Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Diagnosis Model of Hydrogen Sulfide Poisoning Based on Support Vector Machine

Author(s): Yifan Ying, Yongxi Jin, Xianchuan Wang, Jianshe Ma, Min Zeng* and Xianqin Wang*

Volume 17, Issue 8, 2021

Published on: 27 July, 2020

Page: [1036 - 1042] Pages: 7

DOI: 10.2174/1573412916999200727181005

Price: $65

Abstract

Introduction: Hydrogen sulfide (H2S) is a lethal environmental and industrial poison. The mortality rate of occupational acute H2S poisoning reported in China is 23.1% ~ 50%. Due to the huge amount of information on metabolomics changes after body poisoning, it is important to use intelligent algorithms to investigate multivariate interactions.

Methods: This paper first uses GC-MS metabolomics to detect changes in the urine components of the poisoned group and control rats to form a metabolic dataset, and then uses the SVM classification algorithm in machine learning to train the hydrogen sulfide poisoning training dataset to obtain a classification recognition model. A batch of rats (n = 15) was randomly selected and exposed to 20 ppm H2S gas for 40 days (twice morning and evening, 1 hour each exposure) to prepare a chronic H2S rat poisoning model. The other rats (n = 15) were exposed to the same volume of air and 0 ppm hydrogen sulfide gas as the control group. The treated urine samples were tested using a GC-MS.

Results: The method locates the optimal parameters of SVM, which improves the accuracy of SVM classification to 100%. This paper uses the information to gain an attribute evaluation method to screen out the top 6 biomarkers that contribute to the predicted category (Glycerol, &946;-Hydroxybutyric acid, arabinofuranose, Pentitol, L-Tyrosine, L-Proline).

Conclusion: The SVM diagnostic model of hydrogen sulfide poisoning constructed in this work has training time and prediction accuracy; it has achieved excellent results and provided an intelligent decision- making method for the diagnosis of hydrogen sulfide poisoning.

Keywords: Hydrogen sulfide, metabolomics, poisoning, SVM, GC-MS, machine learning.

Graphical Abstract

[1]
Lim, E.; Mbowe, O.; Lee, A.S.; Davis, J. Effect of environmental exposure to hydrogen sulfide on central nervous system and respiratory function: a systematic review of human studies. Int. J. Occup. Environ. Health, 2016, 22(1), 80-90.
[http://dx.doi.org/10.1080/10773525.2016.1145881] [PMID: 27128692]
[2]
Lewis, R.J.; Copley, G.B. Chronic low-level hydrogen sulfide exposure and potential effects on human health: a review of the epidemiological evidence. Crit. Rev. Toxicol., 2015, 45(2), 93-123.
[http://dx.doi.org/10.3109/10408444.2014.971943] [PMID: 25430508]
[3]
Yang, X.; Zhang, Z.; Lin, D.; Wang, X.; Lin, G. Determination of phenacetin and bupropion in rat plasma after acute hydrogen sulfide poisoning. Lat. Am. J. Pharm., 2014, 33(4), 691-695.
[4]
Zhang, M.; Chen, X.; Hu, G.; Pan, J.; Wang, X. Simultaneous determination of tolbutamide and hydroxytolbutamide in rat plasma after acute hydrogen sulfide poisoning by liquid chromatography-mass spectrometry. Lat. Am. J. Pharm., 2013, 32(8), 1158-1163.
[5]
Azarbarz, N.; Shafiei Seifabadi, Z.; Moaiedi, M.Z.; Mansouri, E. Assessment of the effect of sodium hydrogen sulfide (hydrogen sulfide donor) on cisplatin-induced testicular toxicity in rats. Environ. Sci. Pollut. Res. Int., 2020, 27(8), 8119-8128.
[http://dx.doi.org/10.1007/s11356-019-07266-5] [PMID: 31900777]
[6]
Dorman, D.C. Use of nasal pathology in the derivation of inhalation toxicity values for hydrogen sulfide. Toxicol. Pathol., 2019, 47(8), 1043-1048.
[http://dx.doi.org/10.1177/0192623319878401] [PMID: 31665998]
[7]
Dongó, E.; Hornyák, I.; Benko, Z.; Kiss, L. The cardioprotective potential of hydrogen sulfide in myocardial ischemia/reperfusion injury (review). Acta Physiol. Hung., 2011, 98(4), 369-381.
[http://dx.doi.org/10.1556/APhysiol.98.2011.4.1] [PMID: 22173019]
[8]
Hughes, M.N.; Centelles, M.N.; Moore, K.P. Making and working with hydrogen sulfide: The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radic. Biol. Med., 2009, 47(10), 1346-1353.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.09.018] [PMID: 19770036]
[9]
Ng, P.C.; Hendry-Hofer, T.B.; Witeof, A.E.; Brenner, M.; Mahon, S.B.; Boss, G.R.; Haouzi, P.; Bebarta, V.S. Hydrogen sulfide toxicity: mechanism of action, clinical presentation, and countermeasure development. J. Med. Toxicol., 2019, 15(4), 287-294.
[http://dx.doi.org/10.1007/s13181-019-00710-5] [PMID: 31062177]
[10]
Zhang, Z.C.; Liu, J.L.; Jian, X.D.; Wang, K. An investigation of an accident of occupational acute hydrogen sulfide poisoning. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2017, 35(7), 521-522.
[PMID: 29081104]
[11]
Chen, J.; Chen, S.; Mao, W. A case of survival: myocardial infarction and ventricular arrhythmia induced by severe hydrogen sulfide poisoning. Cardiology, 2016, 135(1), 43-47.
[http://dx.doi.org/10.1159/000445938] [PMID: 27193372]
[12]
Zhou, J.; Lian, J.; Li, H.X.; Hong, G.L.; Zhao, G.J.; Zhi, S.C.; Qiu, Q.M.; Li, M.F.; Lu, Z.Q. Mechanism research and effect of ulinastatin in the brain tissue injury of acute hydrogen sulfide intoxicated rats. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2016, 34(3), 166-172.
[PMID: 27220433]
[13]
Ge, Y.; Sun, W.; Wu, Z.S.; Jiang, X.Z.; Qiu, Q.M.; Hong, G.L.; Liang, H.; Li, M.F.; Lu, Z.Q. Effect of ulinastatin on oxidative stress and nuclear factor E2-related factor 2 expression in the lung tissues of acute hydrogen sulfide intoxicated rats. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2012, 30(1), 27-32.
[PMID: 22730684]
[14]
Wu, X.; Liu, Y.; Yin, S.; Xiao, K.; Xiong, Q.; Bian, S.; Liang, S.; Hou, H.; Hu, J.; Yang, J. Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environ. Pollut., 2020, 266(Pt 1), 115159.
[http://dx.doi.org/10.1016/j.envpol.2020.115159] [PMID: 32663678]
[15]
Bernatchez, J.A.; McCall, L.I. Insights gained into respiratory infection pathogenesis using lung tissue metabolomics. PLoS Pathog., 2020, 16(7), e1008662.
[http://dx.doi.org/10.1371/journal.ppat.1008662] [PMID: 32663224]
[16]
Zhao, G.; Zhao, W.; Han, L.; Ding, J.; Chang, Y. Metabolomics analysis of sea cucumber (Apostichopus japonicus) in different geographical origins using UPLC-Q-TOF/MS. Food Chem., 2020, 333.
[17]
Deng, M.; Zhang, M.; Huang, X.; Ma, J.; Hu, L.; Lin, G.; Wang, X. A gas chromatography-mass spectrometry based study on serum metabolomics in rats chronically poisoned with hydrogen sulfide. J. Forensic Leg. Med., 2015, 32, 59-63.
[http://dx.doi.org/10.1016/j.jflm.2015.02.014]
[18]
Zhang, M.; Deng, M.; Ma, J.; Wang, X. An evaluation of acute hydrogen sulfide poisoning in rats through serum metabolomics based on gas chromatography-mass spectrometry. Chem. Pharm. Bull. (Tokyo), 2014, 62(6), 505-507.
[http://dx.doi.org/10.1248/cpb.c13-00988] [PMID: 24881655]
[19]
Attard, J.A.; Dunn, W.B.; Mergental, H.; Mirza, D.F.; Afford, S.C.; Perera, M.T.P.R. Systematic review: clinical metabolomics to forecast outcomes in liver transplantation surgery. OMICS, 2019, 23(10), 463-476.
[http://dx.doi.org/10.1089/omi.2019.0086] [PMID: 31513460]
[20]
Carter, R.A.; Pan, K.; Harville, E.W.; McRitchie, S.; Sumner, S. Metabolomics to reveal biomarkers and pathways of preterm birth: a systematic review and epidemiologic perspective. Metabolomics, 2019, 15(9), 124.
[http://dx.doi.org/10.1007/s11306-019-1587-1] [PMID: 31506796]
[21]
Ke, C.; Pan, C.W.; Zhang, Y.; Zhu, X.; Zhang, Y. Metabolomics facilitates the discovery of metabolic biomarkers and pathways for ischemic stroke: a systematic review. Metabolomics, 2019, 15(12), 152.
[http://dx.doi.org/10.1007/s11306-019-1615-1] [PMID: 31754808]
[22]
Bitencourt, A.G.V.; Goldberg, J.; Pinker, K.; Thakur, S.B. Clinical applications of breast cancer metabolomics using high-resolution magic angle spinning proton magnetic resonance spectroscopy (HRMAS 1H MRS): systematic scoping review. Metabolomics, 2019, 15(11), 148.
[http://dx.doi.org/10.1007/s11306-019-1611-5] [PMID: 31696341]
[23]
Cao, Y.Y.; Peng, L.L.; Jiang, L.; Thakur, K.; Hu, F.; Tang, S.M.; Wei, Z.J. Evaluation of the metabolic effects of hydrogen sulfide on the development of bombyx mori (lepidoptera: bombycidae), using liquid chromatography-mass spectrometry-based metabolomics. J. Insect Sci., 2020, 20(2), 4.
[http://dx.doi.org/10.1093/jisesa/ieaa008] [PMID: 32186739]
[24]
Jing, L.; Chengji, W. GC/MS-based metabolomics strategy to analyze the effect of exercise intervention in diabetic rats. Endocr. Connect., 2019, 8(6), 654-660.
[http://dx.doi.org/10.1530/EC-19-0012] [PMID: 31042671]
[25]
Seo, S.H.; Park, S.E.; Kim, E.J.; Youn, D.; Lee, Y.M.; Lee, S.Y.; Bok, S.H.; Park, D.H.; Seo, C.S.; Byun, S.H.; Jun, K.Y.; Kim, D.S.; Na, C.S.; Son, H.S. GC/MS-based metabolomics approach to evaluate the effect of jackyakgamcho-tang on acute colitis. Evid. Based Complement. Alternat. Med., 2019.
[26]
Lima, E.O.; Navarro, L.C.; Morishita, K.N.; Kamikawa, C.M.; Rodrigues, R.G.M.; Dabaja, M.Z.; de Oliveira, D.N.; Delafiori, J.; Dias-Audibert, F.L.; Ribeiro, M.D.S.; Vicentini, A.P.; Rocha, A.; Catharino, R.R. Metabolomics and machine learning approaches combined in pursuit for more accurate paracoccidioidomycosis diagnoses. mSystems, 2020, 5(3) e00258-20.
[http://dx.doi.org/10.1128/mSystems.00258-20] [PMID: 32606026]
[27]
Dias-Audibert, F.L.; Navarro, L.C.; de Oliveira, D.N.; Delafiori, J.; Melo, C.; Guerreiro, T.M.; Rosa, F.T.; Petenuci, D.L.; Watanabe, M.A.E.; Velloso, L.A.; Rocha, A.R.; Catharino, R.R. Combining machine learning and metabolomics to identify weight gain biomarkers. Front. Bioeng. Biotechnol., 2020, 8(6)
[http://dx.doi.org/10.3389/fbioe.2020.00006]
[28]
Zheng, H.; Zheng, P.; Zhao, L.; Jia, J.; Tang, S.; Xu, P.; Xie, P.; Gao, H. Predictive diagnosis of major depression using NMR-based metabolomics and least-squares support vector machine. Clin. Chim. Acta, 2017, 464, 223-227.
[29]
Khan, A.M.; Hanif, M.; Bukhari, N.I.; Shamim, R.; Rasool, F.; Rasul, S.; Shafique, S. Artificial Neural Network (ANN) Approach to predict an optimized ph-dependent mesalamine matrix tablet. Drug Des. Devel. Ther., 2020, 14, 2435-2448.
[30]
Wong, Y.J.; Arumugasamy, S.K.; Chung, C.H.; Selvarajoo, A.; Sethu, V. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel. Environ. Monit. Assess., 2020, 192(7), 439.
[http://dx.doi.org/10.1007/s10661-020-08268-4] [PMID: 32556670]
[31]
Smilkstein, M.J.; Bronstein, A.C.; Pickett, H.M.; Rumack, B.H. Hyperbaric oxygen therapy for severe hydrogen sulfide poisoning. J. Emerg. Med., 1985, 3(1), 27-30.
[http://dx.doi.org/10.1016/0736-4679(85)90216-1] [PMID: 4093555]
[32]
Whitcraft, D.D., III; Bailey, T.D.; Hart, G.B. Hydrogen sulfide poisoning treated with hyperbaric oxygen. J. Emerg. Med., 1985, 3(1), 23-25.
[http://dx.doi.org/10.1016/0736-4679(85)90215-X] [PMID: 4093554]
[33]
Aventaggiato, L.; Colucci, A.P.; Strisciullo, G.; Favalli, F.; Gagliano-Candela, R. Lethal Hydrogen Sulfide poisoning in open space: An atypical case of asphyxiation of two workers. Forensic Sci. Int., 2020, 308, 110122.
[34]
Fang, J.Y.; Zhang, H.L.; Xu, H.X. Characteristics analysis and control countermeasures of acute hydrogen sulfide poisoning in fishing boats in a city from 2009 to 2018. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2019, 37(4), 273-277.
[PMID: 31177693]

© 2024 Bentham Science Publishers | Privacy Policy