Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

General Research Article

AFM Research in Catalysis and Medicine

Author(s): Ludmila Matienko*, Mil Elena Mickhailovna, Binyukov Vladimir Ivanovich and Goloshchapov Alexandr Nikolaevich

Volume 7, Issue 3, 2020

Page: [248 - 255] Pages: 8

DOI: 10.2174/2213337207999200717171645

Price: $65

Abstract

Background: In this study, we show that the AFM method not only allows monitoring the morphological changes in biological structures fixed on the surface due to H-bonds, but also makes it possible to study the self-organization of metal complexes by simulating the active center of enzymes due to intermolecular H-bonds into stable nanostructures; the sizes of which are much smaller than the studied biological objects. The possible role of intermolecular hydrogen bonds in the formation of stable supramolecular metal complexes, which are effective catalysts for the oxidation of alkyl arenes to hydroperoxides by molecular oxygen and mimic the selective active sites of enzymes, was first studied by AFM.

Methods and Results: The formation of supramolecular structures due to intermolecular hydrogen bonds and, possibly, other non-covalent interactions, based on homogenous catalysts and models of active centers enzymes, heteroligand nickel and iron complexes, was proven by AFM-technique. AFM studies of supramolecular structures were carried out using NSG30 cantilever with a radius of curvature of 2 nm, in the tapping mode. To form nanostructures on the surface of a hydrophobic, chemically modified silicon surface as a substrate, the sample was prepared using a spin-coating process from solutions of the nickel and iron complexes. The composition and the structure of the complex Ni2(acac)(OAc)3·NMP·2H2O were determined in earlier works using various methods: mass spectrometry, UV- and IR-spectroscopy, elemental analysis, and polarography. Self-assembly of supramolecular structures is due to intermolecular interactions with a certain coordination of these interactions, which may be a consequence of the properties of the components themselves, the participation of hydrogen bonds and other non-covalent interactions, as well as the balance of the interaction of these components with the surface. Using AFM, approaches have been developed for fixing on the surface and quantifying parameters of cells.

Conclusion: This study summarizes the authors' achievements in using the atomic force microscopy (AFM) method to study the role of intermolecular hydrogen bonds (and other non-covalent interactions) and supramolecular structures in the mechanisms of catalysis. The data obtained from AFM based on nickel and iron complexes, which are effective catalysts and models of active sites of enzymes, indicate a high probability of the formation of supramolecular structures in real conditions of catalytic oxidation, and can bring us closer to understanding enzymes activity. With a sensitive AFM method, it is possible to observe the self-organization of model systems into stable nanostructures due to H-bonds and possibly other non-covalent interactions, which can be considered as a step towards modeling the active sites of enzymes. Methodical approaches of atomic force microscopy for the study of morphological changes of cells have been developed.

Keywords: AFM method, supramolecular structures, intermolecular H-bonds, homogeneous catalysis, nickel and iron heteroligand complexes, models of enzymes, morphological changes of cells.

Graphical Abstract

[1]
Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett., 1986, 56(9), 930-933.
[http://dx.doi.org/10.1103/PhysRevLett.56.930] [PMID: 10033323]
[2]
Iwata, K.; Yamazaki, S.; Mutombo, P.; Hapala, P.; Ondráček, M.; Jelínek, P.; Sugimoto, Y. Chemical structure imaging of a single molecule by atomic force microscopy at room temperature. Nat. Commun., 2015, 6, 7766.
[http://dx.doi.org/10.1038/ncomms8766] [PMID: 26178193]
[3]
Matienko, L.I.; Binyukov, V.I.; Mosolova, L.A. Some supramolecular nanostructures based on catalytic active nickel and iron heteroligand complexes. functional models of Fe(Ni). Dioxygenases. Chem. & Chem. Tech., 2014, 8, 339-348.
[http://dx.doi.org/10.23939/chcht08.03.339]
[4]
Slater, A.G.; Perdigão, L.M.A.; Beton, P.H.; Champness, N.R. Surface-based supramolecular chemistry using hydrogen bonds. Acc. Chem. Res., 2014, 47(12), 3417-3427.
[http://dx.doi.org/10.1021/ar5001378] [PMID: 25330179]
[5]
Biedermann, F.; Schneider, H.J. Experimental Binding Energies in Supramolecular Complexes. Chem. Rev., 2016, 116(9), 5216-5300.
[http://dx.doi.org/10.1021/acs.chemrev.5b00583] [PMID: 27136957]
[6]
Ludmila, I. Matienko, Larisa A. Mosolova, Gennady E.Zaikov,Selective Catalytic Hydrocarbons Oxidation. New Perspectives; Nova Science Publ. Inc.: New York, 2010.
[7]
Matienko, L.I.; Mosolova, L.A. Mechanism of selective catalysis with triple system bis(acetylacetonate)Ni(II)+metalloligand+phenol in ethylbenzene oxidation with dioxygen. Role of H-bonding interactions. Oxid. Commun., 2014, 37, 20-31.
[8]
Matienko, L.I.; Binyukov, V.I.; Mosolova, L.A. Triple Systems, based on Ni(acac)2, Introduced ligands-modifiers HMPA, N-metyl-2-pirrolidone, PhOH or L-Tyrosine, as effective catalysts in Selective Ethyl benzene Oxidation with Dioxygen, and as models of Ni-ARD Dioxygenase. Oxid. Commun., 2017, 40, 569-579.
[9]
Deshpande, A.R.; Pochapsky, T.C.; Ringe, D. The metal drives the chemistry: dual functions of acireductone dioxygenase. Chem. Rev., 2017, 117(15), 10474-10501.
[http://dx.doi.org/10.1021/acs.chemrev.7b00117] [PMID: 28731690]
[10]
Leitgeb, S.; Straganz, G.D.; Nidetzky, B. Functional characterization of an orphan cupin protein from Burkholderia xenovorans reveals a mononuclear nonheme Fe2+-dependent oxygenase that cleaves β-diketones. FEBS J., 2009, 276(20), 5983-5997.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07308.x] [PMID: 19754880]
[11]
Dominy, J.E., Jr; Hwang, J.; Guo, S.; Hirschberger, L.L.; Zhang, S.; Stipanuk, M.H. Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity. J. Biol. Chem., 2008, 283(18), 12188-12201.
[http://dx.doi.org/10.1074/jbc.M800044200] [PMID: 18308719]
[12]
Matienko, L.I. Application of the AFM method to studying the role of Supramolecular structures and Tyr-fragment in the mechanism of Ni(Fe)ARD action on model systems. Oxid. Commun., 2018, 41, 429-440.
[13]
Agarwal, P.K. A biophysical perspective on enzyme catalysis. Biochemistry, 2019, 58(6), 438-449.
[http://dx.doi.org/10.1021/acs.biochem.8b01004] [PMID: 30507164]
[14]
Savino, C.; Montemiglio, L.C.; Sciara, G.; Miele, A.E.; Kendrew, S.G.; Jemth, P.; Gianni, S.; Vallone, B. Investigating the structural plasticity of a cytochrome P450: three-dimensional structures of P450 EryK and binding to its physiological substrate. J. Biol. Chem., 2009, 284(42), 29170-29179.
[http://dx.doi.org/10.1074/jbc.M109.003590] [PMID: 19625248]
[15]
Beletskaya, I.; Tyurin, V.S.; Tsivadze, A.Yu.; Guilard, R.; Stern, C. Supramolecular chemistry of metalloporphyrins. Chem. Rev., 2009, 109(5), 1659-1713.
[http://dx.doi.org/10.1021/cr800247a] [PMID: 19301872]
[16]
Murry, D.T.; Tysko, R. Side chain hydrogen-bonding interactions within amiloid-like fibrils formed by the low-complexity domain of fus: evidence from solid state nuclear magnetic resonance spectroscopy. Biochemistry, 2020, 59, 304-378.
[17]
Basom, E.J.; Manifold, B.A.; Thielges, M.C. Conformational Heterogeneity and the affinity of substrate molecular recognition by cytochrome P450cam. Biochemistry, 2017, 56(25), 3248-3256.
[http://dx.doi.org/10.1021/acs.biochem.7b00238] [PMID: 28581729]
[18]
Baykara, M.Z.; Schwarz, U.D. Atomic force microscopy: methods and applications.The Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C.; Tranter, G.E.; Koppenaal, D.W., Eds.; Academic Press: Oxford, 2017, Vol. 1, pp. 70-75.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12141-9]
[19]
Mil, E.M.; Erokhin, V.N.; Binyukov, V.I. Effect of Phenol Antioxidant Anphen on the Development of Lewis Carcinosarcoma Phenol compounds: Properties, activity, innovations: collection of scientific articles on materials of X International symposium “Phenol compounds: fundamental and applied aspects, Moscow editor-inchief N.V. Zagoskina, 2018, pp. 475-483.
[20]
Mil’, E.M.; Erokhin, V.N.; Binyukov, V.I.; Semenov, V.A.; Albantova, A.A.; Blokhina, S.V. Decrease in Bcl-2 Protein Level during the Development of Lewis Carcinosarcome. Bull. Exp. Biol. Med., 2018, 164(5), 673-675.
[http://dx.doi.org/10.1007/s10517-018-4056-3] [PMID: 29577188]
[21]
Mil, E.M.; Binyukov, V.I.; Zhigacheva, I.V. Studying the effect of melafen on pea seedlings mitochondria under stress effects using the AFM method. Bulletin of Kazan Technological University, Issue, 2013, 3, 141-145.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy