Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Introduction of Succinimide as A Green and Sustainable Organo-Catalyst for the Synthesis of Arylidene Malononitrile and Tetrahydrobenzo[b] pyran Derivatives

Author(s): Fariba Hassanzadeh, Farhad Shirini*, Manouchehr Mamaghani and Nader Daneshvar

Volume 24, Issue 1, 2021

Published on: 09 July, 2020

Page: [155 - 163] Pages: 9

DOI: 10.2174/1386207323666200709170916

Price: $65

Abstract

Aim and Objective: In this work, we tried to introduce a non-toxic and stable organic compound named succinimide as a green and efficient organo-catalyst for the promotion of the synthesis of arylidene malononitrile and tetrahydrobenzo[b]pyran derivatives. Using this method led to a clean procedure to achieve these types of bioactive compounds without a specific purification step. The rate and yield of the reactions were excellent, and also succinimide showed acceptable reusability as the catalyst.

Materials and Methods: In a 25 mL round-bottom flask, [A: a mixture of aromatic aldehyde (1 mmol), malononitrile (1.1 mmol) and B: a mixture of aromatic aldehyde (1.0 mmol), malononitrile (1.1 mmol)] and succinimide (0.2 mmol) in H2O/ EtOH [5 mL (1:1)] was stirred at 80 °C for an appropriate time. After completion of the reaction, which was monitored by TLC [n-hexane-EtOAc (7:3)], the mixture was cooled to room temperature, and the solid product was filtered, washed several times with cold distilled water to obtain the corresponding pure product.

Results: After the optimization of the conditions and amount of the catalyst, a series of aromatic aldehydes containing either-electron-donating or electron-withdrawing substituents were successfully used for both of the reactions. The reactions rates and yields under the selected conditions were excellent. The nature and electronic properties of the substituents had no obvious effect on the rate and yield of the reaction. Meanwhile, the catalyst showed acceptable reusability for these two reactions.

Conclusion: In this work, we have introduced Succinimide as a green and safe organo-catalyst for the efficient synthesis arylidene malononitrile and tetrahydrobenzo[b]pyran derivatives. The results showed that the catalyst had excellent efficiency in green aqueous media and also the reusability of the catalyst was good.

Keywords: Organo-catalyst, succinimide, bioactive compounds, arylidene malononitriles, tetrahydrobenzo[b]pyran, Water media.

[1]
Reetz, M.; List, B.; Jaroch, S.; Weinmann, H., Eds.; Organocatalysis; Springer Science & Business Media, 2008.
[http://dx.doi.org/10.1007/978-3-540-73495-6]
[2]
Shaikh, I.R. Organocatalysis: key trends in green synthetic chemistry, challenges, scope towards heterogenization, and importance from research and industrial point of view. J. Catal., 2014, 2014, 1-35.
[http://dx.doi.org/10.1155/2014/402860]
[3]
Chandrasekhar, S.; Reddy, N.R.; Sultana, S.S.; Narsihmulu, C.; Reddy, K.V. L-Proline catalysed asymmetric aldol reactions in PEG-400 as recyclable medium and transfer aldol reactions. Tetrahedron, 2006, 62(2-3), 338-345.
[http://dx.doi.org/10.1016/j.tet.2005.09.122]
[4]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed. Engl., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
[5]
Clarke, H.T.; Behr, L.D. Succinimide. Org. Syn. Coll., 1936, 16, 75.
[http://dx.doi.org/10.15227/orgsyn.016.0075]
[6]
Patil, M.M.; Rajput, S.S. Succinimides: synthesis, reaction, and biological activity. Int. J. Pharm. Pharm. Sci., 2014, 6(11), 8-14.
[7]
Hazra, B.; Pore, V.; Dey, S.; Datta, S.; Darokar, M.; Saikia, D.; Khanuja, S.P.; Thakur, A. Bile acid amides derived from chiral amino alcohols: novel antimicrobials and antifungals. Bioorg. Med. Chem. Lett., 2004, 14(3), 773-777.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.018] [PMID: 14741287]
[8]
Fujisaki, S.; Hamura, S.; Eguchi, H.; Nishida, A. Organic Synthesis using sodium bromate. II. A facile synthesis of N-bromo imides and amides using sodium bromate and hydrobromic acid (or sodium bromide) in the presence of sulfuric acid. Bull. Chem. Soc. Jpn., 1993, 66(8), 2426-2428.
[http://dx.doi.org/10.1246/bcsj.66.2426]
[9]
Freeman, F. The chemistry of malononitrile. Chem. Rev., 1969, 69(5), 591-624.
[http://dx.doi.org/10.1021/cr60261a001] [PMID: 4897955]
[10]
Rostami, A.; Atashkar, B.; Gholami, H. Novel magnetic nanoparticles Fe3O4-immobilized domino Knoevenagel condensation, Michael addition, and cyclization catalyst. Catal. Commun., 2013, 37, 69-74.
[http://dx.doi.org/10.1016/j.catcom.2013.03.022]
[11]
Kaliyan, P.; Matam, S.; Muthu, S.P. Water extract of onion catalyzed Knoevenagel condensation reaction: an efficient green procedure for synthesis of α-cyanoacrylonitriles and α-cyanoacrylates. Asian J. Green Chem., 2019, 3(2), 137-152.
[12]
Wang, S.; Ren, Z.J.; Cao, W.G.; Tong, W. The Knoevenagel condensation of aromatic aldehydes with malononitrile or ethyl cyanoacetate in the presence of CTMAB in water. Synth. Commun., 2001, 31(5), 673-677.
[http://dx.doi.org/10.1081/SCC-100103255]
[13]
Basude, M.; Sunkara, P.; Puppala, V.S. ZnO catalyst for Knoevenagel condensation in aqueous medium at ambient temperature. J. Chem. Pharm. Res., 2013, 5, 46-50.
[14]
Ossowicz, P.; Rozwadowski, Z.; Gano, M.; Janus, E. Efficient method for Knoevenagel condensation in aqueous solution of amino acid ionic liquids (AAILs). Pol. J. Chem. Technol., 2016, 18(4), 90-95.
[http://dx.doi.org/10.1515/pjct-2016-0076]
[15]
Benitha, V.S.; Jeyasubramanian, K.; Mala, R.; Hikku, G.S.; Rajesh Kumar, R. New sol–gel synthesis of NiO antibacterial nano-pigment and its application as healthcare coating. J. Coat. Technol. Res., 2019, 16, 59-70.
[http://dx.doi.org/10.1007/s11998-018-0100-5]
[16]
Vaid, R.; Gupta, M. Silica-l-proline: an efficient and recyclable heterogeneous catalyst for the Knoevenagel condensation between aldehydes and malononitrile in liquid phase. Monatsh. Chem., 2015, 146(4), 645-652.
[http://dx.doi.org/10.1007/s00706-014-1331-5]
[17]
Shirini, F.; Daneshvar, N. Introduction of taurine (2-aminoethanesulfonic acid) as a green bio-organic catalyst for the promotion of organic reactions under green conditions. RSC Advances, 2016, 6(111), 110190-110205.
[http://dx.doi.org/10.1039/C6RA15432H]
[18]
Heravi, M.M.; Abdi Oskooie, H.; Latifi, Z.; Hamidi, H. One-Pot Synthesis of Tetracyanocyclopropane Derivatives Using Hexamethylenetetramine-Bromine (HMTAB). Adv. J. Chem. A, 2018, 1(1), 7-11.
[19]
Karimi-Chayjani, R.; Daneshvar, N.; Shirini, F.; Tajik, H. New magnetic nanocatalyst containing a bis-dicationic ionic liquid framework for Knoevenagel condensation reaction. Res. Chem. Intermed., 2019, 45(4), 2471-2488.
[http://dx.doi.org/10.1007/s11164-019-03747-x]
[20]
Ruijter, E.; Orru, R.V. Multicomponent reactions - opportunities for the pharmaceutical industry. Drug Discov. Today. Technol., 2013, 10(1), e15-e20.
[http://dx.doi.org/10.1016/j.ddtec.2012.10.012] [PMID: 24050225]
[21]
Moos, W.H.; Hurt, C.R.; Morales, G.A. Combinatorial chemistry: oh what a decade or two can do. Mol. Divers., 2009, 13(2), 241-245.
[http://dx.doi.org/10.1007/s11030-009-9127-y] [PMID: 19255865]
[22]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[23]
Lamberth, C.; Jeanguenat, A.; Cederbaum, F.; De Mesmaeker, A.; Zeller, M.; Kempf, H.J.; Zeun, R. Multicomponent reactions in fungicide research: the discovery of mandipropamid. Bioorg. Med. Chem., 2008, 16(3), 1531-1545.
[http://dx.doi.org/10.1016/j.bmc.2007.10.019] [PMID: 17962029]
[24]
Kakuchi, R. Multicomponent reactions in polymer synthesis. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 46-48.
[http://dx.doi.org/10.1002/anie.201305538] [PMID: 24302633]
[25]
Ellis, G.P. Chromenes, chromanones, and chromones, Chemistry of Heterocyclic Compounds Chromenes; Wiley-VCH: New York, 1977.
[http://dx.doi.org/10.1002/9780470187012]
[26]
Jin, T.S.; Wang, A.Q.; Shi, F.; Han, L.S.; Liu, L.B.; Li, T.S. Hexadecyldimethyl benzyl ammonium bromide: an efficient catalystfor a clean one-pot synthesis of tetrahydrobenzopyran derivatives in water. ARKIVOC, 2006, 14, 78-86.
[27]
Sheikhhosseini, E.; Ghazanfari, D.; Nezamabadi, V. A new method for synthesis of tetrahydrobenzo [b] pyrans and dihydropyrano [c] chromenes using p-dodecylbenzenesulfonic acid as catalyst in water. Iran. J. Catal., 2013, 3(4), 197-201.
[28]
Bhosale, R.S.; Magar, C.V.; Solanke, K.S.; Mane, S.B.; Choudhary, S.S.; Pawar, R.P. Molecular iodine: An efficient catalyst for the synthesis of tetrahydrobenzo [b] pyrans. Synth. Commun., 2007, 37(24), 4353-4357.
[http://dx.doi.org/10.1080/00397910701578578]
[29]
Mehrabi, H.; Kamali, N. Efficient and eco-friendly synthesis of 2-amino-4H-chromene derivatives using catalytic amount of tetrabutylammonium chloride (TBAC) in water and solvent-free conditions. J. Iran. Chem. Soc., 2012, 9(4), 599-605.
[http://dx.doi.org/10.1007/s13738-012-0073-8]
[30]
Behbahani, F.K.; Alipour, F. One-pot synthesis of 2-amino-4H-pyrans and 2-amino-tetrahydro-4H-chromenes using L-proline. GU J. Sci., 2015, 28(3), 387-393.
[31]
Hu, H.; Qiu, F.; Ying, A.; Yang, J.; Meng, H. An environmentally benign protocol for aqueous synthesis of tetrahydrobenzo[b]pyrans catalyzed by cost-effective ionic liquid. Int. J. Mol. Sci., 2014, 15(4), 6897-6909.
[http://dx.doi.org/10.3390/ijms15046897] [PMID: 24758931]
[32]
Hatamjafari, F. Glutamic acid as an environmentally friendly catalyst for one-pot synthesis of 4H-chromene derivatives and biological activity. J. Chem. Health Risks, 2016, 6(2), 133-142.
[33]
Daneshvar, N.; Shirini, F.; Langarudi, M.S.N.; Karimi-Chayjani, R. Taurine as a green bio-organic catalyst for the preparation of bio-active barbituric and thiobarbituric acid derivatives in water media. Bioorg. Chem., 2018, 77, 68-73.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.021] [PMID: 29334621]
[34]
Daneshvar, N.; Nasiri, M.; Shirzad, M.; Langarudi, M.S.N.; Shirini, F.; Tajik, H. The introduction of two new imidazole-based bis-dicationic Brönsted acidic ionic liquids and comparison of their catalytic activity in the synthesis of barbituric acid derivatives. New J. Chem., 2018, 42(12), 9744-9756.
[http://dx.doi.org/10.1039/C8NJ01179F]
[35]
Daneshvar, N.; Goli-Jolodar, O.; Karimi-Chayjani, R.; Langarudi, M.S.N.; Shirini, F. Sustainable and Eco‐Friendly Method for the Synthesis of Some Bioactive Derivatives of Biscoumarin and Pyrano [3, 2‐c] Chromene‐3‐Carbonitrile Using Taurine, as the Catalyst. ChemistrySelect, 2019, 4(5), 1562-1566.
[http://dx.doi.org/10.1002/slct.201803210]
[36]
Sharifi, Z.; Daneshvar, N.; Langarudi, M.S.N.; Shirini, F. Comparison of the efficiency of two imidazole-based dicationic ionic liquids as the catalysts in the synthesis of pyran derivatives and Knoevenagel condensations. Res. Chem. Intermed., 2019, 45(10), 4941-4958.
[http://dx.doi.org/10.1007/s11164-019-03874-5]
[37]
Darvishzad, S.; Daneshvar, N.; Shirini, F.; Tajik, H. ntroduction of piperazine-1, 4-diium dihydrogen phosphate as a new and highly efficient dicationic brönsted acidic ionic salt for the synthesis of (thio) barbituric acid derivatives in water. J. Mol. Struct., 2019, 1178, 420-427.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.053]
[38]
Karimi-Chayjani, R.; Daneshvar, N.; Langarudi, M.S.N.; Shirini, F.; Tajik, H. Silica-coated magnetic nanoparticles containing bis dicationic bridge for the synthesis of 1,2,4-triazolo pyrimidine/quinazolinone derivatives. J. Mol. Struct., 2020.1199126891
[http://dx.doi.org/10.1016/j.molstruc.2019.126891]
[39]
Khillare, S.L.; Dhokte, A.O.; Lande, M.K.; Arbad, B.R. Synthesis and characterization of magnetically separable NixMg1− XFe2O4 (Ni–Mg ferrite) catalyst for knoevenagel reaction in water. Int. J. Chem., 2014, 5, 96-101.
[40]
Xu, D.Z.; Liu, Y.; Shi, S.; Wang, Y. A simple, efficient and green procedure for Knoevenagel condensation catalyzed by [C4 dabco][BF 4] ionic liquid in water. Green Chem., 2010, 12(3), 514-517.
[http://dx.doi.org/10.1039/b918595j]
[41]
Bhuiyan, M.M.H.; Hossain, M.I.; Ashraful Alam, M.; Mahmud, M.M. Microwave assisted Knoevenagel condensation: Synthesis and antimicrobial activities of some arylidene-malononitriles. J. Chem., 2012, 2(1), 30-36.
[42]
Chaudhary, R.G.; Tanna, J.A.; Gandhare, N.V.; Rai, A.R.; Juneja, H.D. Synthesis of nickel nanoparticles: microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv. Mater. Lett., 2015, 6(11), 990-998.
[http://dx.doi.org/10.5185/amlett.2015.5901]
[43]
Pasha, A.; Manjula, M.; Krishnappa, P.; Jayashankara, V. Sodium carbonate: A versatile catalyst for Knoevenagel condensation. Indian J. Chem., 2010, 49B(10), 1428-1431.
[44]
Gupta, P.; Kour, M.; Paul, S.; Clark, J.H. Ionic liquid coated sulfonated carbon/silica composites: novel heterogeneous catalysts for organic syntheses in water. RSC Advances, 2014, 4(15), 7461-7470.
[http://dx.doi.org/10.1039/c3ra45229h]
[45]
Shirini, F.; Goli-Jolodar, O.; Akbari, M.; Seddighi, M. Preparation, characterization, and use of poly (vinylpyrrolidonium) hydrogen phosphate ([PVP-H] H2PO4) as a new heterogeneous catalyst for efficient synthesis of 2-amino-tetrahydro-4H-pyrans. Res. Chem. Intermed., 2016, 42(5), 4733-4749.
[http://dx.doi.org/10.1007/s11164-015-2312-y]
[46]
Kamat, S.R.; Mane, A.H.; Arde, S.M.; Salunkhe, R.S. β-cyclodextrin–glycerin as a versatile green system for synthesis of 2-amino-tetrahydro-4H-chromenes. Int. J. Pharm., 2014, 4(4), 1012-1021.
[47]
Islami, M.R.; Mosaddegh, E. Ce (SO4)2•4H2O as a Recyclable Catalyst for an Efficient, Simple, and Clean Synthesis of 4H-Benzo [b] pyrans. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(12), 3134-3138.
[http://dx.doi.org/10.1080/10426500802704969]
[48]
Pandit, K.S.; Chavan, P.V.; Desai, U.V.; Kulkarni, M.A.; Wadgaonkar, P. Tris-hydroxymethylaminomethane (THAM): a novel organocatalyst for a environmentally benign synthesis of medicinally important tetrahydrobenzo [b] pyrans and pyran-annulated heterocycles. New J. Chem., 2015, 39(6), 4452-4463.
[http://dx.doi.org/10.1039/C4NJ02346C]
[49]
Salvi, P.P.; Mandhare, A.M.; Sartape, A.S.; Pawar, D.K.; Han, S.H.; Kolekar, S.S. An efficient protocol for synthesis of tetrahydrobenzo [b] pyrans using amino functionalized ionic liquid. C. R. Chim., 2011, 14(10), 878-882.
[http://dx.doi.org/10.1016/j.crci.2011.02.007]
[50]
Dyachenko, V.D.; Chernega, A.N. Unexpected synthesis and crystal structure of ethyl 3-benzoyl-2, 6-bis (2-chlorophenyl)-1-cyano-4-hydroxy-4-phenylcyclohexane-1-carboxylate. Russ. J. Org. Chem., 2007, 43(1), 60-63.
[http://dx.doi.org/10.1134/S107042800701006X]
[51]
Gurumurthi, S.; Sundari, V.; Valliappan, R. An efficient and convenient approach to synthesis of tetrahydrobenzo [b] pyran derivatives using tetrabutylammonium bromide as catalyst. J. Chem., 2009, 6(S1), S466-S472.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy