Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Two-pot Oxidative Preparation of Dicarboxylic Acid Containing Cellulose for the Removal of Beryllium (Be2+) from Aqueous Solution

Author(s): Vedat Tolga Özdemir, Himmet Mert Tuğaç and Özgür Arar*

Volume 18, Issue 3, 2022

Published on: 19 July, 2020

Page: [360 - 369] Pages: 10

DOI: 10.2174/1573411016999200719232310

Price: $65

Abstract

Background: Cellulose is one of the most abundant, non-toxic, and renewable natural biopolymers. The presence of hydroxyl groups in cellulose leads to further modification of it. Preparation and modification of cellulose-based sorbents and their applications on water treatment gained traction in recent years

Objective: A low-cost and eco-friendly biosorbent was designed and fabricated by introducing the acetate functional groups into cellulose for removing Beryllium (Be2+) from an aqueous solution. The sorption of Be2+ on acetate containing cellulose was evaluated for varying sorbent doses and initial solution pH values.

Methods: The sorbent was prepared by a two-step oxidation process. In the initial step, cellulose reacted with NaIO4 and aldehyde groups were introduced to the cellulose. In the second step, newly obtained aldehyde groups were oxidized to create acetate groups

Results: The kinetics of the sorption process showed that Be2+ uptake reached equilibrium in 3 minutes. The sorption isotherm was well fitted in the Langmuir model, and the maximum sorption capacity was 4.54mg/g. Moreover, the thermodynamic studies demonstrated that Be2+ sorption was spontaneous and exothermic. Furthermore, the prepared sorbent can be regenerated by using 0.1 M HCl or H2SO4 solutions.

Conclusion: It is concluded that the removal of Be2+ is pH-dependent and it is favorable at high solution pH. The kinetics of the prepared sorbent were rapid and equilibrium attained in 3 minutes. The prepared sorbent can be regenerated with 0.1 M acid solution with > 99% efficiency.

Keywords: Beryllium, biopolymer, cellulose diacetate, ion-exchange, regeneration, water treatment.

Graphical Abstract

[1]
Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry, 4th ed; Pearson Publisher: Harlow, England, 2012.
[2]
Shah, A.N.; Tanveer, M.; Hussain, S.; Yang, G. Beryllium in the environment: Whether fatal for plant growth? Rev. Environ. Sci. Biotechnol., 2016, 15, 549-561.
[http://dx.doi.org/10.1007/s11157-016-9412-z]
[3]
Balmes, J.R.; Abraham, J.L.; Dweik, R.A.; Fireman, E.; Fontenot, A.P.; Maier, L.A.; Muller-Quernheim, J.; Ostiguy, G.; Pepper, L.D.; Saltini, C.; Schuler, C.R.; Takaro, T.K.; Wambach, P.F. ATS Ad Hoc committee on beryllium sensitivity and chronic beryllium disease. An official American Thoracic Society statement: diagnosis and management of beryllium sensitivity and chronic beryllium disease. Am. J. Respir. Crit. Care Med., 2014, 190(10), e34-e59.
[http://dx.doi.org/10.1164/rccm.201409-1722ST] [PMID: 25398119]
[4]
Perera, L.C.; Raymond, O.; Henderson, W.; Brothers, P.J.; Plieger, P.G. Advances in beryllium coordination chemistry. Coord. Chem. Rev., 2017, 352, 264-290.
[http://dx.doi.org/10.1016/j.ccr.2017.09.009]
[5]
Taylor, J.S.; Dweik, R.A.; Taylor, J.M. Metal Allergy: Beryllium. Metal Allergy, 1st Ed; Chen, J.K.; Thyssen, J.P., Eds.; Springer International Publishing: Cham, , 2018; pp. 337-347.
[http://dx.doi.org/10.1007/978-3-319-58503-1_26]
[6]
Mroz, M.M.; Ferguson, J.H.; Faino, A.V.; Mayer, A.; Strand, M.; Maier, L.A. Effect of inhaled corticosteroids on lung function in chronic beryllium disease. Respir. Med., 2018, 138S, S14-S19.
[http://dx.doi.org/10.1016/j.rmed.2018.01.009] [PMID: 29453139]
[7]
Isildak, I.; Attar, A.; Demir, E.; Kemer, B.; Aboul-Enein, H.Y. A Novel all Solid-State Contact PVC-Membrane Beryllium-Selective Electrode Based on 4-Hydroxybenzo-15-Crown-5 Ether Ionophore. Curr. Anal. Chem., 2018, 14(1), 43-18.
[http://dx.doi.org/10.2174/1573411012666161014164546]
[8]
World Health Organization Beryllium in drinking-water: background document for development of WHO guidelines for drinking-water quality., https://apps.who.int/iris/bitstream/handle/10665/70172/WHO_HSE_WSH_09.01_5_eng.pdf?sequence=1&isAllowed=y
[9]
Drobyshev, E.; Kybarskaya, L.; Dagaev, S.; Solovyev, N. New insight in beryllium toxicity excluding exposure to beryllium-containing dust: accumulation patterns, target organs, and elimination. Arch. Toxicol., 2019, 93(4), 859-869.
[http://dx.doi.org/10.1007/s00204-019-02432-7] [PMID: 30891623]
[10]
Taylor, A.; Blake, W.H.; Couldrick, L.; Keith-Roach, M.J. Sorption behaviour of beryllium-7 and implications for its use as a sediment tracer. Geoderma, 2012, 187-188, 16-23.
[http://dx.doi.org/10.1016/j.geoderma.2012.04.013]
[11]
Ramesh, A.; Mohan, K.R.; Seshaiah, K.; Choudary, N.V. Removal of beryllium from aqueous solutions by zeolite 4A and bentonite. Sep. Sci. Technol., 2002, 37, 1123-1134.
[http://dx.doi.org/10.1081/SS-120002245]
[12]
Boschi, V.; Willenbring, J.K. The effect of pH, organic ligand chemistry and mineralogy on the sorption of beryllium over time. Environ. Chem., 2016, 13, 711-722.
[http://dx.doi.org/10.1071/EN15107]
[13]
Sun, F.; Sun, W.L.; Sun, H.M.; Ni, J.R. Biosorption behavior and mechanism of beryllium from aqueous solution by aerobic granule. Chem. Eng. J., 2011, 172, 783-791.
[http://dx.doi.org/10.1016/j.cej.2011.06.062]
[14]
Abd El-Magied, M.O.; Mansour, A.; Alsayed, F.A.A.G.; Atrees, M.S.; Abd Eldayem, S. Biosorption of beryllium from aqueous solutions onto modified chitosan resin: Equilibrium, kinetic and thermodynamic study. J. Dispers. Sci. Technol., 2018, 39, 1597-1605.
[http://dx.doi.org/10.1080/01932691.2018.1452757]
[15]
Demerdash, M.; Saleh, M.M.; Shabaan, M.; Othman, S.H.; El-Anadouli, B.E. Experimental validation for a mathematical model describing beryllium retention on flow-through fixed bed reactor of Amb-IR-120. Hydrometallurgy, 2011, 108, 136-142.
[http://dx.doi.org/10.1016/j.hydromet.2011.03.009]
[16]
Othman, S.H.; Shabaan, M.; Demerdash, M.; Saleh, M.M. Experimental and theoretical investigation of sorption kinetics of beryllium on Amberlite-IR-120 sorbent. J. Nucl. Mater., 2009, 392, 427-433.
[http://dx.doi.org/10.1016/j.jnucmat.2009.04.001]
[17]
Othman, S.H.; Saleh, M.M.; Demerdash, M.; El-Anadouli, B.E. Mathematical model: Retention of beryllium on flow-through fixed bed reactor of Amb-IR-120. Chem. Eng. J., 2010, 156, 157-164.
[http://dx.doi.org/10.1016/j.cej.2009.09.018]
[18]
Gagliardo, P.; Adham, S.; Trussell, R.; Olivieri, A. Water repurification via reverse osmosis. Desalination, 1998, 117, 73-78.
[http://dx.doi.org/10.1016/S0011-9164(98)00069-1]
[19]
Ackman, T.E. Feasibility of lime treatment at the Leviathan Mine using the in-line system. Mine Water Environ., 2007, 19, 56-75.
[http://dx.doi.org/10.1007/BF02687264]
[20]
Hubicki, Z.; Wawrzkiewicz, M.; Wójcik, G.; Kolodynska, D.; Wolowicz, A. Ion exchange method for removal and separation of noble metal ions. Ion Exchange - Studies and Applications, 1st ed; Kilislioglu, A., Ed.; IntechOpen, 2015, pp. 3-35.
[http://dx.doi.org/10.5772/60597]
[21]
Nasef, M.M.; Ujang, Z. Introduction to ion exchange processes. Ion Exchange Technology I: Theory and Materials; 1st ed.; Inamuddin; Luqman, M.; Eds; Springer: Dordrecht, Heidelberg, New York, London,, 2012, pp. 1-39.
[http://dx.doi.org/10.1007/978-94-007-1700-8_1]
[22]
Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett., 2019, 17, 145-155.
[http://dx.doi.org/10.1007/s10311-018-0785-9]
[23]
Kumar, R.; Sharma, R.K.; Singh, A.P. Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications - A review. J. Mol. Liq., 2017, 232, 62-93.
[http://dx.doi.org/10.1016/j.molliq.2017.02.050]
[24]
Jain, C.K.; Malik, D.S.; Yadav, A.K. Applicability of plant based biosorbents in the removal of heavy metals: A review. Environ. Process., 2016, 3, 495-523.
[http://dx.doi.org/10.1007/s40710-016-0143-5]
[25]
Olivera, S.; Muralidhara, H.B.; Venkatesh, K.; Guna, V.K.; Gopalakrishna, K.; Kumar, K,Y. Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: A review. Carbohydr. Polym., 2016, 153, 600-618.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.017] [PMID: 27561533]
[26]
Liimatainen, H.; Visanko, M.; Sirviö, J.; Hormi, O.; Niinimäki, J. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose, 2013, 20, 741-749.
[http://dx.doi.org/10.1007/s10570-013-9865-y]
[27]
Parlak, E.; Arar, Ö. Removal of copper (Cu2+) from water by sulfonated cellulose. J. Dispers. Sci. Technol., 2018, 39, 1403-1408.
[http://dx.doi.org/10.1080/01932691.2017.1405818]
[28]
Liimatainen, H.; Visanko, M.; Sirviö, J.A.; Hormi, O.E.O.; Niinimaki, J. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromolecules, 2012, 13(5), 1592-1597.
[http://dx.doi.org/10.1021/bm300319m] [PMID: 22512713]
[29]
Kim, U-J.; Kuga, S. Ion-exchange chromatography by dicarboxyl cellulose gel. J. Chromatogr. A, 2001, 919(1), 29-37.
[http://dx.doi.org/10.1016/S0021-9673(01)00800-7 PMID: 11459309]
[30]
López, M.A.B.; Mochón, M.C.; Gómez Ariza, J.L.; Pérez, A.G. Leucoquinizarin as an analytical spectrophotometric and fluorimetric reagent. Part 2. Determination of beryllium. Analyst (Lond.), 1986, 3, 1293-1296.
[http://dx.doi.org/10.1039/AN9861101293]
[31]
Wu, P.; Wang, Z.; Liu, W.; Imai, M. Preparation of free‐standing chitosan membranes for Chlorella vulgaris harvest and examination on suppression of algae‐fouling properties. Water Environ. J., 2019, 33, 300-309.
[http://dx.doi.org/10.1111/wej.12410]
[32]
Chen, G.; Zhang, B.; Zhao, J.; Chen, H. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution. Carbohydr. Polym., 2013, 95(1), 332-337.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.003] [PMID: 23618277]
[33]
Larkin, P.J. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, 1st ed; Elsevier: Waltham, MA, 2011.
[34]
Arar, Ö. Preparation of anion-exchange cellulose for the removal of chromate. J. Chil. Chem. Soc., 2019, 64, 4471-4474.
[http://dx.doi.org/10.4067/S0717-97072019000204471]
[35]
Zhbankov, R.G. Infrared Spectra of Cellulose and its Derivatives, 1st ed; Springer US: Boston, MA, 1966.
[36]
Erdem Yayayürük, A.; Yayayürük, O.; Tukenmez, E.; Karagoz, B. Polystyrene-divinyl benzene microspheres with amino methyl phosphonic acid functional hairy brushes for the sorption and speciation of chromium prior to inductively coupled plasma mass spectrometric determination. Mikrochim. Acta, 2019, 186(8), 571.
[http://dx.doi.org/10.1007/s00604-019-3635-y] [PMID: 31342177]
[37]
Zagorodni, A.A. Ion Exchange Materials: Properties and Applications, Ed 1st ; Elsevier: Amsterdam, London, 2007.
[http://dx.doi.org/10.1016/B978-008044552-6/50018-6]
[38]
Duran, M.; Arar, Ö.; Arda, M. Removal of phthalic acid and isophthalic acid from aqueous solution by anion exchange resin. J. Chil. Chem. Soc., 2019, 64, 4399-4403.
[http://dx.doi.org/10.4067/s0717-97072019000104399]
[39]
Zhuang, Y.; Wang, X.; Liu, Q.; Shi, B. N-doped FeOOH/RGO hydrogels with a dual-reaction-center for enhanced catalytic removal of organic pollutants. Chem. Eng. J., 2020.379122310
[http://dx.doi.org/10.1016/j.cej.2019.122310]
[40]
Zhuang, Y.; Han, B.; Chen, R.; Shi, B. Structural transformation and potential toxicity of iron-based deposits in drinking water distribution systems. Water Res., 2019.165114999
[http://dx.doi.org/10.1016/j.watres.2019.114999] [PMID: 31465995]
[41]
Zhuang, Y.; Liu, Q.; Kong, Y.; Shen, C.; Hao, H.; Dionysiou, D.D.; Shi, B. Enhanced antibiotic removal through a dual-reaction-center Fenton-like process in 3D graphene based hydrogels. Environ. Sci. Nano, 2019, 6, 388-398.
[http://dx.doi.org/10.1039/C8EN01339J]
[42]
Morsi, R.E.; Elsherief, M.A.; Shabaan, M.; Elsabee, M.Z. Chitosan/MCM-41 nanocomposites for efficient beryllium separation. J. Appl. Polym. Sci., 2018, 135, 46040.
[http://dx.doi.org/10.1002/app.46040]
[43]
Alyüz, B.; Veli, S. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J. Hazard. Mater., 2009, 167(1-3), 482-488.
[http://dx.doi.org/10.1016/j.jhazmat.2009.01.006] [PMID: 19201087]
[44]
Das, J.; Pobi, M. Separation of beryllium and aluminium from other elements using an ion-exchange resin with N-benzoylphenylhydroxylamine as a functional group. Anal. Chim. Acta, 1991, 242, 107-111.
[http://dx.doi.org/10.1016/0003-2670(91)87053-A]
[45]
Yamini, Y.; Hassan, J.; Mohandesi, R.; Bahramifar, N. Preconcentration of trace amounts of beryllium in water samples on octadecyl silica cartridges modified by quinalizarine and its determination with atomic absorption spectrometry. Talanta, 2002, 56(3), 375-381.
[http://dx.doi.org/10.1016/S0039-9140(01)00560-4 PMID: 18968509]
[46]
İşlek Coşkun, Y. Biosorption of Copper by a Natural Byproduct Material: Pressed Black Cumin Cakes. Anal. Lett., 2020, 53, 1247-1265.
[http://dx.doi.org/10.1080/00032719.2019.1700993]
[47]
Arar, Ö. Shallow Shell resin versus traditional resin: A case study for Cu(II) removal. Anadolu Univ. J. Sci. Technol. Appl. Sci. Eng., 2016, 17, 530-542.
[http://dx.doi.org/10.18038/btda.05967]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy