Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Disulfide Bond-Responsive Nanotherapeutic Systems for the Effective Payload in Cancer Therapy

Author(s): Pravin Shende* and Gauraja Deshpande

Volume 26, Issue 41, 2020

Page: [5353 - 5361] Pages: 9

DOI: 10.2174/1381612826666200707131006

Price: $65

Abstract

Background: The progressive treatment of cancer using disulfide bond-based therapeutics offers improvement in therapeutic potency of active, reduction in adverse events, prolongation of drug release pattern and on-site action by interacting with neoplastic cell microenvironment.

Objective: The objective of this article is to highlight the research carried out on disulfide bond-based drug delivery systems as a potential candidate for cancer treatment.

Methods: The article provides an overview of the importance of disulfide bonds in cancer treatment in terms of their properties, mechanism of formation/fragmentation and applications. Properties of disulfide bonds, such as pKa, entropy, and dihedral angle contribute to the structural stability of the bonds in a nanotherapeutic system, while their formation and fragmentation are attributed to the presence of a high concentration of GSH in cancer cells. The article further focuses on various drug delivery systems like dendrimers, liposomes, micelles, etc. involving disulfide cross-linked polymers for the preparation of redox-responsive drug delivery systems.

Results: The use of nanotechnology with disulfide bond creates an anticancer drug delivery system with higher target specificity, improved bioavailability, and good therapeutic efficacy.

Conclusion: In the near future, the combination of DSB with active, cellular material, stem cell and biological fluid will be considered as a new thrust area for research in healthcare.

Keywords: Disulfide bonds, glutathione, tumor tissue, reduction responsiveness, cross-linked polymers, redox-responsive drug delivery systems.

[1]
Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005; 104(6): 1129-37.
[http://dx.doi.org/10.1002/cncr.21324] [PMID: 16080176]
[2]
Chakraborty S, Rahman T. The difficulties in cancer treatment. Ecancermedicalscience 2012; 6ed16
[PMID: 24883085]
[3]
Schlegel J, Köritzer J, Boxhammer V. Plasma in cancer treatment. Clin Plasma Med 2013; 1(2): 2-7.
[http://dx.doi.org/10.1016/j.cpme.2013.08.001]
[4]
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019; 13: 961.
[http://dx.doi.org/10.3332/ecancer.2019.961] [PMID: 31537986]
[5]
Schirrmacher V, License N. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. (Review) Int J Oncol 2019; 54(2): 407-19.
[PMID: 30570109]
[6]
Sambi M, Bagheri L, Szewczuk MR. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. Journal Menu Article Sections 2020; pp. 1-22.
[7]
Dat V. Mechanisms and applications of disulfide bond formation. University Of Oulu 2015.
[8]
Karimi M, Ignasiak MT, Chan B, et al. Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability. Sci Rep 2016; 6: 38572.
[http://dx.doi.org/10.1038/srep38572] [PMID: 27941824]
[9]
Englander SW, Mayne L. The nature of protein folding pathways. Proc Natl Acad Sci USA 2014; 111(45): 15873-80.
[http://dx.doi.org/10.1073/pnas.1411798111] [PMID: 25326421]
[10]
Wedemeyer WJ, Welker E, Narayan M, Scheraga HA. Current topics disulfide bonds and protein folding. Proc Natl Acad Sci USA 2015; 112(36): 11241-6.
[http://dx.doi.org/10.1073/pnas.1503909112] [PMID: 26297249]
[11]
Saito G, Swanson JA, Lee K-D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 2003; 55(2): 199-215.
[http://dx.doi.org/10.1016/S0169-409X(02)00179-5] [PMID: 12564977]
[12]
Butera D, Cook KM, Chiu J, Wong JWH, Hogg PJ. Review article control of blood proteins by functional disulfide bonds. blood 2019; 123(13): 2000-2008.
[13]
Schmidt B, Ho L, Hogg PJ. Allosteric disulfide bonds. Biochemistry 2006; 45(24): 7429-33.
[http://dx.doi.org/10.1021/bi0603064] [PMID: 16768438]
[14]
Vinther TN, Norrman M, Ribel U, et al. Insulin analog with additional disulfide bond has increased stability and preserved activity. Protein Sci 2013; 22(3): 296-305.
[http://dx.doi.org/10.1002/pro.2211] [PMID: 23281053]
[15]
Chang SG, Choi KD, Jang SH, Shin HC. Role of disulfide bonds in the structure and activity of human insulin. Mol Cells 2003; 16(3): 323-30.
[PMID: 14744022]
[16]
Ouyang D, Shah N, Zhang H, Smith SC, Parekh HS. Reducible disulfide-based non-viral gene delivery systems. Mini Rev Med Chem 2009; 9(10): 1242-50.
[http://dx.doi.org/10.2174/138955709789055225] [PMID: 19817714]
[17]
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1: 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[18]
Sun B, Luo C, Zhang X, et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat Commun 2019; 10(1): 3211.
[http://dx.doi.org/10.1038/s41467-019-11193-x] [PMID: 31324811]
[19]
He X, Zhang J, Li C, et al. Enhanced bioreduction-responsive diselenide-based dimeric prodrug nanoparticles for triple negative breast cancer therapy. Theranostics 2018; 8(18): 4884-97.
[http://dx.doi.org/10.7150/thno.27581] [PMID: 30429875]
[20]
Li T, Pan S, Gao S, et al. Diselenide-pemetrexed assemblies for combined cancer immuno-, radio-, and chemotherapies. Angew Chem Int Ed Engl 2020; 59(7): 2700-4.
[http://dx.doi.org/10.1002/anie.201914453] [PMID: 31805209]
[21]
Mu H, Bai H, Sun F, et al. Pathogen-targeting glycovesicles as a therapy for salmonellosis. Nat Commun 2019; 10(1): 4039.
[http://dx.doi.org/10.1038/s41467-019-12066-z] [PMID: 31492864]
[22]
Tomasova L, Konopelski P, Ufnal M. Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules 2016; 21(11): 1558.
[http://dx.doi.org/10.3390/molecules21111558] [PMID: 27869680]
[23]
Pizzorno J Glutathione . Integr Med (Encinitas) 2014; 13(1): 8-12.
[PMID: 26770075]
[24]
Owen JB, Butterfield DA. Chapter 18 Measurement of Oxidized / Reduced Glutathione Ratio. Protein Misfolding and Cellular Stress in Disease and Aging: Concepts and Protocols, Methods in Molecular Biology vol. 648.
[25]
Bajic VP, Van Neste C, Obradovic M, et al. Glutathione “redox homeostasis ” and its relation to cardiovascular disease..Oxid Med Cell Longev. 2019. Article ID . 502818114.
[26]
Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal 2008; 10(8): 1343-74.
[http://dx.doi.org/10.1089/ars.2007.1957] [PMID: 18522489]
[27]
Traverso N, Ricciarelli R, Nitti M, et al. Role of glutathione in cancer progression and chemoresistance. In: Oxidative Medicine and Cellular Longevity. 2013. Article ID 97291310.
[http://dx.doi.org/10.1155/2013/972913]
[28]
Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM. Glutathione levels in human tumors. Biomarkers 2012; 17(8): 671-91.
[http://dx.doi.org/10.3109/1354750X.2012.715672] [PMID: 22900535]
[29]
Brülisauer L, Gauthier MA, Leroux JC. Disulfide-containing parenteral delivery systems and their redox-biological fate. J Control Release 2014; 195: 147-54.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.012] [PMID: 24952369]
[30]
Ali Khan H, Mutus B. Protein disulfide isomerase a multifunctional protein with multiple physiological roles Front Chem 2014; 2(Figure 1): 1-15.
[http://dx.doi.org/10.3389/fchem.2014.00070]
[31]
Chakravarthi S, Jessop CE, Bulleid NJ. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep 2006; 7(3): 271-5.
[http://dx.doi.org/10.1038/sj.embor.7400645] [PMID: 16607396]
[32]
Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 2011; 152(1): 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[33]
Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 2018; 16(1): 74.
[http://dx.doi.org/10.1186/s12951-018-0398-2] [PMID: 30243297]
[34]
Lee E, Lee DH. Emerging roles of protein disulfide isomerase in cancer. BMB Rep 2017; 50(8): 401-10.
[http://dx.doi.org/10.5483/BMBRep.2017.50.8.107] [PMID: 28648146]
[35]
Parakh S, Atkin JD, Sexton D. Novel roles for protein disulphide isomerase in disease states: a double edged sword? Front Cell Dev Biol 2015; 3: 30.
[http://dx.doi.org/10.3389/fcell.2015.00030] [PMID: 26052512]
[36]
Bechtel TJ, Weerapana E. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 2017; 17(6): 1-31.
[http://dx.doi.org/10.1002/pmic.201600391] [PMID: 28044432]
[37]
Gilbert HF, Mclean M. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 1990; 63: 69-172.
[http://dx.doi.org/10.1002/9780470123096.ch2] [PMID: 2407068]
[38]
Darby NJ, Creighton TE. Functional properties of the individual thioredoxin-like domains of protein disulfide isomerase. Biochemistry 1995; 34(37): 11725-35.
[http://dx.doi.org/10.1021/bi00037a009] [PMID: 7547904]
[39]
Gach K, Długosz A, Janecka A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch Pharmacol 2015; 388(5): 477-86.
[http://dx.doi.org/10.1007/s00210-015-1096-3] [PMID: 25656627]
[40]
Armstrong JS, Steinauer KK, Hornung B, et al. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death and Differ 2002; 9: 252-63.
[41]
Okumura M, Saiki M, Yamaguchi H, Hidaka Y. Acceleration of disulfide-coupled protein folding using glutathione derivatives. FEBS J 2011; 278(7): 1137-44.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08039.x] [PMID: 21284805]
[42]
Qin M, Wang W, Thirumalai D. Protein folding guides disulfide bond formation. Proc Natl Acad Sci USA 2015; 112(36): 11241-6.
[http://dx.doi.org/10.1073/pnas.1503909112] [PMID: 26297249]
[43]
Woycechowsky KJ, Raines RT. Native disulfide bond formation in proteins. Curr Opin Chem Biol 2000; 4(5): 533-9.
[http://dx.doi.org/10.1016/S1367-5931(00)00128-9] [PMID: 11006541]
[44]
Wouters MA, Fan SW, Haworth NL. Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 2010; 12(1): 53-91.
[http://dx.doi.org/10.1089/ars.2009.2510] [PMID: 19634988]
[45]
Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008; 126(3): 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[46]
Sun B, Luo C, Yu H, et al. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett 2018; 18(6): 3643-50.
[http://dx.doi.org/10.1021/acs.nanolett.8b00737] [PMID: 29726685]
[47]
Wu C, Wang S, Brülisauer L, Leroux JC, Gauthier MA. Broad control of disulfide stability through microenvironmental effects and analysis in complex redox environments. Biomacromolecules 2013; 14(7): 2383-8.
[http://dx.doi.org/10.1021/bm400501c] [PMID: 23738500]
[48]
Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[49]
Lee MH, Sessler JL, Kim JS. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery. Acc Chem Res 2015; 48(11): 2935-46.
[http://dx.doi.org/10.1021/acs.accounts.5b00406] [PMID: 26513450]
[50]
Park K. Controlled drug delivery systems: past forward and future back. J Control Release 2014; 190: 3-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.054] [PMID: 24794901]
[51]
Yun YH, Lee BK, Park K. Controlled Drug Delivery: Historical perspective for the next generation. J Control Release 2015; 219: 2-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.005] [PMID: 26456749]
[52]
Yang D, Chen W, Hu J. Design of controlled drug delivery system based on disulfide cleavage trigger. J Phys Chem B 2014; 118(43): 12311-7.
[http://dx.doi.org/10.1021/jp507763a] [PMID: 25320865]
[53]
Dong H, Tang M, Li Y, Li Y, Qian D, Shi D. Disulfide-bridged cleavable PEGylation in polymeric nanomedicine for controlled therapeutic delivery. Nanomedicine (Lond) 2015; 10(12): 1941-58.
[http://dx.doi.org/10.2217/nnm.15.38] [PMID: 26139127]
[54]
Caldera F. Smart cyclodextrin-based drug delivery systems: stimuli-responsiveness and controlled release. Biomed J Sci Tech Res 2019; 9(5): 9-11.
[55]
Luján-Upton H, Okamoto Y. An electrochemically controlled drug delivery system based on a disulfidecontaining polymer. Drug Deliv J Deliv Target Ther Agents 1996; 3(1): 1-4.
[56]
Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 2010; 15(5-6): 171-85.
[http://dx.doi.org/10.1016/j.drudis.2010.01.009] [PMID: 20116448]
[57]
Shende P, Wakade VS. Biointerface: a nano-modulated way for biological transportation. J Drug Target 2020; 28(5): 456-67.
[http://dx.doi.org/10.1080/1061186X.2020.1720218] [PMID: 31961758]
[58]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[59]
Pal Singh P, Vithalapuram V, Metre S, Kodipyaka R. Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. J Liposome Res 2019; 1-23.
[http://dx.doi.org/10.1080/08982104.2019.1652645] [PMID: 31422719]
[60]
Shende P, Ture N, Gaud RS, Trotta F. Lipid- and polymer-based plexes as therapeutic carriers for bioactive molecules. Int J Pharm 2019; 558(January): 250-60.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.085] [PMID: 30641179]
[61]
Zhong Q, Rao KSVK. Recent Advances in Stimuli-responsive Poly (amidoamine) Dendrimer nanocarriers for drug delivery. Indian J Adv Chem Sci 2016; pp. 195-207.
[62]
Kurtoglu YE, Navath RS, Wang B, Kannan S, Romero R, Kannan RM. Poly(amidoamine) dendrimer-drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials 2009; 30(11): 2112-21.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.054] [PMID: 19171376]
[63]
Zhang W, Tichy SE, Pérez LM, Maria GC, Lindahl PA, Simanek EE. Evaluation of multivalent dendrimers based on melamine: kinetics of thiol-disulfide exchange depends on the structure of the dendrimer. J Am Chem Soc 2003; 125(17): 5086-94.
[http://dx.doi.org/10.1021/ja0210906] [PMID: 12708859]
[64]
Shen P, Patel C. siRNA: An alternative treatment for diabetes and associated conditions. J Drug Target 2018.
[PMID: 29756500]
[65]
Chernikov IV, Vlassov VV, Chernolovskaya EL. Current development of siRNA bioconjugates: From research to the clinic. Front Pharmacol 2019; 10: 444.
[http://dx.doi.org/10.3389/fphar.2019.00444] [PMID: 31105570]
[66]
Du XJ, Wang ZY, Wang YC. Redox-sensitive dendrimersomes assembled from amphiphilic Janus dendrimers for siRNA delivery. Biomater Sci 2018; 6(8): 2122-9.
[http://dx.doi.org/10.1039/C8BM00491A] [PMID: 29901676]
[67]
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[68]
Shende P, Patil A, Prabhakar B. Layer-by-layer technique for enhancing physicochemical properties of actives. J Drug Deliv Sci Technol 2020.101519
[http://dx.doi.org/10.1016/j.jddst.2020.101519]
[69]
Mayer C. Nanocapsules as drug delivery systems. Int J Artif Organs 2005; 28(11): 1163-71.
[http://dx.doi.org/10.1177/039139880502801114]
[70]
Zelikin AN, Quinn JF, Caruso F. Disulfide cross-linked polymer capsules: en route to biodeconstructible systems. Biomacromolecules 2006; 7(1): 27-30.
[http://dx.doi.org/10.1021/bm050832v] [PMID: 16398494]
[71]
Gulati N. Polymeric micelles : potential drug delivery devices. Indones J Pharm 2013; 24(4): 223-38.
[72]
Ahmad Z, Shah A, Siddiqa M. Heinz-Bernhard Kraatz. RSC Advances. 2014. RSC Advances 2014; 4: 17028-38.
[http://dx.doi.org/10.1039/C3RA47370H]
[73]
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery Nano Res Author manuscript 2018; 11(10): 4985-98.
[74]
Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013; 2013340315
[http://dx.doi.org/10.1155/2013/340315]
[75]
Zhang L, Liu W, Lin L, Chen D, Stenzel MH. Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the RAFT process. Biomacromolecules 2008; 9(11): 3321-31.
[http://dx.doi.org/10.1021/bm800867n] [PMID: 18842025]
[76]
Tang LY, Wang YC, Li Y, Du JZ, Wang J. Shell-detachable micelles based on disulfide-linked block copolymer as potential carrier for intracellular drug delivery. Bioconjug Chem 2009; 20(6): 1095-9.
[http://dx.doi.org/10.1021/bc900144m] [PMID: 19438224]
[77]
Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 2013; 453(1): 198-214.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.042] [PMID: 22944304]
[78]
Desai D, Shende P. Drug-Free Cyclodextrin-Based Nanosponges for Antimicrobial Activity. J Pharm Innov 2020.
[http://dx.doi.org/10.1007/s12247-020-09442-4]
[79]
Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm 2019; 565: 333-50.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.015] [PMID: 31082468]
[80]
Deshmukh K, Tanwar YS, Sharma S, Shende P, Cavalli R. Functionalized nanosponges for controlled antibacterial and antihypocalcemic actions. Biomed Pharmacother 2016; 84: 485-94.
[http://dx.doi.org/10.1016/j.biopha.2016.09.017] [PMID: 27685792]
[81]
Shende P, Kulkarni YA, Gaud RS, et al. Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J Pharm Sci 2015; 104(5): 1856-63.
[http://dx.doi.org/10.1002/jps.24416] [PMID: 25754724]
[82]
Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R. The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv 2014; 11(6): 931-41.
[http://dx.doi.org/10.1517/17425247.2014.911729] [PMID: 24811423]
[83]
Bano N, Ray SK, Shukla T, Upmanyu N, Khare R, Sharad P. Review Article Multifunctional nanosponges for the treatment of various diseases : A review. Asian Journal of Pharmacy and Pharmacology 2019; 5(2): 235-48.
[http://dx.doi.org/10.31024/ajpp.2019.5.2.4]
[84]
Trotta F, Caldera F, Dianzani C, Argenziano M, Barrera G, Cavalli R. Glutathione bioresponsive cyclodextrin nanosponges. ChemPlusChem 2016; 81(5): 439-43.
[http://dx.doi.org/10.1002/cplu.201500531] [PMID: 31968779]
[85]
Manteca A, Alonso-Caballero Á, Fertin M, Poly S, De Sancho D, Perez-Jimenez R. The influence of disulfide bonds on the mechanical stability of proteins is context dependent. J Biol Chem 2017; 292(32): 13374-80.
[http://dx.doi.org/10.1074/jbc.M117.784934] [PMID: 28642368]
[86]
Liu T, Wang Y, Luo X, et al. Enhancing protein stability with extended disulfide bonds. Proc Natl Acad Sci USA 2016; 113(21): 5910-5.
[http://dx.doi.org/10.1073/pnas.1605363113] [PMID: 27162342]
[87]
Khoo KK, Norton RS. Role of disulfide bonds in peptide and protein conformation. Amin Acids. Pept Proteins Org Chem 2011; 5: 395-417.
[88]
Bulaj G. Formation of disulfide bonds in proteins and peptides. Biotechnol Adv 2005; 23(1): 87-92.
[http://dx.doi.org/10.1016/j.biotechadv.2004.09.002] [PMID: 15610970]
[89]
Góngora-Benítez M, Tulla-puche J, Albericio F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem Rev 2014; 114(2): 901-26.
[90]
Northfield SE, Wang CK, Schroeder CI, et al. Disulfide-rich macrocyclic peptides as templates in drug design. Eur J Med Chem 2014; 77: 248-57.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.011] [PMID: 24650712]
[91]
Haggag YA, Donia AA, Osman MA, El-gizawy SA. Peptides as drug candidates : Limitations and recent development perspectives. BJSTR MS 2018; 001694.5(4): 6659-62.
[92]
Wang Y, Liu D, Zheng Q, et al. Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines. Nano Lett 2014; 14(10): 5577-83.
[http://dx.doi.org/10.1021/nl502044x] [PMID: 25188744]
[93]
Song Q, Wang X, Wang Y, et al. Reduction responsive self-assembled nanoparticles based on disulfide-linked drug-drug conjugate with high drug loading and antitumor efficacy. Mol Pharm 2016; 13(1): 190-201.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00631] [PMID: 26629710]
[94]
Verma G, Hassan PA. Self assembled materials: design strategies and drug delivery perspectives. Phys Chem Chem Phys 2013; 15(40): 17016-28.
[http://dx.doi.org/10.1039/c3cp51207j] [PMID: 23907560]
[95]
Kirpotin D, Hong K, Mullah N, Papahadjopoulos D, Zalipsky S. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett 1996; 388(2-3): 115-8.
[http://dx.doi.org/10.1016/0014-5793(96)00521-2] [PMID: 8690067]
[96]
Gabizon AA, Tzemach D, Horowitz AT, Shmeeda H, Yeh J, Zalipsky S. Reduced toxicity and superior therapeutic activity of a mitomycin C lipid-based prodrug incorporated in pegylated liposomes. Clin Cancer Res 2006; 12(6): 1913-20.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1547] [PMID: 16551877]
[97]
Suhail M, Rosenholm JM, Minhas MU, et al. Nanogels as drug-delivery systems: a comprehensive overview. Ther Deliv 2019; 10(11): 697-717.
[http://dx.doi.org/10.4155/tde-2019-0010] [PMID: 31789106]
[98]
Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B Mater Biol Med 2018; 6(2): 210-35.
[http://dx.doi.org/10.1039/C7TB02239E] [PMID: 32254164]
[99]
Kersey FR, Merkel TJ, Perry JL, Napier ME, DeSimone JM. Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores. Langmuir 2012; 28(23): 8773-81.
[http://dx.doi.org/10.1021/la301279v] [PMID: 22612428]
[100]
Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016; 240: 109-26.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy