Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Isolation and Identification of Tyrosinase Inhibitors from Marine Algae Enteromorpha sp

Author(s): Lima Rodrigues, Supriya Tilvi, Michelle S. Fernandes, Sarvesh S. Harmalkar, Santosh G. Tilve and Mahesh S. Majik*

Volume 18, Issue 5, 2021

Published on: 20 July, 2020

Page: [353 - 358] Pages: 6

DOI: 10.2174/1570178617999200721011816

Price: $65

Abstract

The extract of marine green algae Enteromorpha sp. was evaluated in vitro for inhibitory activity against mushroom tyrosinase enzyme. The principle active agents i.e. coumarin; 4-hydroxycoumarin (1) and two sterols; ergosta-5,7,22-trien-3β-ol (2) & ergosterol peroxide (3) were isolated for the first time, from a crude methanol extract of Enteromorpha sp. showing anti-tyrosinase activity. Their structures were elucidated by IR, extensive NMR spectroscopy, LC-ESI-MS, Single crystal X-ray diffraction techniques. Thus, Enteromorpha sp. can be an alternative edible anti-tyrosinase agent.

Keywords: Marine natural products, anti-tyrosinase activity, Enteromorpha sp., Ulvaceae, marine algae.

Graphical Abstract

[1]
Bhadury, P.; Wright, P.C. Planta, 2004, 219(4), 561-578.
[http://dx.doi.org/10.1007/s00425-004-1307-5] [PMID: 15221382]
[2]
Vo, T.S.; Ngo, D.H.; Kim, S.K. Process Biochem., 2012, 47(3), 386-394.
[http://dx.doi.org/10.1016/j.procbio.2011.12.014]
[3]
Kumari, P.; Kumar, M.; Gupta, V.; Reddy, C.R.K.; Jha, B. Food Chem., 2010, 120(3), 749-757.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.006]
[4]
Peña-Rodríguez, A.; Mawhinney, T.P.; Ricque-Marie, D.; Cruz-Suárez, L.E. Food Chem., 2011, 129(2), 491-498.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.104] [PMID: 30634256]
[5]
Ren, R.; Gong, J.; Zhao, Y.; Zhuang, X.; Ye, Y.; Huang, F.; Lin, W. J. Funct. Foods, 2018, 40, 722-728.
[http://dx.doi.org/10.1016/j.jff.2017.12.010]
[6]
Okai, Y.; Higashi-Okai, K. Int. J. Immunopharmacol., 1997, 19(6), 355-358.
[http://dx.doi.org/10.1016/S0192-0561(97)00070-2] [PMID: 9467755]
[7]
Liu, H.; Chen, Z.; Zhu, G.; Wang, L.; Du, Y.; Wang, Y.; Zhu, W. Tetrahedron, 2017, 73(36), 5451-5455.
[http://dx.doi.org/10.1016/j.tet.2017.07.052]
[8]
Du, Y.; Sun, J.; Gong, Q.; Wang, Y.; Fu, P.; Zhu, W. J. Agric. Food Chem., 2018, 66(8), 1807-1812.
[http://dx.doi.org/10.1021/acs.jafc.7b05330] [PMID: 29400957]
[9]
Chi, Y.; Li, H.; Wang, P.; Du, C.; Ye, H.; Zuo, S.; Guan, H.; Wang, P. Carbohydr. Polym., 2020, 229, 115497-115506.
[http://dx.doi.org/10.1016/j.carbpol.2019.115497] [PMID: 31826447]
[10]
Kidgell, J.T.; Magnusson, M.; de Nys, R.; Glasson, C.R.K. Algal Res., 2019, 39, 101422-101442.
[http://dx.doi.org/10.1016/j.algal.2019.101422]
[11]
Silva, M.; Vieira, L.; Almeida, A.P.; Kijjoa, A. Oceanogr. Open Access, 2013, 01(01), 1-6.
[12]
Guillen Quispe, Y.N.; Hwang, S.H.; Wang, Z.; Lim, S.S. Molecules, 2017, 22(3), 402-416.
[http://dx.doi.org/10.3390/molecules22030402]
[13]
Fernandes, M.S.; Kerkar, S. Ann. Microbiol., 2017, 67(4), 343-358.
[http://dx.doi.org/10.1007/s13213-017-1261-7]
[14]
Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 279-309.
[http://dx.doi.org/10.1080/14756366.2018.1545767] [PMID: 30734608]
[15]
Majik, M.S.; Parvatkar, P.T. Curr. Top. Med. Chem., 2014, 14(1), 81-109.
[http://dx.doi.org/10.2174/1568026613666131113152257] [PMID: 24236724]
[16]
Majik, M.S.; Shirodkar, D.; Rodrigues, C.; D’Souza, L.; Tilvi, S. Bioorg. Med. Chem. Lett., 2014, 24(13), 2863-2866.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.097] [PMID: 24825299]
[17]
Majik, M.S.; Tilvi, S.; Parvatkar, P.T. Curr. Org. Synth., 2014, 11(2), 268-287.
[http://dx.doi.org/10.2174/1570179410666131124134200]
[18]
Majik, M.S.; Adel, H.; Shirodkar, D.; Tilvi, S.; Furtado, J. RSC Advances, 2015, 5(63), 51008-51011.
[http://dx.doi.org/10.1039/C5RA07489D]
[19]
Tilvi, S.; Devi, P.; Majik, M.S. Eur J Mass Spectrom (Chichester), 2017, 23(3), 92-97.
[http://dx.doi.org/10.1177/1469066717699218] [PMID: 28657434]
[20]
Ogawa, A.; Kondo, K.; Murai, S.; Sonoda, N. J. Chem. Soc. Chem. Commun., 1982, 2000(21), 1283-1284.
[http://dx.doi.org/10.1039/c39820001283]
[21]
Kasabe, A.; Mohite, V.; Ghodake, J.; Vidhate, J.E-J. Chem, 2010, 7(2), 377-382.
[http://dx.doi.org/10.1155/2007/237645]
[22]
Abdou, M.M.; El-Saeed, R.A.; Bondock, S. Arab. J. Chem., 2019, 12(1), 88-121.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.012]
[23]
Da Graça Sgarbi, D.B.; Da Silva, A.J.R.; Carlos, I.Z.; Silva, C.L.; Angluster, J.; Alviano, C.S. Mycopathologia, 1997, 139(1), 9-14.
[http://dx.doi.org/10.1023/A:1006803832164] [PMID: 9511231]
[24]
Toh Choon, R.L.; Sariah, M.; Siti Mariam, M.N. J. Basic Microbiol., 2012, 52(5), 608-612.
[http://dx.doi.org/10.1002/jobm.201100308] [PMID: 22143962]
[25]
Ragasa, C.Y.; Ebajo, V.D.; Reyes, R.G.; Brkljača, R.; Urban, S. Der Pharma Chem., 2015, 7(10), 331-336.
[26]
Resurreccion, N.G.U.; Shen, C.C.; Ragasa, C.Y. Der Pharm. Lett., 2016, 8(4), 117-120.
[27]
Ragasa, C.Y.; Tan, M.C.S.; De Castro, M.E.G.; van Altena, I.A. Der Pharma Chem., 2016, 8(19), 222-225.
[28]
Wei, T.; Waqas, M.; Xiao, K.; Yang, B.; Luo, Y.; Luo, Q.; Zhang, J.; Wang, M.; Zhu, C.; He, T.; Lu, Z. Chemosphere, 2019, 215, 199-205.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.034] [PMID: 30317090]
[29]
Jung, J-C.; Park, O-S. Molecules, 2009, 14(11), 4790-4803.
[http://dx.doi.org/10.3390/molecules14114790]
[30]
Salinas-Jazmín, N.; de la Fuente, M.; Jaimez, R.; Pérez-Tapia, M.; Pérez-Torres, A.; Velasco-Velázquez, M.A. Cancer Chemother. Pharmacol., 2010, 65(5), 931-940.
[http://dx.doi.org/10.1007/s00280-009-1100-z] [PMID: 19690859]
[31]
Lin, Y.; Shen, X.; Yuan, Q.; Yan, Y. Nat. Commun., 2013, 4(1), 2603-2610.
[http://dx.doi.org/10.1038/ncomms3603] [PMID: 24129598]
[32]
Pangal, A.A.; Shaikh, J.A.; Khan, E.M. Int. J. Pharm. Sci. Rev. Res., 2017, 42(1), 161-168.
[33]
Asthana, S.; Zucca, P.; Vargiu, A.V.; Sanjust, E.; Ruggerone, P.; Rescigno, A. J. Agric. Food Chem., 2015, 63(32), 7236-7244.
[http://dx.doi.org/10.1021/acs.jafc.5b02636] [PMID: 26263396]
[34]
Bourgaud, F.; Hehn, A.; Larbat, R.; Doerper, S.; Gontier, E.; Kellner, S.; Matern, U. Phytochem. Rev., 2006, 5, 293-308.
[http://dx.doi.org/10.1007/s11101-006-9040-2]
[35]
Zook, H.D.; Oakwood, T.S.; Whitmore, F.C. Science, 1944, 99(2578), 427-428.
[http://dx.doi.org/10.1126/science.99.2578.427-a] [PMID: 17810623]
[36]
Endo, M.; Kajiwara, M.; Nakanishi, K. J. Chem. Soc. Chem. Commun., 1970, 8(5), 309-310.
[http://dx.doi.org/10.1039/c29700000309]
[37]
Serebryakov, E.P.; Simolin, A.V.; Kucherov, V.F.; Rosynov, B.V. Tetrahedron, 1970, 26(22), 5215-5223.
[http://dx.doi.org/10.1016/S0040-4020(01)98730-7]
[38]
Pastinen, O.; Nyyssölä, A.; Pihlajaniemi, V.; Sipponen, M.H. Process Biochem., 2017, 58, 217-223.
[http://dx.doi.org/10.1016/j.procbio.2017.04.002]
[39]
Wieland, P.; Prelog, V. Helv. Chim. Acta, 1947, 30(4), 1028-1030.
[http://dx.doi.org/10.1002/hlca.19470300414] [PMID: 20257080]
[40]
Bauslaugh, G.; Just, G.; Blank, F. Nature, 1964, 202(4938), 1218-1218.
[http://dx.doi.org/10.1038/2021218a0] [PMID: 14217516]
[41]
Adam, H.K.; Campbell, I.M.; McCorkindale, N.J. Nature, 1967, 216(5113), 397-397.
[http://dx.doi.org/10.1038/216397a0] [PMID: 6053823]
[42]
Kim, D.S.; Baek, N-I.; Oh, S.R.; Jung, K.Y.; Lee, I.S.; Kim, J.H.; Lee, H-K. Arch. Pharm. Res., 1997, 20(3), 201-205.
[http://dx.doi.org/10.1007/BF02976145] [PMID: 18975152]
[43]
Yang, B.; Miller, P.A.; Möllmann, U.; Miller, M.J. Org. Lett., 2009, 11(13), 2828-2831.
[http://dx.doi.org/10.1021/ol900997t] [PMID: 19552465]
[44]
Lin, M.; Li, H.; Zhao, Y.; Cai, E.; Zhu, H.; Gao, Y.; Liu, S.; Yang, H.; Zhang, L.; Tang, G. Steroids, 2017, 122, 9-15.
[http://dx.doi.org/10.1016/j.steroids.2017.03.007] [PMID: 28377207]
[45]
Prompiboon, P.; Bhumiratana, A.; Ruchirawat, S.; Boucias, D.G.; Wiwat, C. World J. Microbiol. Biotechnol., 2008, 24(12), 2909-2917.
[http://dx.doi.org/10.1007/s11274-008-9830-3]
[46]
Nowak, R.; Drozd, M.; Mendyk, E.; Lemieszek, M.; Krakowiak, O.; Kisiel, W.; Rzeski, W.; Szewczyk, K. Molecules, 2016, 21(7), 946-955.
[http://dx.doi.org/10.3390/molecules21070946] [PMID: 27455215]
[47]
Wu, H-Y.; Yang, F-L.; Li, L-H.; Rao, Y.K.; Ju, T-C.; Wong, W-T.; Hsieh, C-Y.; Pivkin, M.V.; Hua, K-F.; Wu, S-H. Sci. Rep., 2018, 8(1), 17956-17969.
[http://dx.doi.org/10.1038/s41598-018-36411-2] [PMID: 30560887]
[48]
Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Fernandes, I.P.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Ferreira, I.C.F.R.; Barreiro, M.F. Microchem. J., 2019, 147, 469-477.
[http://dx.doi.org/10.1016/j.microc.2019.03.059]
[49]
Mukaiyama, T.; Tsujimura, N.; Otaka, S.; Kosaka, Y.; Hata, K.; Hori, K.; Sakamoto, K.; Crabtree, R.H. Animal Cell Technology: Basic & Applied Aspects; Ikura, K; Nagao, M; Ichikawa, A; Teruya, K; Shirahata, S Eds. Springer Dordrecht Heidelberg London New York, 2009, Vol. 15, pp. 273-277.
[50]
Traven, V.F.; Negrebetsky, V.V.; Vorobjeva, L.I.; Carberry, E.A. Can. J. Chem., 1997, 75(4), 377-383.
[http://dx.doi.org/10.1139/v97-043]
[51]
Ko, H-H.; Chang, W-L.; Lu, T-M. J. Nat. Prod., 2008, 71(11), 1930-1933.
[http://dx.doi.org/10.1021/np800564z] [PMID: 18986201]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy