID: 10785510]
[180]
Sheiban I, Ballari GP, Moretti C, et al. Paclitaxel-eluting stents for the treatment of complex coronary lesions: immediate and 12-month results. J Cardiovasc Med (Hagerstown) 2007; 8(8): 582-8.
[http://dx.doi.org/10.2459/01.JCM.0000281708.66552.02] [PMID: 17667028]
[181]
Pontrelli G, Di Mascio A, de Monte F. Local mass non-equilibrium dynamics in muli-layered porous media: application to drug eluting stent. Int J Heat Mass Transf 2013; 66: 844-54.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.041]
[182]
Pontrelli G, de Monte F. A multi-layer porous wall model for coronary drug-eluting stents. Int J Heat Mass Transf 2010; 53: 3629-37.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.03.031]
[183]
Pontrelli G, de Monte F. Modeling of mass dynamics in arterial drug-eluting stents. J Porous Media 2009; 12: 19-28.
[http://dx.doi.org/10.1615/JPorMedia.v12.i1.20]
[184]
Bozsak F, Chomaz JM, Barakat AI, Pontrelli G. On the role of phase change in modelling drugeluting stents. Biomedical Technology. Lec Notes Appl Comput Mech 2015; 74: 69-80.
[185]
dErrico M, Sammarco P, Vairo G, 2015. Analytical modeling of drug dynamics induced by eluting stents in the coronary multi-layered curved domain. Math Biosci 2015; 267: 79-96.
[186]
Naghipoor J, Ferreira JA, de Oliveira P, Rabczuk T. Tuning polymeric and drug properties in a drug eluting stent: a numerical study. Appl Math Model 2016; 40(17-18): 8067-86.
[http://dx.doi.org/10.1016/j.apm.2016.04.001]
[187]
García Carrascal P, García García J, Sierra Pallares J, Castro Ruiz F, Manuel Martín FJ. Numerical study of blood clots influence on the flow pattern and platelet activation on a stented bifurcation model. Ann Biomed Eng 2017; 45(5): 1279-91.
[http://dx.doi.org/10.1007/s10439-016-1782-4] [PMID: 28028712]
[188]
Vijayaratnam PRS, Reizes JA, Barber TJ. Flow-Mediated Drug Transport from Drug-Eluting Stents is Negligible: Numerical and In-vitro Investigations. Ann Biomed Eng 2019; 47(3): 878-90.
[http://dx.doi.org/10.1007/s10439-018-02176-y] [PMID: 30552528]
[189]
Chen Y, Xiong Y, Jiang W, et al. Numerical simulation on the effects of drug-eluting stents with different bending angles on hemodynamics and drug distribution. Med Biol Eng Comput 2016; 54(12): 1859-70.
[http://dx.doi.org/10.1007/s11517-016-1488-7] [PMID: 27048391]
[190]
Ferreira JA, Gonçalves L, Naghipoor J, de Oliveira P, Rabczuk T. The influence of atherosclerotic plaques on the pharmacokinetics of a drug eluted from bioabsorbable stents. Math Biosci 2017; 283: 71-83.
[http://dx.doi.org/10.1016/j.mbs.2016.11.005] [PMID: 27840281]
[191]
Jiang B, Thondapu V, Poon E, Barlis P, Ooi A. Numerical study of incomplete stent apposition caused by deploying undersized stent in arteries with elliptical cross-sections. J Biomech Eng 2019; 141(5)
[http://dx.doi.org/10.1115/1.4042899] [PMID: 30778567]
[192]
Escuer J, Cebollero M, Peña E, McGinty S, Martínez MA. How does stent expansion alter drug transport properties of the arterial wall? J Mech Behav Biomed Mater 2020; 104: 103610.
[http://dx.doi.org/10.1016/j.jmbbm.2019.103610] [PMID: 32174384]
[193]
Naghipoor J, Rabczuk T. A mechanistic model for drug release from PLGA-based drug eluting stent: A computational study. Comput Biol Med 2017; 90: 15-22.
[http://dx.doi.org/10.1016/j.compbiomed.2017.09.001] [PMID: 28917119]
[194]
McKittrick CM, McKee S, Kennedy S, et al. Combining mathematical modelling with in vitro experiments to predict in vivo drug-eluting stent performance. J Control Release 2019; 303: 151-61.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.012] [PMID: 30878363]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy