Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Advancement in Nano Pharmaceutical Formulations and their Biomedical Use

Author(s): Dharmendra Kumar*, Rishabha Malviya, Pramod K. Sharma, Akanksha Sharma and Vineet Bhardwaj

Volume 11, Issue 3, 2021

Published on: 23 July, 2020

Page: [262 - 269] Pages: 8

DOI: 10.2174/2210681210999200723165456

Price: $65

Abstract

Nanoparticles and modified nanoparticles are used in biological and medical sciences as liposomes, polymeric micelles, block ionomer complexes, dendrimers, inorganic and organic nanoparticles. Nanoparticles and surface-modified nanoparticles show good stability and water solubility and can be used efficiently as drug delivery carriers. This paper summarizes the advancement in nanoparticles/surface-modified nanoparticles and patents based on them.

Keywords: Nanoparticles, modified nanoparticles, drug discovery, patents, surface modification, grafting.

Graphical Abstract

[1]
Youngman, C.; Riyi, S.; Richard, B. Functionalized mesoporous silica nanoparticles based drug delivery systems to rescue acrolein mediated cell death. Nanomedicine, 2006, 3(4), 507.
[2]
Mohd, A.; Amar, J.D. Therapeutic nanoparticles: State of the art of nanomedicine. Adv. Mat. Rev., 2014, 1(1), 25.
[3]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[4]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[5]
Hans, M.L.; Lowman, A.M. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci., 2002, 6(4), 319-327.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[6]
Dinarvand, R.; Sepehri, N.; Manoochehri, S.; Rouhani, H.; Atyabi, F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomed., 2011, 6, 877-895.
[http://dx.doi.org/10.2147/IJN.S18905] [PMID: 21720501]
[7]
Bahera, A.L.; Patil, S.V.; Sahoo, S.K. Nanosizing of drugs: a promising approach for drug delivery. Pel. Res. Lib., 2010, 1(1), 20.
[8]
Jammel, A.S.M. Drug delivery with nanoparticles. Int. J. N Drug Del., 2011, 3(3), 161.
[PMID: 20465360]
[9]
Abhilas, M. Potential application of nanoparticles. Int. J. Pharm. Bio. Sci., 2011, 1(1), 1.
[10]
Wartlick, H.; Michaelis, K.; Balthasar, S.; Strebhardt, K.; Kreuter, J.; Langer, K. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J. Drug Target., 2004, 12(7), 461-471.
[http://dx.doi.org/10.1080/10611860400010697] [PMID: 15621671]
[11]
Teng, W.; Qianyu, Z.; Xiaojuan, W.; Jie, Z.; Xingguo, L. MOF-derived surface modified Ni-nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain., 2015, 2015, 32.
[12]
Sarita, K.; Susheel, K.; Annamaria Njuguna James, C.; Youssef, H.; Rajesh, K. Surface modification of inorganic nanoparticles for development of organic inorganic nanocomposites- A review. Prog. Polym. Sci., 2013, 38(8), 1232-1261.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.02.003]
[13]
Bagwe, R.P.; Hilliard, L.R.; Tan, W.; Weihong, T. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir, 2006, 22(9), 4357-4362.
[http://dx.doi.org/10.1021/la052797j] [PMID: 16618187]
[14]
Luca, G.; Alvarez-Puebla, RA; Nicolas, P.P. Surface modification of nanoparticles for stability in biological fluids. Materials, 2018, 11, 7-1154.
[15]
Patel, P.; Hanini, A.; Shah, A.; Patel, S.; Bhatt, P.; Pathak, Y.V. Surface modification of nanoparticles for targeted drug delivery; Springer, 2019, pp. 19-31.
[http://dx.doi.org/10.1007/978-3-030-06115-9_2]
[16]
Chen, Y.; Xianyu, Y.; Jiang, X. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res., 2017, 50(2), 310-319.
[http://dx.doi.org/10.1021/acs.accounts.6b00506] [PMID: 28068053]
[17]
Xiong, W.; Peng, L.; Chen, H. Li, Q Surface modification of MPEG-b-PCL based nanoparticle via oxidative self-polymerization of dopamine for malingnant melanoma thrapy. Int. J. Nanomad., 2015, 10, 2985-2996.
[18]
Kochamann, A.; Porsiel, J.C.; Saadat, R.; Garnmeitner, G. Impact of nanoparticle surface modification on the mechanical properties of polystyrene-based nanocomposites. RSC Adv., 2018, 2018, 20.
[http://dx.doi.org/10.1039/C8RA00052B]
[19]
Qie, Y.; Yuan, H.; von Roemeling, C.A.; Chen, Y.; Liu, X.; Shih, K.D.; Knight, J.A.; Tun, H.W.; Wharen, R.E.; Jiang, W.; Kim, B.Y. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci. Rep., 2016, 6, 26269.
[http://dx.doi.org/10.1038/srep26269] [PMID: 27197045]
[20]
Abhilas, K.K.; Solakhia, T.M.; Sikha, A. Chitosan nanoparticles- A drug delivery system. Int. Pharm. Bio. Arch., 2012, 3(4), 737.
[21]
Shi, P.J.; Yu, H.L.; Wang, H.M. Tribiological behavior of surface modified copper nanoparticles as lubricating additives. Phys. Proc., 2013, 50, 461.
[http://dx.doi.org/10.1016/j.phpro.2013.11.072]
[22]
Stephan, S. Epoxy resins modified with elastomers and surface modified silica nanoparticles. Polymer (Guildf.), 2013, 54, 4790.
[http://dx.doi.org/10.1016/j.polymer.2013.06.011]
[23]
Valerio, S.G.; Alves, J.S.; Klein, M.P.; Rodrigues, R.C.; Hertz, P.F. High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles. Carbohydr. Polym., 2013, 92(1), 462-468.
[http://dx.doi.org/10.1016/j.carbpol.2012.09.001] [PMID: 23218321]
[24]
Prijic, S.; Prosen, L.; Cemazar, M.; Scancar, J.; Romih, R.; Lavrencak, J.; Bregar, V.B.; Coer, A.; Krzan, M.; Znidarsic, A.; Sersa, G. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials, 2012, 33(17), 4379-4391.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.061] [PMID: 22429983]
[25]
Liang, S.; Wang, Y.; Yu, J.; Zhang, C.; Xia, J.; Yin, D. Surface modified superparamagnetic iron oxide nanoparticles: As a new carrier for bio-magnetically targeted therapy. J. Mater. Sci. Mater. Med., 2007, 18(12), 2297-2302.
[http://dx.doi.org/10.1007/s10856-007-3130-6] [PMID: 17562137]
[26]
Mahdavi, M.; Ahmad, M.B.; Haron, M.J.; Namvar, F.; Nadi, B.; Rahman, M.Z.; Amin, J. Synthesis, surface modification and cha-racterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 2013, 18(7), 7533-7548.
[http://dx.doi.org/10.3390/molecules18077533] [PMID: 23807578]
[27]
Huang, G.; Zhang, C.; Li, S.; Khemtong, C.; Yang, S.G.; Tian, R.; Minna, J.D.; Brown, K.C.; Gao, J. A novel strategy forsurface modification of supermagnetic iron oxide nanoparticles for lung cancer imaging. J. Mater. Chem., 2009, 19, 6367-6372.
[http://dx.doi.org/10.1039/b902358e] [PMID: 20505790]
[28]
Abolfazl, A.; Mohammad, S.; Sang, W.J.; Maryam, A. Synthesis characterization and in vitro studies of doxorubicin loaded mag-netic nanoparticles grafted to smart copolymers on a549 lung cancer cell line. J. Nanobiotech., 2012, 10, 46.
[http://dx.doi.org/10.1186/1477-3155-10-46]
[29]
Manoochehri, S.; Darvishi, B.; Kamalinia, G.; Amini, M.; Fallah, M.; Ostad, S.N.; Atyabi, F.; Dinarvand, R. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. Daru, 2013, 21(1), 58.
[http://dx.doi.org/10.1186/2008-2231-21-58] [PMID: 23866721]
[30]
Akbarzadeh, A.; Mikaeili, H.; Zarghami, N.; Mohammad, R.; Barkhordari, A.; Davaran, S. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4,” magnetic nanoparticles modified with biocompatible copolymers. Int. J. Nanomed., 2012, 7, 511-526.
[PMID: 22334781]
[31]
Youngman, C.; Riyi, S.; Richard, B.B. Functionalized mesoporous silica nanoparticles based drug delivery system to rescue acrolein mediated cell death. Nanomedicine, 2008, 3(4), 507.
[http://dx.doi.org/10.2217/17435889.3.4.507]
[32]
Baisong, C.; Jia, G.; Congying, L. Surface fictionalization of mag-netic mesoporous silica naoparticles for controlled drug release. J. Mater. Chem., 2010, 20, 9941.
[http://dx.doi.org/10.1039/c0jm01237h]
[33]
Wei, W.; Quanguo, H.; Changhong, J. Magnetic iron oxide nanoparticles: Synthesis and surface functionaliation strategies. Nanoscale Res. Lett., 2008, 93, 397.
[34]
Hong, R.Y.; Li, J.H.; Chen, L. Synthesis, surface modification and photocatalytic property of zno nanoparticles. Powder Technol., 2009, 189, 426.
[http://dx.doi.org/10.1016/j.powtec.2008.07.004]
[35]
Lee, P.; Zhang, R.; Li, V.; Liu, X.; Sun, R.W.; Che, C.M.; Wong, K.K. Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation. Int. J. Nanomed., 2012, 7, 731-737.
[PMID: 22359452]
[36]
Petra, K; Natasa, O; Mateja, C Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J. Cont. Rel., 2007, 12, 018.
[37]
Arsalani, N.; Fattahi, N.; Nazarpoor, M. Synthesis and charac-terization of PVP functionalized supermagnetic Fe3O4 nanoparticles as an MRI contrast agent. Exp. Poly. Lett., 2010, 4(6), 329.
[http://dx.doi.org/10.3144/expresspolymlett.2010.42]
[38]
Magdalena, S.; Dragan, U. Poly (lactide-co-glycolide) based micro and nanoparticles for the controlled drug delivery of vitamins. Curr. Nanosci., 2009, 5(1), 1.
[http://dx.doi.org/10.2174/157341309787314566]
[39]
Jung, T.P.; Jin, A.S.; Sung, H.A. Surface modification of silica naoparticles with hydrophilic polymers. J. Ind. Eng. Chem., 2010, 16, 517.
[http://dx.doi.org/10.1016/j.jiec.2010.03.030]
[40]
Hui, P.; Xiao, D.W.; Sha, S.X. Preparation and charcaterization of TiO2 nanoparticles surface modified by octadecyltrimethoxysilane. Indian J. Eng. Mater. Sci., 2013, 20, 561.
[41]
Hangyue, Z. Physiological properties of protein modified silver nanoparticles in seawater. Int. Nano Lett., 2013, 3, 54.
[http://dx.doi.org/10.1186/2228-5326-3-54]
[42]
Arabi, S.; Akbari, J.H.; Khoobi, M. Preparation and charac-terization of modified polyethyleneimine magnetic nanoparticles for cancer drug delivery. J. Nanomater., 2016, 2016, 2806407.
[http://dx.doi.org/10.1155/2016/2806407]
[43]
Lin, A.; Liu, Y.; Huang, Y.; Sun, J.; Wu, Z.; Zhang, X.; Ping, Q. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int. J. Pharm., 2008, 359(1-2), 247-253.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.039] [PMID: 18457928]
[44]
Kanel, S.R.; Nepal, D.; Manning, B. Transport of surface-modified iron nanoparticle in porous media and application to arsenic (III) remediation. J. Nanopart. Res., 2007, 9(5), 725-735.
[http://dx.doi.org/10.1007/s11051-007-9225-7]
[45]
Li, Z.; Zhu, Y. Surface-modification of SiO2 nanoparticles with oleic acid. Appl. Surf. Sci., 2003, 211(1-4), 315-320.
[http://dx.doi.org/10.1016/S0169-4332(03)00259-9]
[46]
Gu, H.; Ho, P.L.; Tong, E. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett., 2003, 3(9), 1261-1263.
[http://dx.doi.org/10.1021/nl034396z]
[47]
Xie, J.; Liu, G.; Eden, H.S.; Ai, H.; Chen, X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res., 2011, 44(10), 883-892.
[http://dx.doi.org/10.1021/ar200044b] [PMID: 21548618]
[48]
Gupta, A.K.; Naregalkar, R.R.; Vaidya, V.D.; Gupta, M. Recent advances on surface engineering of magnetic iron oxide nano-particles and their biomedical applications. Nanomedicine (Lond.), 2007, 2(1), 23-39.
[http://dx.doi.org/10.2217/17435889.2.1.23] [PMID: 17716188]
[49]
Girija, D.; Halehatty, S.B.N.; Vinay, K. Synthesis of functionalized iron oxide nanoprticles with amino pyridine moiety and studies on their catalytic behavior. Ame. Chem. Sci. J., 2011, 1(3), 97.
[http://dx.doi.org/10.9734/ACSJ/2011/437]
[50]
Zhiyuan, Y.; Yanjun, T.; Junhua, Z. Surface modification of caco3 nanoparticles with silane coupling agent for improvement of the interfacial compatibility with styrene butadiene rubber (sbr) latex. Chalco. Lett., 2013, 10(4), 131-141.
[51]
Pnkaj, P. Khirade, Shanker D., A.V.Raut, K.M “ Multiferroic iron deped BaTiO3 nanoceramics synthesized by Sol-gel auto combustion: Influence of iron on physical properties. Ceram. Int., 2016, 42(10)
[52]
Hui, P.; Xiao, D.W.; Shasha, X. Preparation and characterization of TiO2 nanoparticles surface modified by octadecyltrimethoxysilane. Indian J. Eng. Mater. Sci., 2013, 20, 563.
[53]
Boguslawa, G.; Miroslawa, E.F.; Ewa, W. Surface modification of TiO2 and SiO2 nanoparticles for application in polymeric nano-composites. Sci. Tech. Chem., 2011, 65(7), 621.
[54]
Wang, LS; Hong, R.Y. Synthesis, surface modification and characterization of nanoparticles. In: Polymer Composites; Wiley Online Liberary, 2010.
[http://dx.doi.org/10.1002/9783527652372.ch2]
[55]
Camporotondi, D.E.; Foglia, M.L.; Alvarez, G.S. antimicrobial properties of silica modified nanoparticles, microbial pathogens and strategies for combating them. Science Tech. Edu, 2013, 2013, 283.
[56]
Xu, K.; Wang, J.X.; Kang, X.L. Fabrication of antibacterial monodispersed Ag-SiO2 core-shell nanoparticles with high concentration. Mater. Lett., 2009, 63, 31.
[http://dx.doi.org/10.1016/j.matlet.2008.08.039]
[57]
Thurman, R.B.; Gerba, C.P.; Bitton, G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit. Rev. Environ. Control, 1989, 18, 295-315.
[http://dx.doi.org/10.1080/10643388909388351]
[58]
Kim, Y.H.; Lee, D.K.; Cha, H.G.; Kim, C.W.; Kang, Y.C.; Kang, Y.S. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J. Phys. Chem. B, 2006, 110(49), 24923-24928.
[http://dx.doi.org/10.1021/jp0656779] [PMID: 17149913]
[59]
Kanchana, S.; Teodor, V.; Mereck, N. Surface protected and modi-fied iron based core shell nanoparticles for biological application. New J. Chem., 2008, 32, 203.
[60]
Perez, J.M.; Someone, F.J.; Tsourkas, A. Peroxidase substrate nanosensors for MRI. Nano Lett., 2004, 4, 119.
[http://dx.doi.org/10.1021/nl034983k]
[61]
Oscar, B.M.; Maria, P.M.; Pedro, T. Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials, 2005, 26, 5695.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.020]
[62]
Gou, M.L.; Qian, Z.Y.; Tang, Y.B. J. Mater. Sci., 2008, 19, 1033.
[63]
Tanaka, H.; Sugita, T.; Yasunaga, Y.J. Efficiency of magnetic liposomal transforming growth factor‐beta 1 in the repair of articular cartilage defects in a rabbit model. J. Biomed. Mater. Res., 2005, 73, 255.
[http://dx.doi.org/10.1002/jbm.a.30187]
[64]
Brahler, M.; Georgieva, R.; Buske, N. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett., 2006, 6(11), 2505-2509.
[http://dx.doi.org/10.1021/nl0618501] [PMID: 17090081]
[65]
Denis, M.C.; Mahmood, U.; Benoist, C. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc. Nat. Acad. Sci. Lett., 2004, 101, 12634.
[http://dx.doi.org/10.1073/pnas.0404307101]
[66]
Kar, M.; Vijayakumar, P.S.; Prasad, B.L.; Sen Gupta, S. Synthesis and characterization of poly-L-lysine-grafted silica nanoparticles synthesized via NCA polymerization and click chemistry. Langmuir, 2010, 26(8), 5772-5781.
[http://dx.doi.org/10.1021/la903595x] [PMID: 20337478]
[67]
Jang, J; Kim, Y Fabrication of monodisperse silica polymer core-shell nanoparticles with excellent antimicrobial efficacy. Chem. Comm., 2008, 4016.
[http://dx.doi.org/10.1039/b809137d]
[68]
Wang, J.X.; Wen, L.X.; Wang, Z.H. Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effect. Mater. Chem. Phys., 2006, 96, 90.
[http://dx.doi.org/10.1016/j.matchemphys.2005.06.045]
[69]
Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 2009, 30(14), 2782-2789.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.052] [PMID: 19233464]
[70]
Xiao, Q.Z.; Shang, W.G.; Yu, Z. prussian blue modified iron oxide magnetic nanoparticles and their hifh peroxidase like acticity. J. Mater. Chem., 2010, 20, 5110-5114.
[http://dx.doi.org/10.1039/c0jm00174k]
[71]
Wei, Q.; Arbor, A; Makoto, M US2014/0170070A1 2014.
[72]
Nathan, E.S.; Guy, D.J.; Michael, D.D. Surface modified zirconia nanoparticles. US Patent, 8829079, 2014.
[73]
Silke, D.M.; Dusseldort, S.E.; Herrsching, A. Pressure Sensitive Adhesives Containing Reactive Surface Modified Nanoparticles. US2013/0035433A1, 2013.
[74]
Jimmie, R.B.; Prescott, A.J.; Michael, D.L. Polymer blends including surface modified nanoparticles and methods for making the same. US8, 618, 202B2, 2013.
[75]
Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2010, 368(1915), 1333-1383.
[http://dx.doi.org/10.1098/rsta.2009.0273] [PMID: 20156828]
[76]
Adela, G.; Maria, NVM; Geoffrey, A. Ink carriers containing surface modified nanoparticles, phase change inks including same and method for making same. CA2674216C, 2013.
[77]
Woodburry, D.D. Syatem mixed ligand surface modified nanoparticles. US8, 383,682B2, 2013.
[78]
Seoul, K.S.; Jae, W.J. Methods for surface modification of non dispersible metal nanoparticles and modified metal nanoparticles for inkjet by the same method. US8, 173, 210B2, 2012.
[79]
Amal, A.S. Surface modified heavy metals nanoparticles, composition and uses thereof. WO/2012/104831, 2012.
[80]
Chad, A.M.; Nathaniel, L.R.; Shad, C.T. Nucleic acid functionalized nanoparticles for therapeutic application. US8252756B2, 2012.
[81]
Kazuki, F.; James, L.H.; Alshakim, N. Surface modified nanoparticles. method of their preparation and uses thereof gene and drug delivery. US8226985B2, 2012.
[82]
Kristin, L.T.; Wendy, L.T. Resin system comprising dispersed multimodal surface modified nanoparticles. WO2011100289A1, 2011.
[83]
Norbert, R Method for producing a silane modified surface nanocorundum. US807007B2, 2011.
[84]
Christopher, B.W.J.R.; Marc, D.R.; Thomas, P.K. Durable antireflective film with surface modified inorganic nanoparticles. WO2007146686A3, 2010.
[85]
Sascha, G. Surface modified nanoparticles. EP2070521A1, 2009.
[86]
Schlenoff, B. Stabilized silica colloid. US20090202816A1, 2009.
[87]
Neeraj, S.; Chou, C.V. Surface modified nanoparticles. WO2009-1375592A2, 2009.
[88]
Emily, S.G. Resin system including reactive surface modified nanoparticles. WO2008027979A2, 2008.
[89]
Igor, Y.D.; Took, R.W. Surface modified nanoparticles and preparation method of same. US7405001B2, 2008.
[90]
Ronald, L.C.; Silvia, D.L.; Andrew, W.M. Surface modified nanoparticles such as aluminium oxyhydroxides, iron oxyhydroxides, scandium oxyhydroxides and mixtures thereof wherein a controlled amount of one or more organic acids are reacted with the particles, have specific useful properties when used in mixture with liquid as filler in solids. US7244498B2, 2007.
[91]
Jimmie, R.B.J.R.; Oswaldo, J.C. Use of surface modified nanoparticles for oil recovery. US10441721, 2006.
[92]
Jimmie, R.B. Foam including surface modified nanoparticles. EP1358254A2, 2003.
[93]
Gary, L.; Rochester, G. Surface modified NSAID nanoparticles. EP0644755B1, 1997.
[94]
Vinod, D.L.; Robert, J.L.; Cunxian, S.S. Surface modified nanoparticles and method of making and using same. EP0805678A1, 1997.
[95]
Ulrich, N.; Kleve, B. Alferd Surface modified nanoparticles comprising polyoxane modifier, their preparation and use. US7, 641, 972B2, 2010.
[96]
Philip, C.; Kenneth, C.C.; Gary, G.L. Surface Modified NSAID nanoparticles. WO199302510A1, 1993.
[97]
Gary, G.I.; Kenneth, C.C.; John, F.B. Surface Modified Drug Nanoparticles. CA2059432A1, 1992.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy