Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

DyPO4·1.5H2O Microcrystals: Microwave/Ultrasound/ Ultraviolet Light- Assisted Synthesis, Characterization and Formation Mechanism

Author(s): Mengmeng Li, Shuang Huang, Hang Zhang, Lei Wang* and Shengliang Zhong*

Volume 7, Issue 3, 2020

Page: [216 - 221] Pages: 6

DOI: 10.2174/2213335607666200701214200

Price: $65

Abstract

Background: Researchers have pursued the new synthesis method. As a newly developed method, microwave (MW), ultrasound (US) and ultraviolet light (UV) assisted synthesis has drawn increasing interests. Under the synergistic effect, many materials with new structure, morphology and properties may be found. As an important rare-earth phosphate, DyPO4 was selected and the effect of MW, US and UV on the preparation was investigated.

Methods: The DyPO4·1.5H2O nanostructures were prepared by MW, US, UV and their combination.

Results: Hexagonal DyPO4·1.5H2O microcrystals obtained under MW irradiation were broomstick bundles. Needle-shaped products were formed in the presence of MW and US. Interestingly, the broom-sheaf-like structures can self-assemble into flower-shaped structures upon the irradiation of MW and UV. Whereas, MW/UV/US synergetic heating results in mixed morphologies of flower-like and needle-shaped structures.

Conclusion: The growth of DyPO4 nanostructures can be tuned by selecting the combination of heating method of MW, US and UV.

Keywords: DyPO4, microwave, ultrasound, ultraviolet light, rare earth, microcrystals.

Graphical Abstract

[1]
Yan, R.; Sun, X.; Wang, X.; Peng, Q.; Li, Y. Crystal structures, anisotropic growth, and optical properties: controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials. Chemistry, 2005, 11(7), 2183-2195.
[http://dx.doi.org/10.1002/chem.200400649] [PMID: 15714538]
[2]
Güzel, Y.; Rainer, M.; Messner, C.B.; Hussain, S.; Meischl, F.; Sasse, M.; Tessadri, R.; Bonn, G.K. Development of erbium phosphate doped poly(glycidyl methacrylate/ethylene dimethacrylate) spin columns for selective enrichment of phosphopeptides. J. Sep. Sci., 2015, 38(8), 1334-1343.
[http://dx.doi.org/10.1002/jssc.201401409] [PMID: 25645427]
[3]
Zhang, L.; Fu, L.; Yang, X.; Fu, Z.; Qi, X.; Wu, Z. Controlled synthesis and tunable luminescence of uniform YPO4•0.8H2O and YPO4•0.8H2O: Tb3+/Eu3+ nanocrystals by a facile approach. J. Math. Chem.C., 2014, 2, 9149-9158.
[http://dx.doi.org/10.1039/C4TC01427H]
[4]
Meenambal, R.; Poojar, P.; Geethanath, S.; Anitha, T.S.; Kannan, S. Lanthanide phosphate (LnPO4) rods as bio-probes: A systematic investigation on structural, optical, magnetic, and biological characteristics. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(5), 1372-1383.
[http://dx.doi.org/10.1002/jbm.b.34229] [PMID: 30265773]
[5]
Rodriguez-Liviano, S.; Becerro, A.I.; Alcántara, D.; Grazú, V.; de la Fuente, J.M.; Ocaña, M. Synthesis and properties of multifunctional tetragonal Eu:GdPO4 nanocubes for optical and magnetic resonance imaging applications. Inorg. Chem., 2013, 52(2), 647-654.
[http://dx.doi.org/10.1021/ic3016996] [PMID: 23268550]
[6]
Khadraoui, Z.; Bouzidi, C.; Horchani-Naifer, K.; Ferid, M. Crystal structure, energy band and optical properties of dysprosium monophosphate DyPO4. J. Alloys Compd., 2014, 617, 281-286.
[http://dx.doi.org/10.1016/j.jallcom.2014.07.135]
[7]
Dechadilok, P.; Deen, W.M. Electrostatic and electrokinetic effects on hindered convection in pores. J. Colloid Interface Sci., 2009, 338(1), 135-144.
[http://dx.doi.org/10.1016/j.jcis.2009.06.018] [PMID: 19589534]
[8]
Colomer, M.T.; Zur, L.; Ferrari, M.; Ortiz, A.L. Structural-microstructural characterization and optical properties of Eu3+, Tb3+-codoped LaPO4•nH2O and LaPO4 nanorods hydrothermally synthesized with microwaves. Ceram. Int., 2018, 44, 11993-12001.
[http://dx.doi.org/10.1016/j.ceramint.2018.03.142]
[9]
Heer, S.; Lehmann, O.; Haase, M.; Güdel, H.U. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. Engl., 2003, 42(27), 3179-3182.
[http://dx.doi.org/10.1002/anie.200351091] [PMID: 12866112]
[10]
Sorop, T.G.; Evangelisti, M.; Haase, M.; de Jongh, L.J. Superparamagnetic behaviour of antiferromagnetic DyPO4 nanoparticles. J. Magn. Magn. Mater., 2004, 272, 1573-1574.
[http://dx.doi.org/10.1016/j.jmmm.2003.12.507]
[11]
Fang, Y.P.; Xu, A.W.; Qin, A.M.; Yu, R.J. Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method. Cryst. Growth Des., 2005, 5, 1221-1225.
[http://dx.doi.org/10.1021/cg0495781]
[12]
Lai, H.; Du, Y.; Zhao, M.; Sun, K.; Yang, L. Controlled synthesis and luminescent properties of DyPO4: Eu nanostructures. Rsc Adv., 2014, 4, 50731-50738.
[http://dx.doi.org/10.1039/C4RA06916A]
[13]
Fang, Y.P.; Xu, A.W.; Song, R.Q.; Zhang, H.X.; You, L.P.; Yu, J.C.; Liu, H.Q. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J. Am. Chem. Soc., 2003, 125(51), 16025-16034.
[http://dx.doi.org/10.1021/ja037280d] [PMID: 14677994]
[14]
Kijkowska, R. Preparation of lanthanide orthophosphates by crystallisation from phosphoric acid solution. J. Mater. Sci., 2003, 38, 229-233.
[http://dx.doi.org/10.1023/A:1021140927187]
[15]
Di, W.; Wang, X.; Zhao, H. Synthesis and characterization of LnPO4 x nH2O (Ln = La, Ce, Gd, Tb, Dy) nanorods and nanowires. J. Nanosci. Nanotechnol., 2007, 7(10), 3624-3628.
[http://dx.doi.org/10.1166/jnn.2007.847] [PMID: 18330183]
[16]
Zhong, S-L.; Luo, L-F.; Wang, L.; Zhang, L-F. DyPO4 flower-like superstructures and macroporous microstructures from dysprosium-based coordination polymer wires. Powder Technol., 2012, 230, 151-157.
[http://dx.doi.org/10.1016/j.powtec.2012.07.023]
[17]
Lin, Y-H.; Tsai, Y-H.; Hsu, C-C.; Luo, G-L.; Lee, Y-J.; Chien, C-H. Microwave Annealing for NiSiGe Schottky Junction on SiGe P-Channel. Materials (Basel), 2015, 8(11), 7519-7523.
[http://dx.doi.org/10.3390/ma8115403] [PMID: 28793654]
[18]
Huang, S.; Xu, H.; Zhong, S.; Wang, L. Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles. Int. J. Miner. Metall. Mater., 2017, 24, 794-803.
[http://dx.doi.org/10.1007/s12613-017-1463-9]
[19]
Mousavi, S.A.; Hassanpour, M.; Salavati-Niasari, M.; Safardoust-Hojaghan, H.; Hamadanian, M. Dy2O3/CuO nanocomposites: microwave assisted synthesis and investigated photocatalytic properties. J. Mater. Sci. Mater. Electron., 2018, 29, 1238-1245.
[http://dx.doi.org/10.1007/s10854-017-8026-8]
[20]
Schuetz, M.B.; Xiao, L.; Lehnen, T.; Fischer, T.; Mathur, S. Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides. Int. Mater. Rev., 2018, 63, 341-374.
[http://dx.doi.org/10.1080/09506608.2017.1402158]
[21]
Farinas, J.C.; Moreno, R.; Perez, A.; Garcia, M.A.; Garcia-Hernandez, M.; Salvador, M.D.; Borrell, A. Microwave-assisted solution synthesis, microwave sintering and magnetic properties of cobalt ferrite. J. Eur. Ceram. Soc., 2018, 38, 2360-2368.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2017.12.052]
[22]
Shi, M.; Zeng, C.; Wang, L.; Nie, Z.; Zhao, Y.; Zhong, S. Straw-sheaf-like terbium-based coordination polymer architectures: microwave-assisted synthesis and their application as selective luminescent probes for heavy metal ions. New J. Chem., 2015, 39, 2973-2979.
[http://dx.doi.org/10.1039/C4NJ02138J]
[23]
Zhong, S.; Jing, H.; Li, Y.; Yin, S.; Zeng, C.; Wang, L. Coordination polymer submicrospheres: fast microwave synthesis and their conversion under different atmospheres. Inorg. Chem., 2014, 53(16), 8278-8286.
[http://dx.doi.org/10.1021/ic5005769] [PMID: 25083590]
[24]
Lum, A.F.H.; Borden, M.A.; Dayton, P.A.; Kruse, D.E.; Simon, S.I.; Ferrara, K.W. Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J. Control. Release, 2006, 111(1-2), 128-134.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.006] [PMID: 16380187]
[25]
Mojtabazade, F.; Mirtamizdoust, B.; Morsali, A.; Talemi, P. Ultrasonic-assisted synthesis and the structural characterization of novel the zig-zag Cd(II) metal-organic polymer and their nanostructures. Ultrason. Sonochem., 2018, 42, 134-140.
[http://dx.doi.org/10.1016/j.ultsonch.2017.11.018] [PMID: 29429654]
[26]
Eghbali-Arani, M.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Pourmasoud, S. Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem., 2018, 43, 120-135.
[http://dx.doi.org/10.1016/j.ultsonch.2017.11.040] [PMID: 29555267]
[27]
Morsali, A.; Monfared, H.H.; Bigdeli, F.; Morsali, A.; Mayer, P. Ultrasonic assisted synthesis of a new one-dimensional nanostructured Mn(II) coordination polymer derived from azide and new multi-topic nitrogen donor ligand. Ultrason. Sonochem., 2018, 42, 376-380.
[http://dx.doi.org/10.1016/j.ultsonch.2017.10.023] [PMID: 29429682]
[28]
Jeevanandam, P.; Koltypin, Y.; Palchik, O.; Gedanken, A. Synthesis of morphologically controlled lanthanum carbonate particles using ultrasound irradiation. J. Mater. Chem., 2001, 11, 869-873.
[http://dx.doi.org/10.1039/b007370i]
[29]
Bang, J.H.; Suslick, K.S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater., 2010, 22(10), 1039-1059.
[http://dx.doi.org/10.1002/adma.200904093] [PMID: 20401929]
[30]
Zong, X.; Wang, P. Effect of UV irradiation on the properties of ZnO nanorod arrays prepared by hydrothermal method. Physica E, 2009, 41, 757-761.
[http://dx.doi.org/10.1016/j.physe.2008.12.004]
[31]
Shen, Y-T.; Lei, D.; Feng, W. Architectural transformation of the nanoparticle superstructures induced by ultraviolet light irradiation and their application in photoelectrochemical switch devices. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1, 1926-1932.
[http://dx.doi.org/10.1039/c2tc00217e]
[32]
Liu, Y.; Liu, Z.; Zhao, L.; Wang, Y.; Pan, J.; Wang, Q.; Zhang, J. Removal of NO in flue gas using vacuum ultraviolet light/ultrasound/chlorine in a VUV-US coupled reactor. Fuel Process. Technol., 2018, 169, 226-235.
[http://dx.doi.org/10.1016/j.fuproc.2017.10.011]
[33]
Gogate, P.R.; Pandit, A.B. Sonophotocatalytic reactors for wastewater treatment: A critical review. AlChE J., 2004, 50, 1051-1079.
[http://dx.doi.org/10.1002/aic.10079]
[34]
Gogate, P.R. Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrason. Sonochem., 2008, 15(1), 1-15.
[http://dx.doi.org/10.1016/j.ultsonch.2007.04.007] [PMID: 17587634]
[35]
Khokhawala, I.M.; Gogate, P.R. Degradation of phenol using a combination of ultrasonic and UV irradiations at pilot scale operation. Ultrason. Sonochem., 2010, 17(5), 833-838.
[http://dx.doi.org/10.1016/j.ultsonch.2010.02.012] [PMID: 20308000]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy