Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Application of Flow Cytometry in Predominantly Antibody Deficiencies

Author(s): Reza Yazdani, Asghar Aghamohammadi and Nima Rezaei*

Volume 21, Issue 4, 2021

Published on: 20 July, 2020

Page: [647 - 663] Pages: 17

DOI: 10.2174/1871530320666200721013312

Price: $65

Abstract

Predominantly antibody deficiencies (PADs) are a heterogeneous group of primary immunodeficiency disorders (PIDs), consisting of recurrent infections, autoimmunity, inflammation, and other immune complications. In the recent years, several immunological and genetic defects have been recognized in PADs. Currently, 45 distinct PAD disorders with 40 different genetic defects have been identified based on the 2019 IUIS classification. Genetic analysis is helpful for diagnosing PIDs; however, genetic studies are expensive, time-consuming, and unavailable everywhere. Flow cytometry is a highly sensitive tool for evaluating the immune system and diagnosing PADs. In addition to cell populations and subpopulations assay, flow cytometry can measure cell surface, intracellular and intranuclear proteins, biological changes associated with specific immune defects, and certain functional immune abnormalities. These capabilities help in rapid diagnostic and prognostic assessment as well as in evaluating the pathogenesis of PADs. For the first time, this review particularly provides an overview of the application of flow cytometry for diagnosis, immunophenotyping, and determining the pathogenesis of PADs.

Keywords: Predominantly antibody deficiencies, flow cytometry, diagnosis, phenotyping, pathogenesis, primary immunodeficiency.

Graphical Abstract

[1]
Abolhassani, H.; Parvaneh, N.; Rezaei, N.; Hammarstrom, L.; Aghamohammadi, A. Genetic defects in B-cell development and their clinical consequences. J. Investig. Allergol. Clin. Immunol., 2014, 24(1), 6-22.
[PMID: 24765876]
[2]
Kindle, G.; Gathmann, B.; Grimbacher, B. The use of databases in primary immunodeficiencies. Curr. Opin. Allergy Clin. Immunol., 2014, 14(6), 501-508.
[http://dx.doi.org/10.1097/ACI.0000000000000113] [PMID: 25225780]
[3]
Edgar, J.D.; Buckland, M.; Guzman, D.; Conlon, N.P.; Knerr, V.; Bangs, C.; Reiser, V.; Panahloo, Z.; Workman, S.; Slatter, M.; Gennery, A.R.; Davies, E.G.; Allwood, Z.; Arkwright, P.D.; Helbert, M.; Longhurst, H.J.; Grigoriadou, S.; Devlin, L.A.; Huissoon, A.; Krishna, M.T.; Hackett, S.; Kumararatne, D.S.; Condliffe, A.M.; Baxendale, H.; Henderson, K.; Bethune, C.; Symons, C.; Wood, P.; Ford, K.; Patel, S.; Jain, R.; Jolles, S.; El-Shanawany, T.; Alachkar, H.; Herwadkar, A.; Sargur, R.; Shrimpton, A.; Hayman, G.; Abuzakouk, M.; Spickett, G.; Darroch, C.J.; Paulus, S.; Marshall, S.E.; McDermott, E.M.; Heath, P.T.; Herriot, R.; Noorani, S.; Turner, M.; Khan, S.; Grimbacher, B. The United Kingdom primary immune deficiency (UKPID) registry: report of the first 4 years’ activity 2008-2012. Clin. Exp. Immunol., 2014, 175(1), 68-78.
[http://dx.doi.org/10.1111/cei.12172] [PMID: 23841717]
[4]
Arvin, A.M.; Koropchak, C.M.; Williams, B.R.; Grumet, F.C.; Foung, S.K. Early immune response in healthy and immunocompromised subjects with primary varicella-zoster virus infection. J. Infect. Dis., 1986, 154(3), 422-429.
[http://dx.doi.org/10.1093/infdis/154.3.422] [PMID: 3016110]
[5]
Wood, P. Primary antibody deficiency syndromes. Ann. Clin. Biochem., 2009, 46(Pt 2), 99-108.
[http://dx.doi.org/10.1258/acb.2008.008175] [PMID: 19151170]
[6]
Yazdani, R.; Abolhassani, H.; Kiaee, F.; Habibi, S.; Azizi, G.; Tavakol, M. Comparison of common monogenic defects in a large predominantly antibody deficiency cohort. J. Allergy Clin. Immunol. Pract., 2018, 7(3), 864-878.e9.
[PMID: 30240888]
[7]
Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Chatila, T.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Ochs, H.D.; Oksenhendler, E.; Picard, C.; Puck, J.; Torgerson, T.R.; Casanova, J.L.; Sullivan, K.E. Human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee. J. Clin. Immunol., 2020, 40(1), 24-64.
[http://dx.doi.org/10.1007/s10875-019-00737-x] [PMID: 31953710]
[8]
Givan, A.L. Flow cytometry: an introduction. Methods Mol. Biol., 2004, 263, 1-32.
[PMID: 14976358]
[9]
Yong, P.F.; Chee, R.; Grimbacher, B. Hypogammaglobulinaemia. Immunol. Allergy Clin. North Am., 2008, 28(4), 691-713. ,vii.
[http://dx.doi.org/10.1016/j.iac.2008.06.003 ] [PMID: 18940570]
[10]
Aghamohammadi, A.; Allahverdi, A.; Abolhassani, H.; Moazzami, K.; Alizadeh, H.; Gharagozlou, M.; Kalantari, N.; Sajedi, V.; Shafiei, A.; Parvaneh, N.; Mohammadpour, M.; Karimi, N.; Sadaghiani, M.S.; Rezaei, N. Comparison of pulmonary diseases in common variable immunodeficiency and X-linked agammaglobulinaemia. Respirology, 2010, 15(2), 289-295.
[http://dx.doi.org/10.1111/j.1440-1843.2009.01679.x] [PMID: 20051045]
[11]
Nomura, K.; Kanegane, H.; Karasuyama, H.; Tsukada, S.; Agematsu, K.; Murakami, G.; Sakazume, S.; Sako, M.; Tanaka, R.; Kuniya, Y.; Komeno, T.; Ishihara, S.; Hayashi, K.; Kishimoto, T.; Miyawaki, T. Genetic defect in human X-linked agammaglobulinemia impedes a maturational evolution of pro-B cells into a later stage of pre-B cells in the B-cell differentiation pathway. Blood, 2000, 96(2), 610-617.
[PMID: 10887125]
[12]
Futatani, T.; Watanabe, C.; Baba, Y.; Tsukada, S.; Ochs, H.D. Bruton’s tyrosine kinase is present in normal platelets and its absence identifies patients with X-linked agammaglobulinaemia and carrier females. Br. J. Haematol., 2001, 114(1), 141-149.
[http://dx.doi.org/10.1046/j.1365-2141.2001.02905.x] [PMID: 11472359]
[13]
Futatani, T.; Miyawaki, T.; Tsukada, S.; Hashimoto, S.; Kunikata, T.; Arai, S.; Kurimoto, M.; Niida, Y.; Matsuoka, H.; Sakiyama, Y.; Iwata, T.; Tsuchiya, S.; Tatsuzawa, O.; Yoshizaki, K.; Kishimoto, T. Deficient expression of Bruton’s tyrosine kinase in monocytes from X-linked agammaglobulinemia as evaluated by a flow cytometric analysis and its clinical application to carrier detection. Blood, 1998, 91(2), 595-602.
[PMID: 9427714]
[14]
Kanegane, H.; Futatani, T.; Wang, Y.; Nomura, K.; Shinozaki, K.; Matsukura, H.; Kubota, T.; Tsukada, S.; Miyawaki, T. Clinical and mutational characteristics of X-linked agammaglobulinemia and its carrier identified by flow cytometric assessment combined with genetic analysis. J. Allergy Clin. Immunol., 2001, 108(6), 1012-1020.
[http://dx.doi.org/10.1067/mai.2001.120133] [PMID: 11742281]
[15]
Hashimoto, S.; Tsukada, S.; Matsushita, M.; Miyawaki, T.; Niida, Y.; Yachie, A.; Kobayashi, S.; Iwata, T.; Hayakawa, H.; Matsuoka, H.; Tsuge, I.; Yamadori, T.; Kunikata, T.; Arai, S.; Yoshizaki, K.; Taniguchi, N.; Kishimoto, T. Identification of Bruton’s tyrosine kinase (Btk) gene mutations and characterization of the derived proteins in 35 X-linked agammaglobulinemia families: a nationwide study of Btk deficiency in Japan. Blood, 1996, 88(2), 561-573.
[http://dx.doi.org/10.1182/blood.V88.2.561.bloodjournal882561] [PMID: 8695804]
[16]
Kaneko, H.; Kawamoto, N.; Asano, T.; Mabuchi, Y.; Horikoshi, H.; Teramoto, T.; Matsui, E.; Kondo, M.; Fukao, T.; Kasahara, K.; Kondo, N. Leaky phenotype of X-linked agammaglobulinaemia in a Japanese family. Clin. Exp. Immunol., 2005, 140(3), 520-523.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02784.x] [PMID: 15932514]
[17]
Conley, M.E.; Farmer, D.M.; Dobbs, A.K.; Howard, V.; Aiba, Y.; Shurtleff, S.A.; Kurosaki, T. A minimally hypomorphic mutation in Btk resulting in reduced B cell numbers but no clinical disease. Clin. Exp. Immunol., 2008, 152(1), 39-44.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03593.x] [PMID: 18241230]
[18]
Abolhassani, H.; Vitali, M.; Lougaris, V.; Giliani, S.; Parvaneh, N.; Parvaneh, L.; Mirminachi, B.; Cheraghi, T.; Khazaei, H.; Mahdaviani, S.A.; Kiaei, F.; Tavakolinia, N.; Mohammadi, J.; Negahdari, B.; Rezaei, N.; Hammarstrom, L.; Plebani, A.; Aghamohammadi, A. Cohort of Iranian patients with congenital agammaglobulinemia: mutation analysis and novel gene defects. Expert Rev. Clin. Immunol., 2016, 12(4), 479-486.
[http://dx.doi.org/10.1586/1744666X.2016.1139451] [PMID: 26910880]
[19]
Conley, M.E.; Dobbs, A.K.; Quintana, A.M.; Bosompem, A.; Wang, Y.D.; Coustan-Smith, E.; Smith, A.M.; Perez, E.E.; Murray, P.J. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J. Exp. Med., 2012, 209(3), 463-470.
[http://dx.doi.org/10.1084/jem.20112533] [PMID: 22351933]
[20]
Tang, P.; Upton, J.E.M.; Barton-Forbes, M.A.; Salvadori, M.I.; Clynick, M.P.; Price, A.K.; Goobie, S.L. Autosomal recessive agammaglobulinemia due to a homozygous mutation in PIK3R1. J. Clin. Immunol., 2018, 38(1), 88-95.
[http://dx.doi.org/10.1007/s10875-017-0462-y] [PMID: 29178053]
[21]
Yazdani, R.; Habibi, S.; Sharifi, L.; Azizi, G.; Abolhassani, H.; Olbrich, P. Common variable immunodeficiency: epidemiology, pathogenesis, clinical manifestations, diagnosis, classification and management. J. Investig. Allergol. Clin. Immunol., 2019, 30(1), 14-34.
[http://dx.doi.org/10.18176/jiaci.0388] [PMID: 30741636]
[22]
Park, J.H.; Resnick, E.S.; Cunningham-Rundles, C. Perspectives on common variable immune deficiency. Ann. N. Y. Acad. Sci., 2011, 1246(1), 41-49.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06338.x] [PMID: 22236429]
[23]
Warnatz, K.; Schlesier, M. Flowcytometric phenotyping of common variable immunodeficiency. Cytometry B Clin. Cytom., 2008, 74(5), 261-271.
[http://dx.doi.org/10.1002/cyto.b.20432] [PMID: 18561200]
[24]
Warnatz, K.; Denz, A.; Dräger, R.; Braun, M.; Groth, C.; Wolff-Vorbeck, G.; Eibel, H.; Schlesier, M.; Peter, H.H. Severe deficiency of switched memory B cells (CD27(+)IgM(-)IgD(-)) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood, 2002, 99(5), 1544-1551.
[http://dx.doi.org/10.1182/blood.V99.5.1544] [PMID: 11861266]
[25]
Piqueras, B.; Lavenu-Bombled, C.; Galicier, L.; Bergeron-van der Cruyssen, F.; Mouthon, L.; Chevret, S.; Debré, P.; Schmitt, C.; Oksenhendler, E. Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. J. Clin. Immunol., 2003, 23(5), 385-400.
[http://dx.doi.org/10.1023/A:1025373601374] [PMID: 14601647]
[26]
Wehr, C.; Kivioja, T.; Schmitt, C.; Ferry, B.; Witte, T.; Eren, E.; Vlkova, M.; Hernandez, M.; Detkova, D.; Bos, P.R.; Poerksen, G.; von Bernuth, H.; Baumann, U.; Goldacker, S.; Gutenberger, S.; Schlesier, M.; Bergeron-van der Cruyssen, F.; Le Garff, M.; Debré, P.; Jacobs, R.; Jones, J.; Bateman, E.; Litzman, J.; van Hagen, P.M.; Plebani, A.; Schmidt, R.E.; Thon, V.; Quinti, I.; Espanol, T.; Webster, A.D.; Chapel, H.; Vihinen, M.; Oksenhendler, E.; Peter, H.H.; Warnatz, K. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood, 2008, 111(1), 77-85.
[http://dx.doi.org/10.1182/blood-2007-06-091744] [PMID: 17898316]
[27]
Driessen, G.J.; van Zelm, M.C.; van Hagen, P.M.; Hartwig, N.G.; Trip, M.; Warris, A.; de Vries, E.; Barendregt, B.H.; Pico, I.; Hop, W.; van Dongen, J.J.; van der Burg, M. B-cell replication history and somatic hypermutation status identify distinct pathophysiologic backgrounds in common variable immunodeficiency. Blood, 2011, 118(26), 6814-6823.
[http://dx.doi.org/10.1182/blood-2011-06-361881] [PMID: 22042693]
[28]
Yazdani, R.; Seify, R.; Ganjalikhani-Hakemi, M.; Abolhassani, H.; Eskandari, N.; Golsaz-Shirazi, F.; Ansaripour, B.; Salehi, E.; Azizi, G.; Rezaei, N.; Aghamohammadi, A. Comparison of various classifications for patients with common variable immunodeficiency (CVID) using measurement of B-cell subsets. Allergol. Immunopathol. (Madr.), 2017, 45(2), 183-192.
[http://dx.doi.org/10.1016/j.aller.2016.07.001] [PMID: 27717724]
[29]
Vodjgani, M.; Aghamohammadi, A.; Samadi, M.; Moin, M.; Hadjati, J.; Mirahmadian, M.; Parvaneh, N.; Salavati, A.; Abdollahzade, S.; Rezaei, N.; Srrafnejad, A. Analysis of class-switched memory B cells in patients with common variable immunodeficiency and its clinical implications. J. Investig. Allergol. Clin. Immunol., 2007, 17(5), 321-328.
[PMID: 17982925]
[30]
Berglund, L.J.; Wong, S.W.; Fulcher, D.A. B-cell maturation defects in common variable immunodeficiency and association with clinical features. Pathology, 2008, 40(3), 288-294.
[http://dx.doi.org/10.1080/00313020801911470] [PMID: 18428049]
[31]
Mouillot, G.; Carmagnat, M.; Gérard, L.; Garnier, J.L.; Fieschi, C.; Vince, N.; Karlin, L.; Viallard, J.F.; Jaussaud, R.; Boileau, J.; Donadieu, J.; Gardembas, M.; Schleinitz, N.; Suarez, F.; Hachulla, E.; Delavigne, K.; Morisset, M.; Jacquot, S.; Just, N.; Galicier, L.; Charron, D.; Debré, P.; Oksenhendler, E.; Rabian, C. DEFI study group. B-cell and T-cell phenotypes in CVID patients correlate with the clinical phenotype of the disease. J. Clin. Immunol., 2010, 30(5), 746-755.
[http://dx.doi.org/10.1007/s10875-010-9424-3] [PMID: 20437084]
[32]
Al Kindi, M.; Mundy, J.; Sullivan, T.; Smith, W.; Kette, F.; Smith, A.; Heddle, R.; Hissaria, P. Utility of peripheral blood B cell subsets analysis in common variable immunodeficiency. Clin. Exp. Immunol., 2012, 167(2), 275-281.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04507.x] [PMID: 22236004]
[33]
Yazdani, R.; Fatholahi, M.; Ganjalikhani-Hakemi, M.; Abolhassani, H.; Azizi, G.; Hamid, K.M.; Rezaei, N.; Aghamohammadi, A. Role of apoptosis in common variable immunodeficiency and selective immunoglobulin A deficiency. Mol. Immunol., 2016, 71, 1-9.
[http://dx.doi.org/10.1016/j.molimm.2015.12.016] [PMID: 26795881]
[34]
Ganjalikhani-Hakemi, M.; Yazdani, R.; Esmaeili, M.; Abolhassani, H.; Rae, W.; Azizi, G.; Dizaji, M.Z.; Shaghaghi, M.; Rezaei, A.; Abbasi-Rad, F.; Afshar-Qasemloo, S.; Mohammadi, S.; Rezaei, N.; Aghamohammadi, A. Role of apoptosis in the pathogenesis of common variable immunodeficiency (CVID). Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 332-340.
[http://dx.doi.org/10.2174/1871530317666170919120245] [PMID: 28925897]
[35]
Azizi, G.; Rezaei, N.; Kiaee, F.; Tavakolinia, N.; Yazdani, R.; Mirshafiey, A.; Aghamohammadi, A. T-Cell abnormalities in common variable immunodeficiency. J. Investig. Allergol. Clin. Immunol., 2016, 26(4), 233-243.
[http://dx.doi.org/10.18176/jiaci.0069] [PMID: 27374799]
[36]
Bateman, E.A.; Ayers, L.; Sadler, R.; Lucas, M.; Roberts, C.; Woods, A.; Packwood, K.; Burden, J.; Harrison, D.; Kaenzig, N.; Lee, M.; Chapel, H.M.; Ferry, B.L. T cell phenotypes in patients with common variable immunodeficiency disorders: associations with clinical phenotypes in comparison with other groups with recurrent infections. Clin. Exp. Immunol., 2012, 170(2), 202-211.
[http://dx.doi.org/10.1111/j.1365-2249.2012.04643.x] [PMID: 23039891]
[37]
Malphettes, M.; Gérard, L.; Carmagnat, M.; Mouillot, G.; Vince, N.; Boutboul, D.; Bérezné, A.; Nove-Josserand, R.; Lemoing, V.; Tetu, L.; Viallard, J.F.; Bonnotte, B.; Pavic, M.; Haroche, J.; Larroche, C.; Brouet, J.C.; Fermand, J.P.; Rabian, C.; Fieschi, C.; Oksenhendler, E. DEFI study group. Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin. Infect. Dis., 2009, 49(9), 1329-1338.
[http://dx.doi.org/10.1086/606059] [PMID: 19807277]
[38]
Carter, R.H.; Fearon, D.T. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science, 1992, 256(5053), 105-107.
[http://dx.doi.org/10.1126/science.1373518] [PMID: 1373518]
[39]
Kanegane, H.; Agematsu, K.; Futatani, T.; Sira, M.M.; Suga, K.; Sekiguchi, T.; van Zelm, M.C.; Miyawaki, T. Novel mutations in a Japanese patient with CD19 deficiency. Genes Immun., 2007, 8(8), 663-670.
[http://dx.doi.org/10.1038/sj.gene.6364431] [PMID: 17882224]
[40]
van Zelm, M.C.; Reisli, I.; van der Burg, M.; Castaño, D.; van Noesel, C.J.; van Tol, M.J.; Woellner, C.; Grimbacher, B.; Patiño, P.J.; van Dongen, J.J.; Franco, J.L. An antibody-deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med., 2006, 354(18), 1901-1912.
[http://dx.doi.org/10.1056/NEJMoa051568] [PMID: 16672701]
[41]
van Zelm, M.C.; Smet, J.; Adams, B.; Mascart, F.; Schandené, L.; Janssen, F.; Ferster, A.; Kuo, C.C.; Levy, S.; van Dongen, J.J.; van der Burg, M. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J. Clin. Invest., 2010, 120(4), 1265-1274.
[http://dx.doi.org/10.1172/JCI39748] [PMID: 20237408]
[42]
van Zelm, M.C.; Bartol, S.J.; Driessen, G.J.; Mascart, F.; Reisli, I.; Franco, J.L.; Wolska-Kusnierz, B.; Kanegane, H.; Boon, L.; van Dongen, J.J.; van der Burg, M. Human CD19 and CD40L deficiencies impair antibody selection and differentially affect somatic hypermutation. J. Allergy Clin. Immunol., 2014, 134(1), 135-144.
[http://dx.doi.org/10.1016/j.jaci.2013.11.015] [PMID: 24418477]
[43]
van Zelm, M.C.; Smet, J.; van der Burg, M.; Ferster, A.; Le, P.Q.; Schandené, L.; van Dongen, J.J.; Mascart, F. Antibody deficiency due to a missense mutation in CD19 demonstrates the importance of the conserved tryptophan 41 in immunoglobulin superfamily domain formation. Hum. Mol. Genet., 2011, 20(9), 1854-1863.
[http://dx.doi.org/10.1093/hmg/ddr068] [PMID: 21330302]
[44]
Carter, R.H.; Barrington, R.A. Signaling by the CD19/CD21 complex on B cells. Curr. Dir. Autoimmun., 2004, 7, 4-32.
[http://dx.doi.org/10.1159/000075685] [PMID: 14719373]
[45]
Thiel, J.; Kimmig, L.; Salzer, U.; Grudzien, M.; Lebrecht, D.; Hagena, T.; Draeger, R.; Voelxen, N.; Bergbreiter, A.; Jennings, S.; Gutenberger, S.; Aichem, A.; Illges, H.; Hannan, J.P.; Kienzler, A.K.; Rizzi, M.; Eibel, H.; Peter, H.H.; Warnatz, K.; Grimbacher, B.; Rump, J.A.; Schlesier, M. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J. Allergy Clin. Immunol., 2012, 129(3), 801-810.e6.
[http://dx.doi.org/10.1016/j.jaci.2011.09.027] [PMID: 22035880]
[46]
Wentink, M.W.; Lambeck, A.J.; van Zelm, M.C.; Simons, E.; van Dongen, J.J.; IJspeert, H.; Schölvinck, E.H.; van der Burg, M. CD21 and CD19 deficiency: two defects in the same complex leading to different disease modalities. Clin. Immunol., 2015, 161(2), 120-127.
[http://dx.doi.org/10.1016/j.clim.2015.08.010] [PMID: 26325596]
[47]
Rosain, J.; Miot, C.; Lambert, N.; Rousselet, M.C.; Pellier, I.; Picard, C. CD21 deficiency in 2 siblings with recurrent respiratory infections and hypogammaglobulinemia. J. Allergy Clin. Immunol. Pract., 2017, 5(6), 1765-1767.e3.
[http://dx.doi.org/10.1016/j.jaip.2017.04.011] [PMID: 28499783]
[48]
Deng, J.; Dekruyff, R.H.; Freeman, G.J.; Umetsu, D.T.; Levy, S. Critical role of CD81 in cognate T-B cell interactions leading to Th2 responses. Int. Immunol., 2002, 14(5), 513-523.
[http://dx.doi.org/10.1093/intimm/14.5.513] [PMID: 11978781]
[49]
Uchida, J.; Lee, Y.; Hasegawa, M.; Liang, Y.; Bradney, A.; Oliver, J.A.; Bowen, K.; Steeber, D.A.; Haas, K.M.; Poe, J.C.; Tedder, T.F. Mouse CD20 expression and function. Int. Immunol., 2004, 16(1), 119-129.
[http://dx.doi.org/10.1093/intimm/dxh009] [PMID: 14688067]
[50]
Kanzaki, M.; Lindorfer, M.A.; Garrison, J.C.; Kojima, I. Activation of the calcium-permeable cation channel CD20 by alpha subunits of the Gi protein. J. Biol. Chem., 1997, 272(23), 14733-14739.
[http://dx.doi.org/10.1074/jbc.272.23.14733] [PMID: 9169438]
[51]
Kuijpers, T.W.; Bende, R.J.; Baars, P.A.; Grummels, A.; Derks, I.A.; Dolman, K.M.; Beaumont, T.; Tedder, T.F.; van Noesel, C.J.; Eldering, E.; van Lier, R.A. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J. Clin. Invest., 2010, 120(1), 214-222.
[http://dx.doi.org/10.1172/JCI40231] [PMID: 20038800]
[52]
Castigli, E.; Wilson, S.A.; Garibyan, L.; Rachid, R.; Bonilla, F.; Schneider, L.; Geha, R.S. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat. Genet., 2005, 37(8), 829-834.
[http://dx.doi.org/10.1038/ng1601] [PMID: 16007086]
[53]
Castigli, E.; Wilson, S.; Garibyan, L.; Rachid, R.; Bonilla, F.; Schneider, L.; Morra, M.; Curran, J.; Geha, R. Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat. Genet., 2007, 39(4), 430-431.
[http://dx.doi.org/10.1038/ng0407-430] [PMID: 17392798]
[54]
Locke, B.A.; Dasu, T.; Verbsky, J.W. Laboratory diagnosis of primary immunodeficiencies. Clin. Rev. Allergy Immunol., 2014, 46(2), 154-168.
[http://dx.doi.org/10.1007/s12016-014-8412-4] [PMID: 24569953]
[55]
Salzer, U.; Bacchelli, C.; Buckridge, S.; Pan-Hammarström, Q.; Jennings, S.; Lougaris, V.; Bergbreiter, A.; Hagena, T.; Birmelin, J.; Plebani, A.; Webster, A.D.; Peter, H.H.; Suez, D.; Chapel, H.; McLean-Tooke, A.; Spickett, G.P.; Anover-Sombke, S.; Ochs, H.D.; Urschel, S.; Belohradsky, B.H.; Ugrinovic, S.; Kumararatne, D.S.; Lawrence, T.C.; Holm, A.M.; Franco, J.L.; Schulze, I.; Schneider, P.; Gertz, E.M.; Schäffer, A.A.; Hammarström, L.; Thrasher, A.J.; Gaspar, H.B.; Grimbacher, B. Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood, 2009, 113(9), 1967-1976.
[http://dx.doi.org/10.1182/blood-2008-02-141937] [PMID: 18981294]
[56]
Benson, M.J.; Dillon, S.R.; Castigli, E.; Geha, R.S.; Xu, S. Lam, KP Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J. Immunol., 2008, 180(6), 3655-3659.
[http://dx.doi.org/10.4049/jimmunol.180.6.3655]
[57]
Bossen, C.; Schneider, P. BAFF, APRIL and their receptors: structure, function and signaling. Semin. Immunol., 2006, 18(5), 263-275.
[http://dx.doi.org/10.1016/j.smim.2006.04.006] [PMID: 16914324]
[58]
Warnatz, K.; Salzer, U.; Rizzi, M.; Fischer, B.; Gutenberger, S.; Böhm, J.; Kienzler, A.K.; Pan-Hammarström, Q.; Hammarström, L.; Rakhmanov, M.; Schlesier, M.; Grimbacher, B.; Peter, H.H.; Eibel, H. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13945-13950.
[http://dx.doi.org/10.1073/pnas.0903543106] [PMID: 19666484]
[59]
Michalovich, D.; Nejentsev, S. Activated PI3 kinase delta syndrome: from genetics to therapy. Front. Immunol., 2018, 9, 369.
[http://dx.doi.org/10.3389/fimmu.2018.00369] [PMID: 29535736]
[60]
Elkaim, E.; Neven, B.; Bruneau, J.; Mitsui-Sekinaka, K.; Stanislas, A.; Heurtier, L.; Lucas, C.L.; Matthews, H.; Deau, M.C.; Sharapova, S.; Curtis, J.; Reichenbach, J.; Glastre, C.; Parry, D.A.; Arumugakani, G.; McDermott, E.; Kilic, S.S.; Yamashita, M.; Moshous, D.; Lamrini, H.; Otremba, B.; Gennery, A.; Coulter, T.; Quinti, I.; Stephan, J.L.; Lougaris, V.; Brodszki, N.; Barlogis, V.; Asano, T.; Galicier, L.; Boutboul, D.; Nonoyama, S.; Cant, A.; Imai, K.; Picard, C.; Nejentsev, S.; Molina, T.J.; Lenardo, M.; Savic, S.; Cavazzana, M.; Fischer, A.; Durandy, A.; Kracker, S. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2: a cohort study. J. Allergy Clin. Immunol., 2016, 138(1), 210-218.e9.
[http://dx.doi.org/10.1016/j.jaci.2016.03.022] [PMID: 27221134]
[61]
Maccari, M.E.; Abolhassani, H.; Aghamohammadi, A.; Aiuti, A.; Aleinikova, O.; Bangs, C.; Baris, S.; Barzaghi, F.; Baxendale, H.; Buckland, M.; Burns, S.O.; Cancrini, C.; Cant, A.; Cathébras, P.; Cavazzana, M.; Chandra, A.; Conti, F.; Coulter, T.; Devlin, L.A.; Edgar, J.D.M.; Faust, S.; Fischer, A.; Garcia-Prat, M.; Hammarström, L.; Heeg, M.; Jolles, S.; Karakoc-Aydiner, E.; Kindle, G.; Kiykim, A.; Kumararatne, D.; Grimbacher, B.; Longhurst, H.; Mahlaoui, N.; Milota, T.; Moreira, F.; Moshous, D.; Mukhina, A.; Neth, O.; Neven, B.; Nieters, A.; Olbrich, P.; Ozen, A.; Pachlopnik Schmid, J.; Picard, C.; Prader, S.; Rae, W.; Reichenbach, J.; Rusch, S.; Savic, S.; Scarselli, A.; Scheible, R.; Sediva, A.; Sharapova, S.O.; Shcherbina, A.; Slatter, M.; Soler-Palacin, P.; Stanislas, A.; Suarez, F.; Tucci, F.; Uhlmann, A.; van Montfrans, J.; Warnatz, K.; Williams, A.P.; Wood, P.; Kracker, S.; Condliffe, A.M.; Ehl, S. Disease evolution and response to rapamycin in activated phosphoinositide 3-kinase δ syndrome: the European society for immunodeficiencies-activated phosphoinositide 3-kinase δ syndrome registry. Front. Immunol., 2018, 9(543), 543.
[http://dx.doi.org/10.3389/fimmu.2018.00543] [PMID: 29599784]
[62]
Coulter, T.I.; Chandra, A.; Bacon, C.M.; Babar, J.; Curtis, J.; Screaton, N.; Goodlad, J.R.; Farmer, G.; Steele, C.L.; Leahy, T.R.; Doffinger, R.; Baxendale, H.; Bernatoniene, J.; Edgar, J.D.; Longhurst, H.J.; Ehl, S.; Speckmann, C.; Grimbacher, B.; Sediva, A.; Milota, T.; Faust, S.N.; Williams, A.P.; Hayman, G.; Kucuk, Z.Y.; Hague, R.; French, P.; Brooker, R.; Forsyth, P.; Herriot, R.; Cancrini, C.; Palma, P.; Ariganello, P.; Conlon, N.; Feighery, C.; Gavin, P.J.; Jones, A.; Imai, K.; Ibrahim, M.A.; Markelj, G.; Abinun, M.; Rieux-Laucat, F.; Latour, S.; Pellier, I.; Fischer, A.; Touzot, F.; Casanova, J.L.; Durandy, A.; Burns, S.O.; Savic, S.; Kumararatne, D.S.; Moshous, D.; Kracker, S.; Vanhaesebroeck, B.; Okkenhaug, K.; Picard, C.; Nejentsev, S.; Condliffe, A.M.; Cant, A.J. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: a large patient cohort study. J. Allergy Clin. Immunol., 2017, 139(2), 597-606.e4.
[http://dx.doi.org/10.1016/j.jaci.2016.06.021] [PMID: 27555459]
[63]
Lougaris, V.; Faletra, F.; Lanzi, G.; Vozzi, D.; Marcuzzi, A.; Valencic, E.; Piscianz, E.; Bianco, A.; Girardelli, M.; Baronio, M.; Loganes, C.; Fasth, A.; Salvini, F.; Trizzino, A.; Moratto, D.; Facchetti, F.; Giliani, S.; Plebani, A.; Tommasini, A. Altered germinal center reaction and abnormal B cell peripheral maturation in PI3KR1-mutated patients presenting with HIGM-like phenotype. Clin. Immunol., 2015, 159(1), 33-36.
[http://dx.doi.org/10.1016/j.clim.2015.04.014] [PMID: 25939554]
[64]
Di Fonte, R.; Baronio, M.; Plebani, A.; Lougaris, V.; Fousteri, G. Reduced germinal center follicular helper T cells but normal follicular regulatory T cells in the tonsils of a patient with a mutation in the PI3KR1 gene. Clin. Immunol., 2016, 164, 43-44.
[http://dx.doi.org/10.1016/j.clim.2016.01.016] [PMID: 26827886]
[65]
Asano, T.; Okada, S.; Tsumura, M.; Yeh, T.W.; Mitsui-Sekinaka, K.; Tsujita, Y.; Ichinose, Y.; Shimada, A.; Hashimoto, K.; Wada, T.; Imai, K.; Ohara, O.; Morio, T.; Nonoyama, S.; Kobayashi, M. Enhanced AKT phosphorylation of circulating B cells in patients with activated PI3Kδ syndrome. Front. Immunol., 2018, 9(568), 568.
[http://dx.doi.org/10.3389/fimmu.2018.00568] [PMID: 29675019]
[66]
Yazdani, R.; Azizi, G.; Abolhassani, H.; Aghamohammadi, A. Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scand. J. Immunol., 2017, 85(1), 3-12.
[http://dx.doi.org/10.1111/sji.12499] [PMID: 27763681]
[67]
Aghamohammadi, A.; Abolhassani, H.; Biglari, M.; Abolmaali, S.; Moazzami, K.; Tabatabaeiyan, M.; Asgarian-Omran, H.; Parvaneh, N.; Mirahmadian, M.; Rezaei, N. Analysis of switched memory B cells in patients with IgA deficiency. Int. Arch. Allergy Immunol., 2011, 156(4), 462-468.
[http://dx.doi.org/10.1159/000323903] [PMID: 21832837]
[68]
Nechvatalova, J.; Pikulova, Z.; Stikarovska, D.; Pesak, S.; Vlkova, M.; Litzman, J. B-lymphocyte subpopulations in patients with selective IgA deficiency. J. Clin. Immunol., 2012, 32(3), 441-448.
[http://dx.doi.org/10.1007/s10875-012-9655-6] [PMID: 22328142]
[69]
Soheili, H.; Abolhassani, H.; Arandi, N.; Khazaei, H.A.; Shahinpour, S.; Hirbod-Mobarakeh, A.; Rezaei, N.; Aghamohammadi, A. Evaluation of natural regulatory T cells in subjects with selective IgA deficiency: from senior idea to novel opportunities. Int. Arch. Allergy Immunol., 2013, 160(2), 208-214.
[http://dx.doi.org/10.1159/000339867] [PMID: 23018812]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy