Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Mechanism of the Intestinal Absorption of Six Flavonoids from Zizyphi Spinosi Semen Across Caco-2 Cell Monolayer Model

Author(s): Panpan Song, Sa Xiao, Yanqing Zhang*, Junbo Xie* and Xusheng Cui

Volume 21, Issue 8, 2020

Page: [633 - 645] Pages: 13

DOI: 10.2174/1389200221666200714100455

Price: $65

Abstract

Background: Flavonoid compounds are one kind of active ingredients isolated from a traditional Chinese herb Zizyphi spinosae semen (ZSS). Studies have shown that ZSS flavonoids have significant antioxidant effects.

Methods: In this study, the Caco-2 cell monolayer model was constructed to investigate the intestinal absorption characteristics and mechanism of Isovitexin (IV), Swertisin (ST), Isovitexin-2''-O-β-D-glucopyranoside (IVG), Spinosin (S), 6'''-p-coumaroylspinosin (6-CS) and 6'''-feruloylspinosin (6-FS).

Results: The results of the bidirectional transport assay showed that the six flavonoids have good intestinal absorption in a near-neutral and 37°C environment, and the absorbability in descending order was 6-FS>6- CS>IVG>S>IV>ST. The results of carrier inhibition experiments and transport kinetics indicated that the absorption mechanism of six flavonoids was energy-dependent monocarboxylate transporter (MCT)-mediated active transport. In particular, the para-cellular pathway also participated in the transport of IV, ST, IVG and S. Furthermore, the efflux process of six flavonoids was mediated by P-glycoprotein (P-gp) and multidrug resistance protein (MRP), which may result in a decrease of bioavailability.

Conclusion: Our findings provide significant information for revealing the relationship between the intestinal absorption mechanism of flavonoids and its structure as well as laying a basis for the research of flavonoid preparations.

Keywords: Zizyphi spinosae semen, flavonoids, Caco-2 cell model, intestinal absorption, mechanism, transport kinetics.

« Previous
Graphical Abstract

[1]
Ma, Y.; Han, H.; Nam, S.Y.; Kim, Y.B.; Hong, J.T.; Yun, Y.P.; Oh, K.W. Cyclopeptide alkaloid fraction from Zizyphi Spinosi Semen enhances pentobarbital-induced sleeping behaviors. J. Ethnopharmacol., 2008, 117(2), 318-324.
[http://dx.doi.org/10.1016/j.jep.2008.02.006] [PMID: 18353574]
[2]
Song, P.; Lai, C.; Xie, J.; Zhang, Y. The preparation and investigation of spinosin-phospholipid complex self-microemulsifying drug delivery system based on the absorption characteristics of spinosin. J. Pharm. Pharmacol., 2019, 71(6), 898-909.
[http://dx.doi.org/10.1111/jphp.13076] [PMID: 30784084]
[3]
Zhang, M.; Zhang, Y.; Xie, J. Simultaneous determination of jujuboside A, B and betulinic acid in semen Ziziphi spinosae by high performance liquid chromatography-evaporative light scattering detection. J. Pharm. Biomed. Anal., 2008, 48(5), 1467-1470.
[http://dx.doi.org/10.1016/j.jpba.2008.09.022] [PMID: 18977107]
[4]
Lin, T.T.; Liu, Y.; Lai, C.J.S.; Yang, T.T.; Xie, J.B.; Zhang, Y.Q. The effect of ultrasound assisted extraction on structural composition, antioxidant activity and immunoregulation of polysaccharides from Ziziphus jujuba Mill var. spinosa seeds. Ind. Crops Prod., 2018, 125, 150-159.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.078]
[5]
Zhou, Q.H.; Zhou, X.L.; Xu, M.B.; Jin, T.Y.; Rong, P.Q.; Zheng, G.Q.; Lin, Y. Suanzaoren formulae for insomnia: updated clinical evidence and possible mechanisms. Front. Pharmacol., 2018, 9, 76.
[http://dx.doi.org/10.3389/fphar.2018.00076] [PMID: 29479317]
[6]
Zhang, Y.; Qiao, L.; Song, M.; Wang, L.; Xie, J.; Feng, H. Hplc-ESI-MS/MS analysis of the water-soluble extract from Ziziphi spinosae semen and its ameliorating effect of learning and memory performance in mice. Pharmacogn. Mag., 2014, 10(40), 509-516.
[http://dx.doi.org/10.4103/0973-1296.141777] [PMID: 25422554]
[7]
Dai, P.; Zhu, L.; Luo, F.; Lu, L.; Li, Q.; Wang, L.; Wang, Y.; Wang, X.; Hu, M.; Liu, Z. Triple recycling processes impact systemic and local bioavailability of orally administered flavonoids. AAPS J., 2015, 17(3), 723-736.
[http://dx.doi.org/10.1208/s12248-015-9732-x] [PMID: 25762448]
[8]
Li, Y.; Yao, M.; Cheng, S. Quantitative determination of spinosin in rat plasma by liquid chromatography-tandem mass spectrometry method. J. Pharm. Biomed. Anal., 2008, 48(4), 1169-1173.
[http://dx.doi.org/10.1016/j.jpba.2008.08.025] [PMID: 18834689]
[9]
Press, B.; Di Grandi, D. Permeability for intestinal absorption: Caco-2 assay and related issues. Curr. Drug Metab., 2008, 9(9), 893-900.
[http://dx.doi.org/10.2174/138920008786485119] [PMID: 18991586]
[10]
Chai, G.H.; Xu, Y.; Chen, S.Q.; Cheng, B.; Hu, F.Q.; You, J.; Du, Y.Z.; Yuan, H. Transport mechanisms of solid lipid nanoparticles across Caco-2 cell monolayers and their related cytotoxicology. ACS. ACS Appl. Mater. Interfaces, 2016, 8(9), 5929-5940.
[http://dx.doi.org/10.1021/acsami.6b00821] [PMID: 26860241]
[11]
Artursson, P.; Palm, K.; Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev., 2012, 64, 280-289.
[http://dx.doi.org/10.1016/j.addr.2012.09.005] [PMID: 11259831]
[12]
Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol., 2005, 21(1), 1-26.
[http://dx.doi.org/10.1007/s10565-005-0085-6] [PMID: 15868485]
[13]
van Breemen, R.B.; Li, Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol., 2005, 1(2), 175-185.
[http://dx.doi.org/10.1517/17425255.1.2.175] [PMID: 16922635]
[14]
Hayeshi, R.; Hilgendorf, C.; Artursson, P.; Augustijns, P.; Brodin, B.; Dehertogh, P.; Fisher, K.; Fossati, L.; Hovenkamp, E.; Korjamo, T.; Masungi, C.; Maubon, N.; Mols, R.; Müllertz, A.; Mönkkönen, J.; O’Driscoll, C.; Oppers-Tiemissen, H.M.; Ragnarsson, E.G.E.; Rooseboom, M.; Ungell, A.L. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur. J. Pharm. Sci., 2008, 35(5), 383-396.
[http://dx.doi.org/10.1016/j.ejps.2008.08.004] [PMID: 18782614]
[15]
Mariappan, T.T.; Shen, H.; Marathe, P. Endogenous biomarkers to assess drug-drug interactions by drug transporters and enzymes. Curr. Drug Metab., 2017, 18(8), 757-768.
[http://dx.doi.org/10.2174/1389200218666170724110818] [PMID: 28738769]
[16]
Kapitza, S.B.; Michel, B.R.; van Hoogevest, P.; Leigh, M.L.S.; Imanidis, G. Absorption of poorly water soluble drugs subject to apical efflux using phospholipids as solubilizers in the Caco-2 cell model. Eur. J. Pharm. Biopharm., 2007, 66(1), 146-158.
[http://dx.doi.org/10.1016/j.ejpb.2006.08.010] [PMID: 17071065]
[17]
Grandvuinet, A.S.; Gustavsson, L.; Steffansen, B. New insights into the carrier-mediated transport of estrone-3-sulfate in the Caco-2 cell model. Mol. Pharm., 2013, 10(9), 3285-3295.
[http://dx.doi.org/10.1021/mp300618a] [PMID: 23834246]
[18]
Ude, V.C.; Brown, D.M.; Viale, L.; Kanase, N.; Stone, V.; Johnston, H.J. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration. Part. Fibre Toxicol., 2017, 14(1), 31.
[http://dx.doi.org/10.1186/s12989-017-0211-7] [PMID: 28835236]
[19]
Duan, J.; Xie, Y.; Luo, H.; Li, G.; Wu, T.; Zhang, T. Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it. Food Chem. Toxicol., 2014, 66, 313-320.
[http://dx.doi.org/10.1016/j.fct.2014.02.003] [PMID: 24525098]
[20]
Albatany, M.; Meakin, S.; Bartha, R. The monocarboxylate transporter inhibitor quercetin induces intracellular acidification in a mouse model of glioblastoma multiforme: in vivo detection using magnetic resonance imaging. Invest. New Drugs, 2019, 37(4), 595-601.
[http://dx.doi.org/10.1007/s10637-018-0644-3] [PMID: 30101388]
[21]
Mathialagan, S.; Bi, Y.A.; Costales, C.; Kalgutkar, A.S.; Rodrigues, A.D.; Varma, M.V.S. Nicotinic acid transport into human liver involves organic anion transporter 2 (SLC22A7). Biochem. Pharmacol., 2020.174113829
[http://dx.doi.org/10.1016/j.bcp.2020.113829] [PMID: 32001236]
[22]
Shen, C.; Chen, R.; Qian, Z.; Meng, X.; Hu, T.; Li, Y.; Chen, Z.; Huang, C.; Hu, C.; Li, J. Intestinal absorption mechanisms of MTBH, a novel hesperetin derivative, in Caco-2 cells, and potential involvement of monocarboxylate transporter 1 and multidrug resistance protein 2. Eur. J. Pharm. Sci., 2015, 78, 214-224.
[http://dx.doi.org/10.1016/j.ejps.2015.07.022] [PMID: 26231439]
[23]
Liu, L.; Guo, L.; Zhao, C.; Wu, X.; Wang, R.; Liu, C. Characterization of the intestinal absorption of seven flavonoids from the flowers of Trollius chinensis using the Caco-2 cell monolayer model. PLoS One, 2015, 10(3)e0119263
[http://dx.doi.org/10.1371/journal.pone.0119263] [PMID: 25789809]
[24]
Li, S.; Zhang, Y.; Deng, G.; Wang, Y.; Qi, S.; Cheng, X.; Ma, Y.; Xie, Y.; Wang, C. Exposure characteristics of the analogous beta-carboline alkaloids harmaline and harmine based on the efflux transporter of multidrug resistance protein 2. Front. Pharmacol., 2017, 8, 541.
[http://dx.doi.org/10.3389/fphar.2017.00541] [PMID: 28871225]
[25]
Weisiger, R.A. When is a carrier not a membrane carrier? The cytoplasmic transport of amphipathic molecules. Hepatology, 1996, 24(5), 1288-1295.
[http://dx.doi.org/10.1002/hep.510240550] [PMID: 8903412]
[26]
Kimura, O.; Tsukagoshi, K.; Hayasaka, M.; Endo, T. Uptake of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) and dicamba (3,6-dichloro-2-methoxybenzoic acid) from the apical membranes of the human intestinal Caco-2 cells. Arch. Toxicol., 2012, 86(1), 55-61.
[http://dx.doi.org/10.1007/s00204-011-0734-x] [PMID: 21766207]
[27]
Xia, D.; He, Y.; Li, Q.; Hu, C.; Huang, W.; Zhang, Y.; Wan, F.; Wang, C.; Gan, Y. Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium. J. Control. Release, 2018, 269, 159-170.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.012] [PMID: 29129657]
[28]
van Hoppe, S.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-gp/ABCB1) transport afatinib and restrict its oral availability and brain accumulation. Pharmacol. Res., 2017, 120, 43-50.
[http://dx.doi.org/10.1016/j.phrs.2017.01.035] [PMID: 28288939]
[29]
Artursson, P.; Borchardt, R.T. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm. Res., 1997, 14(12), 1655-1658.
[http://dx.doi.org/10.1023/A:1012155124489] [PMID: 9453050]
[30]
Meunier, V.; Bourrié, M.; Berger, Y.; Fabre, G. The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biol. Toxicol., 1995, 11(3-4), 187-194.
[http://dx.doi.org/10.1007/BF00756522] [PMID: 8564649]
[31]
Volpe, D.A. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. Future Med. Chem., 2011, 3(16), 2063-2077.
[http://dx.doi.org/10.4155/fmc.11.149] [PMID: 22098353]
[32]
Gao, J.; Hugger, E.D.; Beck-Westermeyer, M.S.; Borchardt, R.T. Estimating intestinal mucosal permeation of compounds using Caco-2 cell monolayers. In: Pharmacology; , 2001; p. Chapter 7, Unit 7.2..
[http://dx.doi.org/10.1002/0471141755.ph0702s08 ]
[33]
Chong, S.; Dando, S.A.; Morrison, R.A. Evaluation of biocoat intestinal epithelium differentiation environment (3-day cultured Caco-2 cells) as an absorption screening model with improved productivity. Pharm. Res., 1997, 14(12), 1835-1837.
[http://dx.doi.org/10.1023/A:1012112820371] [PMID: 9453077]
[34]
Fang, Y.; Liang, F.; Liu, K.; Qaiser, S.; Pan, S.; Xu, X. Structure characteristics for intestinal uptake of flavonoids in Caco-2 cells. Food Res. Int., 2018, 105, 353-360.
[http://dx.doi.org/10.1016/j.foodres.2017.11.045] [PMID: 29433224]
[35]
Toropov, A.A.; Toropova, A.P. Application of the monte carlo method for building up models for octanol-water partition coefficient of platinum complexes. Chem. Phys. Lett., 2018, 701, 137-146.
[http://dx.doi.org/10.1016/j.cplett.2018.04.012]
[36]
Gee, J.M.; DuPont, M.S.; Rhodes, M.J.; Johnson, I.T. Quercetin glucosides interact with the intestinal glucose transport pathway. Free Radic. Biol. Med., 1998, 25(1), 19-25.
[http://dx.doi.org/10.1016/S0891-5849(98)00020-3] [PMID: 9655517]
[37]
Gonzales, G.B.; Van Camp, J.; Zotti, M.; Kobayashi, V.; Grootaert, C.; Raes, K.; Smagghe, G. Two-and three-dimensional quantitative structure-permeability relationship of flavonoids in Caco-2 cells using stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and pharmacophore (GALAHAD)-based comparative molecular similarity index analysis (COMSIA). Med. Chem. Res., 2015, 24, 1696-1706.
[http://dx.doi.org/10.1007/s00044-014-1241-4]
[38]
Brand, W.; van der Wel, P.A.I.; Rein, M.J.; Barron, D.; Williamson, G.; van Bladeren, P.J.; Rietjens, I.M.C.M. Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Drug Metab. Dispos., 2008, 36(9), 1794-1802.
[http://dx.doi.org/10.1124/dmd.107.019943] [PMID: 18515333]
[39]
Zhao, J. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci., 2015, 20(9), 576-585.
[http://dx.doi.org/10.1016/j.tplants.2015.06.007] [PMID: 26205169]
[40]
Madara, J.L.; Barenberg, D.; Carlson, S. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J. Cell Biol., 1986, 102(6), 2125-2136.
[http://dx.doi.org/10.1083/jcb.102.6.2125] [PMID: 3711143]
[41]
DiMarco, R.L.; Hunt, D.R.; Dewi, R.E.; Heilshorn, S.C. Improvement of paracellular transport in the Caco-2 drug screening model using protein-engineered substrates. Biomaterials, 2017, 129, 152-162.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.023] [PMID: 28342321]
[42]
Warshel, A. Dynamics of enzymatic reactions. Proc. Natl. Acad. Sci. USA, 1984, 81(2), 444-448.
[http://dx.doi.org/10.1073/pnas.81.2.444] [PMID: 6582500]
[43]
Chen, L.; Lu, X.; Liang, X.; Hong, D.; Guan, Z.; Guan, Y.; Zhu, W. Mechanistic studies of the transport of peimine in the Caco-2 cell model. Acta Pharm. Sin. B, 2016, 6(2), 125-131.
[http://dx.doi.org/10.1016/j.apsb.2016.01.006] [PMID: 27006896]
[44]
van Zanden, J.J.; Wortelboer, H.M.; Bijlsma, S.; Punt, A.; Usta, M.; Bladeren, P.J.; Rietjens, I.M.C.M.; Cnubben, N.H.P. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2. Biochem. Pharmacol., 2005, 69(4), 699-708.
[http://dx.doi.org/10.1016/j.bcp.2004.11.002] [PMID: 15670588]
[45]
Wang, Y.; Wu, Q.; Yang, X.W.; Yang, X.; Wang, K. The membrane transport of flavonoids from Crossostephium chinense across the Caco-2 monolayer. Biopharm. Drug Dispos., 2011, 32(1), 16-24.
[http://dx.doi.org/10.1002/bdd.735] [PMID: 21162116]
[46]
Liang, X.L.; Zhao, L.J.; Liao, Z.G.; Zhao, G.W.; Zhang, J.; Chao, Y.C.; Yang, M.; Yin, R.L. Transport properties of puerarin and effect of radix Angelicae dahuricae extract on the transport of puerarin in Caco-2 cell model. J. Ethnopharmacol., 2012, 144(3), 677-682.
[http://dx.doi.org/10.1016/j.jep.2012.10.011] [PMID: 23085309]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy