Abstract
Background: Recently, ample researches show that microRNAs (miRNAs) not only interact with coding genes but interact with a pool of different RNAs. Those RNAs are called miRNA sponges, including long non-coding RNAs (lncRNAs), circular RNA, pseudogenes and various messenger RNAs. Understanding regulatory networks of miRNA sponges can better help researchers to study the mechanisms of breast cancers.
Objective: We develop a new method to explore miRNA sponge networks of breast cancer by combining miRNA-disease-lncRNA and miRNA-target networks (MSNMDL).
Methods: Firstly, MSNMDL infers miRNA-lncRNA functional similarity networks from miRNAdisease- lncRNA networks. Secondly, MSNMDL forms lncRNA-target networks by using lncRNA to replace the role of matched miRNA in miRNA-target networks according to the lncRNA-miRNA pair of miRNA-lncRNA functional similarity networks. And MSNMDL only retains the genes of breast cancer in lncRNA-target networks to construct candidate miRNA sponge networks. Thirdly, MSNMDL merges these candidate miRNA sponge networks with other miRNA sponge interactions and then selects top-hub lncRNA and its interactions to construct miRNA sponge networks.
Result: MSNMDL is superior to other methods in terms of biological significance and its identified modules might act as module signatures for prognostication of breast cancer.
Conclusion: MiRNA sponge networks identified by MSNMDL are biologically significant and are closely associated with breast cancer, which makes MSNMDL a promising way for researchers to study the pathogenesis of breast cancer.
Keywords: miRNA sponge networks, miRNA sponge modules, breast cancer, biological enrichment, clustering algorithm, prognostication.
Graphical Abstract
[http://dx.doi.org/10.1038/nature11233.]
[http://dx.doi.org/10.1016/j.cell.2009.01.002.]
[http://dx.doi.org/10.1093/bib/bbw084.]
[http://dx.doi.org/10.1093/bib/bbx130.]
[http://dx.doi.org/10.1038/nature12986.]
[http://dx.doi.org/10.1016/j.cell.2011.07.014.]
[http://dx.doi.org/10.1016/j.cell.2011.09.028.]
[http://dx.doi.org/10.1093/bfgp/3.2.157.]
[http://dx.doi.org/10.1080/15476286.2015.1020271.]
[http://dx.doi.org/10.1038/nature11993.]
[http://dx.doi.org/10.1093/bib/bbw042.]
[http://dx.doi.org/10.1073/pnas.1222509110.]
[http://dx.doi.org/10.1186/s12859-017-1467-5.]
[http://dx.doi.org/10.1016/j.csda.2004.02.003.]
[http://dx.doi.org/10.1186/1752-0509-8-83.]
[http://dx.doi.org/10.1101/gr.178194.114.]
[http://dx.doi.org/10.1016/j.bpj.2013.01.012.]
[http://dx.doi.org/10.1142/S0219720020500079.]
[http://dx.doi.org/10.1093/nar/gkx1025.]
[http://dx.doi.org/10.1093/nar/gkv1258.]
[http://dx.doi.org/10.1093/nar/gku1215.]
[http://dx.doi.org/10.1038/nmeth.3485.]
[http://dx.doi.org/10.1093/database/baw057.]
[http://dx.doi.org/10.7554/eLife.05005.]
[http://dx.doi.org/10.1093/nar/gkt1248.]
[http://dx.doi.org/10.1186/s12859-017-1672-2.]
[http://dx.doi.org/10.1093/nar/gky1144.]
[http://dx.doi.org/10.1093/database/bay061.]
[http://dx.doi.org/10.1093/nar/gky1051.]
[http://dx.doi.org/10.1093/nar/gkw587.]
[http://dx.doi.org/10.1093/nar/gkv853.]
[http://dx.doi.org/10.1093/nar/27.1.29.]
[http://dx.doi.org/10.1186/s12859-019-2861-y.]
[http://dx.doi.org/10.1093/database/baz123.]
[http://dx.doi.org/10.4161/cbt.3.1.561.]
[http://dx.doi.org/10.1186/1476-4598-8-128.]
[http://dx.doi.org/10.2353/ajpath.2010.090664.]
[http://dx.doi.org/10.2325/jbcs.13.137.]
[http://dx.doi.org/10.1093/carcin/bgw077.]
[http://dx.doi.org/10.1016/j.cell.2011.09.029.]