Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Potentiometric Determination of Mercury Ions by Sol-gel Synthesized Multi-walled Carbon Nanotubes Zr (IV) Phosphate Composite Fabricated Membrane Electrode

Author(s): Tauseef Ahmad Rangreez*, Rizwana Mobin and Hamida Tun Nisa Chisti*

Volume 18, Issue 4, 2022

Published on: 19 July, 2020

Page: [466 - 474] Pages: 9

DOI: 10.2174/1573411016999200719232804

Price: $65

Abstract

Background: The nanocomposites are formed by introducing inorganic nano-clusters, fullerenes, clays, metals, oxides with numerous organic polymers. The assembly of these materials exhibits better properties such as catalytic, thermal stability and adsorption properties, than the individual materials.

Objective: The nanocomposite synthesized here by the sol-gel method was primarily evaluated for cation exchange properties viz, elution concentration, elution behavior, and the effect of temperature on ion-exchange capacity. The synthesized composite was used as an electroactive component for the fabrication of the Hg2+ ion-selective membrane electrode.

Methods: The sol-gel technique was used to synthesize multi-walled carbon nanotubes Zr(IV) phosphate composite cation exchanger. By the technique of solution casting, the material as an electroactive part was used for the fabrication of mercury ion-selective membrane electrode. The potential response of the electrode was also investigated as a function of membrane composition and plasticizer.

Results: The composite cation exchanger exhibited 1.8 meq g-1 ion-exchange capacity (IEC). It retained almost 65% of its initial IEC up to a temperature of 400°C. Distribution studies showed the selective nature of the composite for Hg(II) ions. The ion-selective membrane electrode exhibited a typical Nernstian response towards Hg2+ ions in the concentration range 1×10-1-1×10-7 M.

Conclusion: The results discussed reveal that the new cation composite exchanger-multi-walled carbon nanotubes Zr (IV) phosphate exhibited excellent cation exchange properties and was found to be preferentially selective towards the Hg2+ ions. It was also used as an indicator electrode in the titration of Hg2+ ions using ethylenediaminetetraacetic acid as a titrant.

Keywords: Cation exchanger, composite, Hg2+ ions, membrane electrode, multi-walled carbon nanotubes Zr (IV) phosphate, potentiometric determination.

Graphical Abstract

[1]
Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys., 2010, 10(13), 5951-5964.
[http://dx.doi.org/10.5194/acp-10-5951-2010]
[2]
Singh, A.K.; Bhattacharjee, G.; Singh, R. Mercury(II)-selective membrane electrode using Tetrathia- Diazacyclotetradeca-2,9-Diene as neutral carrier. Sens. Actuators B Chem., 2004, 99(1), 36-41.
[http://dx.doi.org/10.1016/j.snb.2003.09.004]
[3]
James, G.W.; David, P.K.; Gary, H.H.; Anton, M.S. Handbook of ecotoxicology, 2nd ed; CRC Press, 2002.
[4]
Khan, A.A. Inamuddin. Applications of Hg(II) sensitive polyaniline Sn(IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode. Sens. Actuators B Chem., 2006, 120(1), 10-18.
[http://dx.doi.org/10.1016/j.snb.2006.01.033]
[5]
Rangreez, T.A.; Mobin, R. Polymer composites for dental fillings. Applications of nanocomposite materials in dentistry; Elsevier, 2019, pp. 205-224.
[http://dx.doi.org/10.1016/B978-0-12-813742-0.00013-4]
[6]
Jain, A.K.; Sondhi, S.M.; Sharma, V.K. Synthesis, characterization and Hg(II) ion selectivity of 1-(2-Nitro-4-Methyl Phenyl)-6-Methyl-6-Methoxy-1,4,5,6-Tetrahydro-Pyrimidine-2-(3H) Thione (TPT). Electroanalysis, 2000, 12(4), 301-305.
[http://dx.doi.org/10.1002/(SICI)1521-4109(20000301)12:4<301:AID-ELAN301>3.0.CO;2-2]
[7]
McKeown-Eyssen, G.E.; Ruedy, J.; Neims, A. Methyl mercury exposure in northern Quebec. II. Neurologic findings in children. Am. J. Epidemiol., 1983, 118(4), 470-479.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a113652 PMID: 6637974]
[8]
Naja, G.M.; Volesky, B. Heavy metals in the environmentTaylor and Francis; Boca Raton, FL, USA, 2009.
[9]
Xu, G.; Zhang, L.; Yu, W.; Sun, Z.; Guan, J.; Zhang, J.; Lin, J.; Zhou, J.; Fan, J.; Murugadoss, V.; Guo, Z. Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents. Nanotechnology, 2020, 31(22)225402
[http://dx.doi.org/10.1088/1361-6528/ab76eb] [PMID: 32066134]
[10]
Sarkaya, K.; Bakhshpour, M.; Denizli, A. Ag+ ions imprinted cryogels for selective removal of silver ions from aqueous solutions Separ. Sci. Tech. , 2018.
[11]
Yuanjin, H.; Zhenyu, L.; Tao, Y.; Xin, H.; Zhongyuan, L.; Shuzhen, L.; Feng, L.; Xiaoling, F.; Haibin, Z. Effect of Cd2+ on early hydration process of magnesium phosphate cement and its leaching toxicity properties Construct. Build. Mater., 2019, 209, 32-40.
[12]
Ivanetsa, A.I.; Kitikova, N.V.; Shashkova, I.L.; Oleksiienko, O.V.; Levchuk, I.; Sillanpaa, M. Using of phosphatized dolomite for treatment of real mine water frommetal ions. J. Water Process Eng., 2016, 9, 246-253.
[http://dx.doi.org/10.1016/j.jwpe.2016.01.005]
[13]
Tamahkar, E.; Bakhshpour, M.; Andaç, M.; Denizli, A. Ni(II)-imprinted cryogels for selective removal of nickel ions from aqueous solutions. Separ. Purif. Tech., 2016, 2016, 1.
[http://dx.doi.org/10.1016/j.seppur.2016.12.048]]
[14]
Zhang, L.; Li, Y.; Zhang, Q.; Shi, S.; Wang, H. Fast synthesis of highly dispersed anatase TiO2 nanocrystals in a microfluidic reactor. Chem. Lett., 2011, 40, 1371-1373.
[http://dx.doi.org/10.1246/cl.2011.1371]
[15]
Locatelli, C.; Melucci, D. Voltammetric determination of ultra-trace total mercury and toxic metals in meals. Food Chem., 2012, 130(2), 460-466.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.070 PMID: 22868114]
[16]
Gao, C.; Huang, X.J. Voltammetric determination of mercury(II). TrAC - Trends in analytical chemistry; Elsevier B.V.: The Netherlands, 2013, pp. 1-12.
[17]
Bi, N.; Chen, Y.; Qi, H.; Zheng, X.; Chen, Y.; Liao, X.; Zhang, H.; Tian, Y. Spectrophotometric determination of mercury(II) ion using gold nanorod as probe. Sens. Actuators B Chem., 2012, 166–167, 766-771.
[http://dx.doi.org/10.1016/j.snb.2012.03.068]
[18]
Deng, B.; Xiao, Y.; Xu, X.; Zhu, P.; Liang, S.; Mo, W. Cold vapor generation interface for mercury speciation coupling capillary electrophoresis with electrothermal quartz tube furnace atomic absorption spectrometry: determination of mercury and methylmercury. Talanta, 2009, 79(5), 1265-1269.
[http://dx.doi.org/10.1016/j.talanta.2009.05.037] [PMID: 19635357]
[19]
Plaschke, M.; Czolk, R.; Ache, H.J. Fluorimetric determination of mercury with a water-soluble porphyrin and porphyrin-doped sol-gel films. Anal. Chim. Acta, 1995, 304(1), 107-113.
[http://dx.doi.org/10.1016/0003-2670(94)00568-7]
[20]
Hakim, L.; Sabarudin, A.; Oshita, K.; Oshima, M.; Motomizu, S. Synthesis of chitosan-based resins modified with tris(2-aminoethyl)amine moiety and its application to collection/concentration and determination of trace mercury by inductively coupled plasma atomic emission spectrometry. Talanta, 2008, 76(5), 1256-1260.
[http://dx.doi.org/10.1016/j.talanta.2008.05.025] [PMID: 18761187]
[21]
Neuhold, C.G.; Wang, J.; do Nascimento, V.B.; Kalcher, K. Thick film voltammetric sensors for trace copper based on a cation-exchanger-modified surface. Talanta, 1995, 42(11), 1791-1798.
[http://dx.doi.org/10.1016/0039-9140(95)01647-3] [PMID: 18966416]
[22]
Somer, G. Kalayc; Ekmekci, G. Preparation and application of iodide-mercury selective membrane electrode based on ion exchangers. Sens. Actuators B Chem., 2001, 81(1), 122-127.
[http://dx.doi.org/10.1016/S0925-4005(01)00942-X]
[23]
Khan, A.A. Inamuddin; Akhtar, T. Organic-inorganic composite cation-exchanger: Poly-o-toluidine Zr(IV) phosphate-based ion-selective membrane electrode for the potentiometric determination of mercury. Anal. Sci., 2008, 24(7), 881-887.
[http://dx.doi.org/10.2116/analsci.24.881] [PMID: 18614830]
[24]
Naushad, M. A mercury ion-selective electrode based on poly-o-toluidine Zr(IV) tungstate composite membrane. J. Electroanal. Chem. , 2014, 713, 125-130.
[25]
Inamuddin; Rangreez, T.A.; Naushad, M.; Al-Ahmad, A. synthesis and characterisation of Poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchanger: analytical application as lead ion-selective membrane electrode. Int. J. Environ. Anal. Chem., 2015, 95(4), 312-323.
[http://dx.doi.org/10.1080/03067319.2015.1016016]
[26]
Inamuddin; Rangreez, T.A.; Khan, A. Synthesis of single-walled carbon nanotubes Cerium(IV) phosphate composite cation exchanger: ion exchange studies and its application as ion-selective membrane electrode for determination of Cd(II). Ions. Polym. Compos., 2017, 38(5), 1005-1013.
[http://dx.doi.org/10.1002/pc.23664]
[27]
Rangreez, T.A. Inamuddin. Synthesis and characterization of graphene Th(IV) phosphate composite cation exchanger: analytical application as lead ion-selective membrane electrode. Desalin. Water Treat., 2016, 57(50), 23893-23902.
[http://dx.doi.org/10.1080/19443994.2016.1138327]
[28]
Kumar, R.; Khan, M.A.; Haq, N. Application of carbon nanotubes in heavy metals remediation. Crit. Rev. Environ. Sci. Technol., 2014, 44(9), 1000-1035.
[http://dx.doi.org/10.1080/10643389.2012.741314]
[29]
Rangreez, T.A. Inamuddin; Naushad, M. Ali, H. Synthesis and characterisation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT: PSS) Zr(IV) monothiophosphate composite cation exchanger: analytical application in the selective separation of lead metal ions. Int. J. Environ. Anal. Chem., 2015, 95, 556-568.
[http://dx.doi.org/10.1080/03067319.2015.1036863]
[30]
Rangreez, T.A.; Asiri, A.M.; Alhogbi, B.G.; Naushad, M. Inamuddin. Inamuddin; Asiri, A.M.; Alhogbi, B.G.; Naushad, M. Synthesis and ion-exchange properties of graphene Th(IV) phosphate composite cation exchanger: Its applications in the selective separation of lead metal ions. Int. J. Environ. Res. Public Health, 2017, 14(7)E828
[http://dx.doi.org/10.3390/ijerph14070828] [PMID: 28737717]
[31]
Reilley, C.N.; Schmid, R.W.; Sadek, F.S. Chelon approach to analysis: I. Survey of theory and application. J. Chem. Educ., 1959, 36(11), 555.
[http://dx.doi.org/10.1021/ed036p555]
[32]
Moody, G.J.; Thomas, J.D.R. Development and publication of work with selective ion-sensitive electrodes. Talanta, 1972, 19(5), 623-639.
[http://dx.doi.org/10.1016/0039-9140(72)80202-9] [PMID: 18961093]
[33]
Wu, H.C.; Chang, X.; Liu, L.; Zhao, F.; Zhao, Y. Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem., 2010, 20(19), 1036.
[http://dx.doi.org/10.1039/B911099M]
[34]
Mahajan, R.K.; Kaur, R.; Kaur, I.; Sharma, V.; Kumar, M. Mercury(II) ion-selective electrodes based on p-tert-butyl calix[4]crowns with imine units. Anal. Sci., 2004, 20(5), 811-814.
[http://dx.doi.org/10.2116/analsci.20.811] [PMID: 15171285]
[35]
Mazloum, M.; Amini, M.K.; Mohammadpoor-Baltork, I. Mercury selective membrane electrodes using 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and hexathiacyclooctadecane carriers. Sens. Actuators B Chem., 2000, 63(1-2), 80-85.
[http://dx.doi.org/10.1016/S0925-4005(00)00300-2]
[36]
Khan, A.A.; Khan, A.; Inamuddin, Preparation and characterization of a new organic-inorganic nano-composite poly-o-toluidine Th(IV) phosphate: Its analytical applications as cation-exchanger and in making ion-selective electrode. Talanta, 2000, 72(2), 699-710.
[http://dx.doi.org/10.1016/j.talanta.2006.11.044] [PMID: 19071675]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy