Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Interaction of a Vanadyl Schiff Base Complex with DNA and BSA: A Combination of Experimental and Computational Studies

Author(s): Hamid B. Aliabad, Maryam Mohamadi, Soudeh K. Falahati-Pour, Mohammad R. Hajizadeh, Danial Abdollahdokht, Mohammad H. Nematollahi and Mehdi Mahmoodi*

Volume 21, Issue 5, 2021

Published on: 21 July, 2020

Page: [630 - 639] Pages: 10

DOI: 10.2174/1871520620666200721105134

Price: $65

Abstract

Background and Purpose: Cancer is the primary cause of death in the world. Vanadium (IV) is a metal ion complex which has been proposed as a suitable candidate for cancer treatment. In this study, the interaction of the oxido-vanadium (IV) complex [VOL(bipy)] with salmon sperm DNA and Bovine Serum Albumin (BSA) was investigated through experimental and computational approaches. With the results of this experimental study, the mechanism and parameters related to the interaction of [VOL(bipy)] with DNA and BSA were determined.

Materials and Methods: The kinetic interaction of DNA and BSA with [VOL(bipy)] was determined using absorption titration and fluorescence quenching, respectively. Moreover, the possible interactions were calculated by molecular docking prediction using the available software.

Results: The binding constant (Kb) of the complex-DNA interaction was calculated to be 2.34×104 M-1, indicating a relatively strong interaction between the complex and DNA. It was found that the V(IV) complex interacted with DNA through the groove binding mode followed by partial intercalation into the DNA helix. The Kb values obtained for [VOL(bipy)]-BSA interaction were in the range of 1.07×103-5.82×104 M-1. The V(IV) complex was found to prefer the domain I binding pocket of BSA with the ΔGb value of -7.52 kcal/mol.

Conclusion: Both experimental and computational analyses confirmed the interaction of the vanadium complex with DNA and BSA. The moderate affinity of [VOL(bipy)] for BSA indicates that this protein is a good candidate for transferring the complex.

Keywords: V(IV) complex, DNA, Bovine Serum Albumin (BSA), molecular docking, anti-cancer drugs, binding constant.

Graphical Abstract

[1]
Winters, S.; Martin, C.; Murphy, D.; Shokar, N.K. Breast cancer epidemiology, prevention, and screening. Prog. Mol. Biol. Transl. Sci., 2017, 151, 1-32.
[http://dx.doi.org/10.1016/bs.pmbts.2017.07.002] [PMID: 29096890]
[2]
Karimi, F.; Shojaei, A.F.; Tabatabaeian, K.; Karimi-Maleh, H.; Shakeri, S. HSA loaded with CoFe2O4/MNPs as a high-efficiency carrier for epirubicin anticancer drug delivery. IET Nanobiotechnol., 2017, 12(3), 336-342.
[http://dx.doi.org/10.1049/iet-nbt.2017.0057] [PMID: 28476992]
[3]
Le Grazie, M.; Biagini, M.R.; Tarocchi, M.; Polvani, S.; Galli, A. Chemotherapy for hepatocellular carcinoma: The present and the future. World J. Hepatol., 2017, 9(21), 907-920.
[http://dx.doi.org/10.4254/wjh.v9.i21.907] [PMID: 28824742]
[4]
Alavi-Tabari, S.A.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem., 2018, 811, 84-88.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[5]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P.; Sadrnia, A. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl. Surf. Sci., 2018, 441, 55-60.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.237]
[6]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[http://dx.doi.org/10.1016/j.bios.2016.07.086] [PMID: 27494812]
[7]
Khodadadi, A.; Faghih-Mirzaei, E.; Karimi-Maleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V.K. A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: Experimental and docking theoretical investigations. Sens. Actuators B Chem., 2019, 284, 568-574.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[8]
Karimabad, M.N.; Mahmoodi, M.; Jafarzadeh, A.; Darehkordi, A.; Hajizadeh, M.R.; Khorramdelazad, H.; Falahati-Pour, S.K.; Hassanshahi, G. The novel Indole-3-formaldehyde (2-AITFEI-3-F) is involved in processes of apoptosis induction? Life Sci., 2017, 181, 31-44.
[http://dx.doi.org/10.1016/j.lfs.2017.05.026] [PMID: 28549559]
[9]
Ramezani, M.; Ramezani, M.; Hassanshahi, G.; Mahmoodi, M.; Zainodini, N.; Darekordi, A.; Falahati-Pour, S.K.; Mirzaei, M.R. Does the novel class of (2R, 4S)-N-(2, 5-difluorophenyl)-4-hydroxy-1-(2, 2, 2-trifluoroacetyl) pyrrolidine-2-carboxamide’s have any effect on cell viability and apoptosis of human hepatocellular carcinoma cells? Int. J. Cancer Manag., 2017, 10, e8413.
[10]
Bakhshi Aliabad, H.; Khanamani Falahati-Pour, S.; Ahmadirad, H.; Mohamadi, M.; Hajizadeh, M.R.; Mahmoodi, M. Vanadium complex: An appropriate candidate for killing hepatocellular carcinoma cancerous cells. Biometals, 2018, 31(6), 981-990.
[http://dx.doi.org/10.1007/s10534-018-0139-x] [PMID: 30255365]
[11]
Nair, R.S.; Kuriakose, M.; Somasundaram, V.; Shenoi, V.; Kurup, M.R.; Srinivas, P. The molecular response of vanadium complexes of nicotinoyl hydrazone in cervical cancers--a possible interference with HPV oncogenic markers. Life Sci., 2014, 116(2), 90-97.
[http://dx.doi.org/10.1016/j.lfs.2014.09.011] [PMID: 25258113]
[12]
Leon, I.E.; Cadavid-Vargas, J.F.; Di Virgilio, A.L.; Etcheverry, S.B. Vanadium, ruthenium and copper compounds: A new class of nonplatinum metallodrugs with anticancer activity. Curr. Med. Chem., 2017, 24(2), 112-148.
[http://dx.doi.org/10.2174/0929867323666160824162546] [PMID: 27554807]
[13]
León, I.E.; Díez, P.; Baran, E.J.; Etcheverry, S.B.; Fuentes, M. Decoding the anticancer activity of VO-clioquinol compound: the mechanism of action and cell death pathways in human osteosarcoma cells. Metallomics, 2017, 9(7), 891-901.
[http://dx.doi.org/10.1039/C7MT00068E] [PMID: 28581009]
[14]
Sciortino, G.; Sanna, D.; Ugone, V.; Lledós, A.; Maréchal, J-D.; Garribba, E. Decoding surface interaction of VIVO metallodrug candidates with lysozyme. Inorg. Chem., 2018, 57(8), 4456-4469.
[http://dx.doi.org/10.1021/acs.inorgchem.8b00134] [PMID: 29613772]
[15]
Ebrahimipour, S.Y.; Sheikhshoaie, I.; Kautz, A.C.; Ameri, M. PasbanAliabadi, H.; Rudbari, H.A.; Bruno, G.; Janiak, C. Mono and dioxido-vanadium (V) complexes of a tridentate ONO Schiff base ligand: Synthesis, spectral characterization, X-ray crystal structure, and anticancer activity. Polyhedron, 2015, 93, 99-105.
[http://dx.doi.org/10.1016/j.poly.2015.03.037]
[16]
Abbasi, Z.; Salehi, M.; Kubicki, M.; Khaleghian, A. Crystal structures, electrochemical properties, antioxidant screening and in vitro cyotoxic studies on four novel Cu(II) complexs of bidentate Schiff base ligands derived from 2-methoxyethylamine. J. Coord. Chem., 2017, 70(12), 2074-2093.
[http://dx.doi.org/10.1080/00958972.2017.1323082]
[17]
Hong, X-L.; Zeng, M-H.; Liu, L-J.; Ye, X-L.; Yi, D-S. Synthesis, characterization and in vitro antitumor behavior of a vanadium (V) complex with 40-(3-methoxyphenyl)-2, 20:60 200-terpyridine. J. Coord. Chem., 2017, 70, 1438-1450.
[http://dx.doi.org/10.1080/00958972.2017.1290800]
[18]
Schmidt, A-C.; Hermsen, M.; Rominger, F.; Dehn, R.; Teles, J.H.; Schäfer, A.; Trapp, O.; Schaub, T. Synthesis of monoand dinuclear vanadium complexes and their reactivity toward dehydroperoxidation of alkyl hydroperoxides. Inorg. Chem., 2017, 56(3), 1319-1332.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02322] [PMID: 28117985]
[19]
Sheikhshoaie, I.; Ebrahimipour, S.Y.; Lotfi, N.; Mague, J.T.; Khaleghi, M. Synthesis, spectral characterization, X-ray crystal structure and antimicrobial activities of two cis dioxido-vanadium (V) complexes incorporating unsymmetrical dimalonitrile-based (NNO) Schiff base ligands. Inorg. Chim. Acta, 2016, 442, 151-157.
[http://dx.doi.org/10.1016/j.ica.2015.11.026]
[20]
Takjoo, R.; Akbari, A.; Ebrahimipour, S.Y.; Kubicki, M.; Mohamadi, M.; Mollania, N. Synthesis, spectral characterization, DFT calculations, antimicrobial activity and molecular docking of 4-bromo-2-((2-hydroxy-5-methylphenylimino) methyl) phenol and its V (V) complex. Inorg. Chim. Acta, 2017, 455, 173-182.
[http://dx.doi.org/10.1016/j.ica.2016.10.018]
[21]
Heidari, F.; Fatemi, S.J.A.; Ebrahimipour, S.Y.; Ebrahimnejad, H.; Castro, J. Dusˇek, M.; Eigner, V. Six-coordinate oxovanadium (V) dimer complex with methoxy bridging: Synthesis, crystal structure, biological activity and molecular docking. Inorg. Chem. Commun., 2017, 76, 1-4.
[http://dx.doi.org/10.1016/j.inoche.2016.11.015]
[22]
Zabin, S.A.; Abdelbaset, M. Oxo/dioxo-vanadium (V) complexes with Schiff base ligands derived from 4-amino-5-mercapto-3-phenyl-1, 2, 4-triazole. Eur. J. Chem., 2016, 7, 322-328.
[http://dx.doi.org/10.5155/eurjchem.7.3.322-328.1444]
[23]
Johnson, C.P.; Atwood, J.L.; Steed, J.W.; Bauer, C.B.; Rogers, R.D. Transition metal complexes of p-sulfonatocalix[5]arene. Inorg. Chem., 1996, 35(9), 2602-2610.
[http://dx.doi.org/10.1021/ic950862e] [PMID: 11666475]
[24]
Dragutan, B.V.; Dragutan, I.; Verpoort, F. Ruthenium indenylidene complexes. Platin. Met. Rev., 2005, 49(1), 33-40.
[http://dx.doi.org/10.1595/147106705X24580]
[25]
Shawali, A.S.; Párkanyi, C. Hydrazidoyl halides in the synthesis of heterocycles. J. Heterocycl. Chem., 1980, 17(5), 833-854.
[http://dx.doi.org/10.1002/jhet.5570170501]
[26]
Stadler, A.-M.; Harrowfield, J. Bis-acyl-/aroyl-hydrazones as multidentate ligands. Inorg. Chim. Acta, 2009, 362(12), 4298-4314.
[http://dx.doi.org/10.1016/j.ica.2009.05.062]
[27]
Bishayee, A.; Karmakar, R.; Mandal, A.; Kundu, S.N.; Chatterjee, M. Vanadium-mediated chemoprotection against chemical hepatocarcinogenesis in rats: Haematological and histological characteristics. Eur. J. Cancer Prev., 1997, 6(1), 58-70.
[http://dx.doi.org/10.1097/00008469-199702000-00010] [PMID: 9161814]
[28]
Kulkarni, A.; Avaji, P.G.; Bagihalli, G.B.; Patil, S.A.; Badami, P.S. Synthesis, spectral, electrochemical and biological studies of Co (II), Ni (II) and Cu (II) complexes with Schiff bases of 8-formyl-7-hydroxy-4-methyl coumarin. J. Coord. Chem., 2009, 62(3), 481-492.
[http://dx.doi.org/10.1080/00958970802226387]
[29]
Iskander, M.F.; El Sayed, L.; Salem, N.M.; Werner, R.; Haase, W. Synthesis, characterization and magnetochemical studies of some copper (II) complexes derived from n-salicylidene-n-alkanoylhydrazins: X-ray crystal and molecular structure of bis [monochloro-(μ-n-salicylidenemyristoylhydrazine) ono (-1)] dicopper (II). Polyhedron, 2004, 23(1), 23-31.
[30]
Singh, V.P. Synthesis, electronic and ESR spectral studies on copper (II) nitrate complexes with some acylhydrazines and hydrazones. Spectrochim. Acta Part A: Mol. Biomol. Spectros., 2008, 71(1), 17-22.
[31]
Narang, K.K.; Singh, V.P. ESR studies on acylhydrazine and hydrazone copper (II) sulfate complexes. Trans. Metal Chem., 1996, 21(6), 507-511.
[32]
Barbazán, P.; Carballo, R.; Covelo, B.; Lodeiro, C.; Lima, J.C.; Vázquez‐López, E.M. Synthesis, characterization, and photophysical properties of 2-hydroxybenzaldehyde [(1E)-1-pyridin-2-ylethylidene] hydrazone and its rhenium (I) complexes. Eur. J. Inorg. Chem., 2008, 17, 2713-2720.
[http://dx.doi.org/10.1002/ejic.200701199]
[33]
Ispir, E. The synthesis, characterization, electrochemical character, catalytic and antimicrobial activity of novel, azo-containing Schiff bases and their metal complexes. Dyes Pigments, 2009, 82(1), 13-19.
[http://dx.doi.org/10.1016/j.dyepig.2008.09.019]
[34]
Zamani, F.; Zendehdel, M.; Mobinikhaledi, A.; Azarkish, M. Complexes of N, N-bis (salicylidene) 4, 5-dimethyl-1, 2-phenylenediamine immobilized on porous nanomaterials: Synthesis, characterization and study of their antimicrobial activity. Micropor. Mesopor. Mater., 2015, 212, 18-27.
[http://dx.doi.org/10.1016/j.micromeso.2015.02.052]
[35]
Rajavel, R.; Vadivu, M.S.; Anitha, C. Synthesis, physical characterization and biological activity of some Schiff base complexes. J. Chem., 2008, 5(3), 620-626.
[36]
Ahmad, B.; Parveen, S.; Khan, R.H. Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: A novel approach directly assigning binding site. Biomacromolecules, 2006, 7, 1350-1356.
[37]
Chow, C.S.; Barton, J.K. Transition metal complexes as probes of nucleic acids. Methods Enzymol., 1992, 212, 219-242.
[38]
Grivani, G.; Tahmasebi, V.; Khalaji, A.D.; Eigner, V.; Dušek, M. Synthesis, characterization, crystal structure, catalytic activity in oxidative bromination, and thermal study of a new oxidovanadium Schiff base complex containing O, N-bidentate Schiff base ligand. J. Coord. Chem., 2014, 67(22), 3664-3677.
[http://dx.doi.org/10.1080/00958972.2014.960405]
[39]
Grivani, G.; Tahmasebi, V.; Khalaji, A.D.; Fejfarová, K.; Dušek, M. ‏Synthesis, characterization and crystal structure determination of a new vanadium (IV) Schiff base complex (VOL2) and investigation of its catalytic activity in the epoxidation of cyclooctene. Polyhedron, 2013, 51, 54-60.
[http://dx.doi.org/10.1016/j.poly.2012.12.008]
[40]
Eftink, M.R.; Ghiron, C.A. Does the fluorescence quencher acrylamide bind to proteins? Biochim. Biophys. Acta (BBA)-. Protein Struct. Mol. Enzymol., 1987, 916(3), 343-349.
[http://dx.doi.org/10.1016/0167-4838(87)90179-8]
[41]
Yang, Q.; Guo, X.; Wang, W.; Zhang, Y.; Xu, S.; Lien, D.H.; Wang, Z.L. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano, 2010, 4(10), 6285-6291.
[http://dx.doi.org/10.1021/nn1022878] [PMID: 20919691]
[42]
Cui, F.L.; Fan, J.; Li, J.P.; Hu, Z.D. Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: Investigation by fluorescence spectroscopy. Bioorg. Med. Chem., 2004, 12(1), 151-157.
[http://dx.doi.org/10.1016/j.bmc.2003.10.018] [PMID: 14697780]
[43]
Kandagal, P.B.; Shaikh, S.M.T.; Manjunatha, D.H.; Seetharamappa, J.; Nagaralli, B.S. Spectroscopic studies on the binding of bioactive phenothiazine compounds to human serum albumin. J. Photochem. Photobiol. A: Chem., 2007, 189, 121-127.
[44]
Chen, T.; Cao, H.; Zhu, S.; Lu, Y.; Shang, Y.; Wang, M.; Tang, Y.; Zhu, L. Investigation of the binding of Salvianolic acid B to human serum albumin and the effect of metal ions on the binding. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81(1), 645-652.
[http://dx.doi.org/10.1016/j.saa.2011.06.068] [PMID: 21782496]
[45]
Kuntz, I.D.; Gasparro, F.P.; Johnston, M.D.; Taylor, R.P. Molecular interactions and the Benesi-Hildebrand equation. J. Am. Chem. Soc., 1968, 90, 4778-4781.
[46]
Wang, Y-Q.; Zhang, H-M.; Zhang, G-C.; Tao, W-H.; Tang, S-H. Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study. J. Lumin., 2007, 126, 211-218.
[http://dx.doi.org/10.1016/j.jlumin.2006.06.013]
[47]
Cao, H.; Liu, Q. Effects of temperature and common ions on binding of puerarin to BSA. J. Solution Chem., 2009, 38, 1071-1077.
[http://dx.doi.org/10.1007/s10953-009-9430-3]
[48]
Ahmad, B.; Parveen, S.; Khan, R.H. Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: A novel approach directly. Biomacromolecules, 2006, 7, 1350-1356.
[http://dx.doi.org/10.1021/bm050996b]
[49]
Jannesari, Z.; Hadadzadeh, H.; Khayamian, T.; Maleki, B.; Rudbari, H.A. Experimental and molecular modeling studies on the interaction of the Ru(II)-piroxicam with DNA and BSA. Eur. J. Med. Chem., 2013, 69, 577-590.
[50]
Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 1981, 20(11), 3096-3102.
[http://dx.doi.org/10.1021/bi00514a017] [PMID: 7248271]
[51]
Ganeshpandian, M.; Loganathan, R.; Ramakrishnan, S.; Riyasdeen, A.; Akbarsha, M.A.; Palaniandavar, M. Interaction of mixed ligand copper(II) complexes with CT DNA and BSA: Effect of primary ligand hydrophobicity on DNA and protein binding and cleavage and anticancer activities. Polyhedron, 2013, 52, 924-938.
[52]
Toneatto, J.; Argüello, G.A. New advances in the study on the interaction of [Cr(phen)2(dppz)]3+ complex with biological models; association to transporting proteins. J. Inorg. Biochem., 2011, 105, 645-651.
[53]
Mohamadi, M.; Hassankhani, A.; Ebrahimipour, S.Y.; Torkzadeh-Mahani, M. In vitro and in silico studies of the interaction of three tetrazoloquinazoline derivatives with DNA and BSA and their cytotoxicity activities against MCF-7, HT-29 and DPSC cell lines. Int. J. Biol. Macromol., 2017, 94, 85-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.113]
[54]
Mohamadi, M.; Ebrahimipour, S.Y.; Torkzadeh-Mahani, M.; Foro, S.; Akbari, A. A mononuclear diketone-based oxido-vanadium (IV) complex: Structure, DNA and BSA binding, molecular docking and anticancer activities against MCF-7, HPG-2, and HT-29 cell lines RSC Adv., 2015, 122, 101063-101075.
[http://dx.doi.org/10.1039/C5RA13715B]
[55]
Ebrahimipour, S.Y.; Sheikhshoaie, I.; Mohamadi, M.; Suarez, S.; Baggio, R.; Khaleghi, M. Synthesis, characterization, X-ray crystal structure, DFT calculation, DNA binding, and antimicrobial assays of two new mixed-ligand copper (II) complexes. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2015, 142, 410-422.
[56]
Vijayalakshmi, R.; Kanthimathi, M.; Subramanian, V.; Nair, B.U. Interaction of DNA with [Cr (Schiff base)(H2O)2] ClO4. Biochim. Biophys. Acta (BBA)-. Gen. Subj., 2000, 1475(2), 157-162.
[http://dx.doi.org/10.1016/S0304-4165(00)00063-5]
[57]
Zhang, Y.Z.; Zhou, B.; Zhang, X.P.; Huang, P.; Li, C.H.; Liu, Y. Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods. J. Hazardous Mater., 2009, 163(2-3), 1345-1352.
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.132]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy