Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Nano-sized Solid Dispersions for Improving the Bioavailability of Poorly Water-soluble Drugs

Author(s): Phuong H.L. Tran and Thao T.D. Tran*

Volume 26, Issue 38, 2020

Page: [4917 - 4924] Pages: 8

DOI: 10.2174/1381612826666200701134135

Price: $65

Abstract

It has been well established that solid dispersions have a high potential to increase the release rate of poorly water-soluble drugs, resulting in high drug bioavailability. Solid dispersions have been vigorously investigated with various practical approaches in recent decades. Improvements in wettability, molecular interactions and drugs being held in an amorphous state in solid dispersions are the main mechanisms underlying the high drug release rate. Moreover, the synergistic effect of incorporating nanotechnology in solid dispersions is expected to lead to an advanced drug delivery system for poorly water-soluble drugs. However, to date, there is still a lack of reviews providing outlooks on the nano-sized solid dispersions that have been substantially investigated for improving the bioavailability of poorly water-soluble drugs. In the current review, we aim to overview key advantages and approaches for producing nano-sized solid dispersions. The classification of key strategies in developing nano-sized solid dispersions will advance the creation of even more efficient solid dispersions, which will translate into clinical studies.

Keywords: Solid dispersions, amorphous, poorly water-soluble drugs, nano-sized, bioavailability, dispersions.

[1]
Bhakay A, Rahman M, Dave RN, Bilgili E. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: formulation−processing aspects and challenges. Pharmaceutics 2018; 10(3): 86.
[http://dx.doi.org/10.3390/pharmaceutics10030086 ] [PMID: 29986543]
[2]
Gala UH, Miller DA, Williams RO III. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer 2020; 1873(1): 188319.
[http://dx.doi.org/10.1016/j.bbcan.2019.188319 ] [PMID: 31678141]
[3]
Sawicki E, Schellens JHM, Beijnen JH, Nuijen B. Inventory of oral anticancer agents: Pharmaceutical formulation aspects with focus on the solid dispersion technique. Cancer Treat Rev 2016; 50: 247-63.
[http://dx.doi.org/10.1016/j.ctrv.2016.09.012 ] [PMID: 27776286]
[4]
Chavan RB, Rathi S, Jyothi VGSS, Shastri NR. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci 2019; 14(3): 248-64.
[http://dx.doi.org/10.1016/j.ajps.2018.09.003 ] [PMID: 32104456]
[5]
Vasconcelos T, Marques S. das Neves J, Sarmento B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv Drug Deliv Rev 2016; 100: 85-101.
[http://dx.doi.org/10.1016/j.addr.2016.01.012 ] [PMID: 26826438]
[6]
Tran PHL, Tran TTD. Dosage form designs for the controlled drug release of solid dispersions. Int J Pharm 2020; 581: 119274.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119274 ] [PMID: 32234566]
[7]
Tran TTD, Tran PHL, Lee BJ. Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. Eur J Pharm Biopharm 2009; 72(1): 83-90.
[http://dx.doi.org/10.1016/j.ejpb.2008.12.009 ] [PMID: 19141319]
[8]
Tran TTD, Tran PHL, Khanh TN, Van TV, Lee BJ. Solubilization of poorly water-soluble drugs using solid dispersions. Recent Pat Drug Deliv Formul 2013; 7(2): 122-33.
[http://dx.doi.org/10.2174/1872211311307020004 ] [PMID: 23244679]
[9]
Tran PHL, Tran TT-D, Lee KH, Kim DJ, Lee BJ. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin Drug Deliv 2010; 7(5): 647-61.
[http://dx.doi.org/10.1517/17425241003645910 ] [PMID: 20205605]
[10]
Van Ngo H, Nguyen PK, Van Vo T, et al. Hydrophilic-hydrophobic polymer blend for modulation of crystalline changes and molecular interactions in solid dispersion. Int J Pharm 2016; 513(1-2): 148-52.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.017 ] [PMID: 27613254]
[11]
Guan J, Jin L, Liu Q, et al. Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. Eur J Pharm Sci 2019; 139: 105043.
[http://dx.doi.org/10.1016/j.ejps.2019.105043 ] [PMID: 31415903]
[12]
Gordhan D, Swainson SME, Pearce AK, et al. Poly (glycerol adipate) (PGA): From a functionalized nano-carrier to a polymeric-prodrug matrix to create amorphous solid dispersions. J Pharm Sci 2019; 109: 1347-55.
[PMID: 31816297]
[13]
Dedroog S, Pas T, Vergauwen B, Huygens C, Van den Mooter G. Solid-state analysis of amorphous solid dispersions: Why DSC and XRPD may not be regarded as stand-alone techniques. J Pharm Biomed Anal 2020; 178: 112937.
[http://dx.doi.org/10.1016/j.jpba.2019.112937 ] [PMID: 31679845]
[14]
Alshafiee M, Aljammal MK, Markl D, et al. Hot-melt extrusion process impact on polymer choice of glyburide solid dispersions: The effect of wettability and dissolution. Int J Pharm 2019; 559: 245-54.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.038 ] [PMID: 30699365]
[15]
Tran PHL, Duan W, Lee BJ, Tran TTD. Modulation of drug crystallization and molecular interactions by additives in solid dispersions for improving drug bioavailability. Curr Pharm Des 2019; 25(18): 2099-107.
[http://dx.doi.org/10.2174/1381612825666190618102717 ] [PMID: 31244413]
[16]
Pham DTT, Tran PHL, Tran TTD. Development of solid dispersion lipid nanoparticles for improving skin delivery. Saudi Pharm J 2019; 27(7): 1019-24.
[http://dx.doi.org/10.1016/j.jsps.2019.08.004 ] [PMID: 31997909]
[17]
Alexander A. Ajazuddin, Patel RJ, Saraf S, Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 2016; 241: 110-24.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.017 ] [PMID: 27663228]
[18]
Balducci AG, Magosso E, Colombo G, Sonvico F. From tablets to pharmaceutical nanotechnologies: Innovation in drug delivery strategies for the administration of antimalarial drugs. J Drug Deliv Sci Technol 2016; 32: 167-73.
[http://dx.doi.org/10.1016/j.jddst.2015.06.003]
[19]
Mei L, Zhang Z, Zhao L, et al. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013; 65(6): 880-90.
[http://dx.doi.org/10.1016/j.addr.2012.11.005 ] [PMID: 23220325]
[20]
Pope-Harman A, Cheng MM-C, Robertson F, Sakamoto J, Ferrari M. Biomedical nanotechnology for cancer. Med Clin North Am 2007; 91(5): 899-927.
[http://dx.doi.org/10.1016/j.mcna.2007.05.008 ] [PMID: 17826110]
[21]
Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm 2019; 565: 258-68.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.032 ] [PMID: 31095983]
[22]
Marwaha RK, Dabas A. Bioavailability of nanoemulsion formulations vs conventional fat soluble preparations of cholecalciferol (D3) - An overview. J Clin Orthop Trauma 2019; 10(6): 1094-6.
[http://dx.doi.org/10.1016/j.jcot.2019.07.014 ] [PMID: 31708634]
[23]
Abri Aghdam M, Bagheri R, Mosafer J, et al. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315: 1-22.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.018 ] [PMID: 31647978]
[24]
Tran PH-L, Tran TT-D, Vo TV. Polymer conjugate-based nanomaterials for drug delivery. J Nanosci Nanotechnol 2014; 14(1): 815-27.
[http://dx.doi.org/10.1166/jnn.2014.8901 ] [PMID: 24730300]
[25]
Luo Y, Yang H, Zhou Y-F, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2020; 317: 195-215.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.037 ] [PMID: 31794799]
[26]
Mekaru H, Lu J, Tamanoi F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev 2015; 95: 40-9.
[http://dx.doi.org/10.1016/j.addr.2015.09.009 ] [PMID: 26434537]
[27]
Tran TTD, Tran PHL. Nanoconjugation and encapsulation strategies for improving drug delivery and therapeutic efficacy of poorly water-soluble drugs. Pharmaceutics 2019; 11(7): 325.
[http://dx.doi.org/10.3390/pharmaceutics11070325 ] [PMID: 31295947]
[28]
Tran PHL, Duan W, Tran TTD. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int J Pharm 2019; 571: 118697.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118697 ] [PMID: 31526839]
[29]
Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects 2019; 20: 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[30]
Duarte Í, Corvo ML, Serôdio P, Vicente J, Pinto JF, Temtem M. Production of nano-solid dispersions using a novel solvent-controlled precipitation process - Benchmarking their in vivo performance with an amorphous micro-sized solid dispersion produced by spray drying. Eur J Pharm Sci 2016; 93: 203-14.
[http://dx.doi.org/10.1016/j.ejps.2016.08.011 ] [PMID: 27519665]
[31]
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007; 12(23-24): 1068-75.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005 ] [PMID: 18061887]
[32]
Tran TTD, Tran PHL. Perspectives on strategies using swellable polymers in solid dispersions for controlled drug release. Curr Pharm Des 2017; 23(11): 1639-48.
[http://dx.doi.org/10.2174/1381612822666161021152932 ] [PMID: 27774901]
[33]
Mendonsa N, Almutairy B, Kallakunta VR, et al. Manufacturing strategies to develop amorphous solid dispersions: An overview. J Drug Deliv Sci Technol 2020; 55: 101459.
[http://dx.doi.org/10.1016/j.jddst.2019.101459]
[34]
Lu Y, Tang N, Lian R, Qi J, Wu W. Understanding the relationship between wettability and dissolution of solid dispersion. Int J Pharm 2014; 465(1-2): 25-31.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.004 ] [PMID: 24524825]
[35]
Ngo HV, Tran PHL, Lee BJ, Tran TTD. The roles of a surfactant in zein-HPMC blend solid dispersions for improving drug delivery. Int J Pharm 2019; 563: 169-73.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.009 ] [PMID: 30954672]
[36]
Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J Drug Deliv Sci Technol 2017; 41: 68-77.
[http://dx.doi.org/10.1016/j.jddst.2017.06.010]
[37]
Shah N, Iyer RM, Mair H-J, et al. Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. J Pharm Sci 2013; 102(3): 967-81.
[http://dx.doi.org/10.1002/jps.23425 ] [PMID: 23280631]
[38]
Jermain SV, Brough C, Williams RO III. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery - An update. Int J Pharm 2018; 535(1-2): 379-92.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.051 ] [PMID: 29128423]
[39]
Shah N, Sandhu H, Phuapradit W, et al. Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs. Int J Pharm 2012; 438(1-2): 53-60.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.031 ] [PMID: 22974525]
[40]
He Y, Ho C. Amorphous solid dispersions: Utilization and challenges in drug discovery and development. J Pharm Sci 2015; 104(10): 3237-58.
[http://dx.doi.org/10.1002/jps.24541 ] [PMID: 26175316]
[41]
Meng F, Meckel J, Zhang F. Investigation of itraconazole ternary amorphous solid dispersions based on povidone and Carbopol. Eur J Pharm Sci 2017; 106: 413-21.
[http://dx.doi.org/10.1016/j.ejps.2017.06.019 ] [PMID: 28627470]
[42]
Tran TTD, Tran PHL, Nguyen MNU, et al. Amorphous isradipine nanosuspension by the sonoprecipitation method. Int J Pharm 2014; 474(1-2): 146-50.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.017 ] [PMID: 25138256]
[43]
Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J Pharm Sci 2017; 12(6): 532-41.
[http://dx.doi.org/10.1016/j.ajps.2017.07.002 ] [PMID: 32104366]
[44]
Liu Y, Cheng C, Prud’homme RK, Fox RO. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem Eng Sci 2008; 63(11): 2829-42.
[http://dx.doi.org/10.1016/j.ces.2007.10.020]
[45]
Tran TTD, Tran KA, Tran PHL. Modulation of particle size and molecular interactions by sonoprecipitation method for enhancing dissolution rate of poorly water-soluble drug. Ultrason Sonochem 2015; 24: 256-63.
[http://dx.doi.org/10.1016/j.ultsonch.2014.11.020 ] [PMID: 25500098]
[46]
Ige PP, Baria RK, Gattani SG. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf B Biointerfaces 2013; 108: 366-73.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.043 ] [PMID: 23602990]
[47]
Martínez LM, Videa M, López Silva T, et al. Two-phase amorphous-amorphous solid drug dispersion with enhanced stability, solubility and bioavailability resulting from ultrasonic dispersion of an immiscible system. Eur J Pharm Biopharm 2017; 119: 243-52.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.021 ] [PMID: 28648863]
[48]
Eugenia Morales P, Cruz J, Martínez C, Videa M, María Martínez L. Nano and micro dispersions of two-phase amorphous-amorphous drug formulations as strategy to enhance solubility of pharmaceuticals. Materials Today: Proceedings 2019; 13: 390-6.
[49]
Tho I, Liepold B, Rosenberg J, Maegerlein M, Brandl M, Fricker G. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media. Eur J Pharm Sci 2010; 40(1): 25-32.
[http://dx.doi.org/10.1016/j.ejps.2010.02.003 ] [PMID: 20172027]
[50]
Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 2002; 54(2): 107-17.
[http://dx.doi.org/10.1016/S0939-6411(02)00061-9 ] [PMID: 12191680]
[51]
Ye X, Patil H, Feng X, et al. Conjugation of hot-melt extrusion with high-pressure homogenization: A novel method of continuously preparing nanocrystal solid dispersions. AAPS PharmSciTech 2016; 17(1): 78-88.
[http://dx.doi.org/10.1208/s12249-015-0389-7 ] [PMID: 26283197]
[52]
Balogh A, Farkas B, Domokos A, et al. Controlled-release solid dispersions of Eudragit® FS 100 and poorly soluble spironolactone prepared by electrospinning and melt extrusion. Eur Polym J 2017; 95: 406-17.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.08.032]
[53]
Nagy ZK, Balogh A, Démuth B, et al. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int J Pharm 2015; 480(1-2): 137-42.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.025 ] [PMID: 25596415]
[54]
Yu D-G, Li X-Y, Wang X, Yang J-H, Bligh SW, Williams GR. Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems. ACS Appl Mater Interfaces 2015; 7(33): 18891-7.
[http://dx.doi.org/10.1021/acsami.5b06007 ] [PMID: 26244640]
[55]
Shen X, Yu D, Zhu L, Branford-White C, White K, Chatterton NP. Electrospun diclofenac sodium loaded Eudragit® L 100-55 nanofibers for colon-targeted drug delivery. Int J Pharm 2011; 408(1-2): 200-7.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.058 ] [PMID: 21291969]
[56]
Yang G-Z, Li J-J, Yu D-G, He M-F, Yang J-H, Williams GR. Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomater 2017; 53: 233-41.
[http://dx.doi.org/10.1016/j.actbio.2017.01.069 ] [PMID: 28137657]
[57]
Yu D-G, Yang J-M, Branford-White C, Lu P, Zhang L, Zhu L-M. Third generation solid dispersions of ferulic acid in electrospun composite nanofibers. Int J Pharm 2010; 400(1-2): 158-64.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.010 ] [PMID: 20713138]
[58]
Wang H, Hao L, Wang P, Chen M, Jiang S, Jiang S. Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocoll 2017; 63: 437-46.
[http://dx.doi.org/10.1016/j.foodhyd.2016.09.028]
[59]
Moomand K, Lim L-T. Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Res Int 2014; 62: 523-32.
[http://dx.doi.org/10.1016/j.foodres.2014.03.054]
[60]
Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res 2003; 20(5): 810-7.
[http://dx.doi.org/10.1023/A:1023450006281 ] [PMID: 12751639]
[61]
Yu D-G, Shen X-X, Branford-White C, White K, Zhu L-M, Bligh SW. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 2009; 20(5): 055104.
[http://dx.doi.org/10.1088/0957-4484/20/5/055104 ] [PMID: 19417335]
[62]
Ball C, Woodrow KA. Electrospun solid dispersions of Maraviroc for rapid intravaginal preexposure prophylaxis of HIV. Antimicrob Agents Chemother 2014; 58(8): 4855-65.
[http://dx.doi.org/10.1128/AAC.02564-14 ] [PMID: 24913168]
[63]
Fülöp G, Balogh A, Farkas B, et al. Homogenization of amorphous solid dispersions prepared by electrospinning in low-dose tablet formulation. Pharmaceutics 2018; 10(3): E114.
[http://dx.doi.org/10.3390/pharmaceutics10030114 ] [PMID: 30072667]
[64]
Modica de Mohac L, Keating AV, de Fátima Pina M, Raimi-Abraham BT. Engineering of nanofibrous amorphous and crystalline solid dispersions for oral drug delivery. Pharmaceutics 2018; 11(1): E7.
[http://dx.doi.org/10.3390/pharmaceutics11010007 ] [PMID: 30586871]
[65]
Yu D-G, Zhu L-M, Branford-White CJ, et al. Solid dispersions in the form of electrospun core-sheath nanofibers. Int J Nanomedicine 2011; 6: 3271-80.
[http://dx.doi.org/10.2147/IJN.S27468 ] [PMID: 22228995]
[66]
Yu D-G, Li J-J, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J Control Release 2018; 292: 91-110.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.016 ] [PMID: 30118788]
[67]
Gomez-Estaca J, Balaguer MP, Gavara R, Hernandez-Munoz P. Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll 2012; 28(1): 82-91.
[http://dx.doi.org/10.1016/j.foodhyd.2011.11.013]
[68]
Ding L, Lee T, Wang C-H. Fabrication of monodispersed Taxol-loaded particles using electrohydrodynamic atomization. J Control Release 2005; 102(2): 395-413.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.011 ] [PMID: 15653160]
[69]
Li W, Yu D-G, Chen K, Wang G, Williams GR. Smooth preparation of ibuprofen/zein microcomposites using an epoxy-coated electrospraying head. Mater Lett 2013; 93: 125-8.
[http://dx.doi.org/10.1016/j.matlet.2012.11.064]
[70]
Liu Z-P, Cui L, Yu D-G, Zhao Z-X, Chen L. Electrosprayed core-shell solid dispersions of acyclovir fabricated using an epoxy-coated concentric spray head. Int J Nanomedicine 2014; 9: 1967-77.
[PMID: 24790437]
[71]
Browne E, Charifou R, Worku ZA, Babu RP, Healy AM. Amorphous solid dispersions of ketoprofen and poly-vinyl polymers prepared via electrospraying and spray drying: A comparison of particle characteristics and performance. Int J Pharm 2019; 566: 173-84.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.062 ] [PMID: 31132449]
[72]
Nguyen DN, Palangetic L, Clasen C, Van den Mooter G. One-step production of darunavir solid dispersion nanoparticles coated with enteric polymers using electrospraying. J Pharm Pharmacol 2016; 68(5): 625-33.
[http://dx.doi.org/10.1111/jphp.12459 ] [PMID: 26272245]
[73]
Kawabata Y, Yamamoto K, Debari K, Onoue S, Yamada S. Novel crystalline solid dispersion of tranilast with high photostability and improved oral bioavailability. Eur J Pharm Sci 2010; 39(4): 256-62.
[http://dx.doi.org/10.1016/j.ejps.2009.12.009 ] [PMID: 20038453]
[74]
Onoue S, Aoki Y, Kawabata Y, et al. Development of inhalable nanocrystalline solid dispersion of tranilast for airway inflammatory diseases. J Pharm Sci 2011; 100(2): 622-33.
[http://dx.doi.org/10.1002/jps.22299 ] [PMID: 20653048]
[75]
Onoue S, Terasawa N, Nakamura T, Yuminoki K, Hashimoto N, Yamada S. Biopharmaceutical characterization of nanocrystalline solid dispersion of coenzyme Q10 prepared with cold wet-milling system. Eur J Pharm Sci 2014; 53: 118-25.
[http://dx.doi.org/10.1016/j.ejps.2013.12.013 ] [PMID: 24368114]
[76]
Onoue S, Uchida A, Takahashi H, et al. Development of high-energy amorphous solid dispersion of nanosized nobiletin, a citrus polymethoxylated flavone, with improved oral bioavailability. J Pharm Sci 2011; 100(9): 3793-801.
[http://dx.doi.org/10.1002/jps.22585 ] [PMID: 21520087]
[77]
Onoue S, Nakamura T, Uchida A, et al. Physicochemical and biopharmaceutical characterization of amorphous solid dispersion of nobiletin, a citrus polymethoxylated flavone, with improved hepatoprotective effects. Eur J Pharm Sci 2013; 49(4): 453-60.
[http://dx.doi.org/10.1016/j.ejps.2013.05.014 ] [PMID: 23707470]
[78]
Lin X, Gao W, Li C, Chen J, Yang C, Wu H. Nano-sized flake carboxymethyl cassava starch as excipient for solid dispersions. Int J Pharm 2012; 423(2): 435-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.014 ] [PMID: 22197771]
[79]
My Tran KT, Vo TV, Lee BJ, Duan W, Ha-Lien Tran P, Truong-Dinh Tran T. Encapsulation of solid dispersion in solid lipid particles for dissolution enhancement of poorly water-soluble drug. Curr Drug Deliv 2018; 15(4): 576-84.
[http://dx.doi.org/10.2174/1567201814666170606101138 ] [PMID: 28595530]
[80]
Hassouna F, Abo El Dahab M, Fulem M, et al. Multi-scale analysis of amorphous solid dispersions prepared by freeze drying of ibuprofen loaded acrylic polymer nanoparticles. J Drug Deliv Sci Technol 2019; 53: 101182.
[http://dx.doi.org/10.1016/j.jddst.2019.101182]
[81]
Tran TTD, Tran PHL, Lim J, Park JB, Choi SK, Lee BJ. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Ther Deliv 2010; 1(1): 51-62.
[http://dx.doi.org/10.4155/tde.10.3 ] [PMID: 22816119]
[82]
Tran PHL, Tran HTT, Lee B-J. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release 2008; 129(1): 59-65.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.001 ] [PMID: 18501462]
[83]
Tran TTD, Tran PHL, Choi HG, Han HK, Lee BJ. The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm 2010; 384(1-2): 60-6.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.039 ] [PMID: 19782736]
[84]
Onoue S, Kojo Y, Suzuki H, et al. Development of novel solid dispersion of tranilast using amphiphilic block copolymer for improved oral bioavailability. Int J Pharm 2013; 452(1-2): 220-6.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.022 ] [PMID: 23694807]
[85]
Onoue S, Suzuki H, Kojo Y, et al. Self-micellizing solid dispersion of cyclosporine A with improved dissolution and oral bioavailability. Eur J Pharm Sci 2014; 62: 16-22.
[http://dx.doi.org/10.1016/j.ejps.2014.05.006 ] [PMID: 24836392]
[86]
Shi N-Q, Lai H-W, Zhang Y, et al. On the inherent properties of Soluplus and its application in ibuprofen solid dispersions generated by microwave-quench cooling technology. Pharm Dev Technol 2018; 23(6): 573-86.
[http://dx.doi.org/10.1080/10837450.2016.1256409 ] [PMID: 27824281]
[87]
Dian L, Yu E, Chen X, et al. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett 2014; 9(1): 2406-6.
[http://dx.doi.org/10.1186/1556-276X-9-684 ] [PMID: 26088982]
[88]
Kojo Y, Matsunaga S, Suzuki H, Sato H, Seto Y, Onoue S. Improved oral absorption profile of itraconazole in hypochlorhydria by self-micellizing solid dispersion approach. Eur J Pharm Sci 2017; 97: 55-61.
[http://dx.doi.org/10.1016/j.ejps.2016.10.032 ] [PMID: 27810562]
[89]
Shi N-Q, Wang S-R, Zhang Y, et al. Hot melt extrusion technology for improved dissolution, solubility and “spring-parachute” processes of amorphous self-micellizing solid dispersions containing BCS II drugs indomethacin and fenofibrate: Profiles and mechanisms. Eur J Pharm Sci 2019; 130: 78-90.
[http://dx.doi.org/10.1016/j.ejps.2019.01.019 ] [PMID: 30684657]
[90]
Shi N-Q, Zhang Y, Li Y, et al. Self-micellizing solid dispersions enhance the properties and therapeutic potential of fenofibrate: Advantages, profiles and mechanisms. Int J Pharm 2017; 528(1-2): 563-77.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.017 ] [PMID: 28602799]
[91]
Lian X, Dong J, Zhang J, et al. Soluplus(®) based 9-nitrocamptothecin solid dispersion for peroral administration: preparation, characterization, in vitro and in vivo evaluation. Int J Pharm 2014; 477(1-2): 399-407.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.055 ] [PMID: 25445521]
[92]
Halder S, Suzuki H, Seto Y, Sato H, Onoue S. Megestrol acetate-loaded self-micellizing solid dispersion system for improved oral absorption and reduced food effect. J Drug Deliv Sci Technol 2019; 49: 586-93.
[http://dx.doi.org/10.1016/j.jddst.2018.12.033]
[93]
Harmon P, Galipeau K, Xu W, Brown C, Wuelfing WP. Mechanism of dissolution-induced nanoparticle formation from a copovidone-based amorphous solid dispersion. Mol Pharm 2016; 13(5): 1467-81.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00863 ] [PMID: 27019407]
[94]
Rahman M, Ahmad S, Tarabokija J, Bilgili E. Roles of surfactant and polymer in drug release from spray-dried hybrid nanocrystal-amorphous solid dispersions (HyNASDs). Powder Technol 2019361: 663-78.
[95]
Sivert A, Bérard V, Andrès C. New binary solid dispersion of indomethacin with surfactant polymer: From physical characterization to in vitro dissolution enhancement. J Pharm Sci 2010; 99(3): 1399-413.
[http://dx.doi.org/10.1002/jps.21935 ] [PMID: 19827098]
[96]
Dinh HTT, Tran PHL, Duan W, Lee B-J, Tran TTD. Nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates for dissolution enhancement of poorly water-soluble drugs. Int J Pharm 2017; 533(1): 93-8.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.065 ] [PMID: 28951346]
[97]
Tran CTM, Tran PHL, Tran TTD. pH-independent dissolution enhancement for multiple poorly water-soluble drugs by nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates. Drug Dev Ind Pharm 2019; 45(3): 514-9.
[http://dx.doi.org/10.1080/03639045.2018.1562466 ] [PMID: 30575412]
[98]
Rahman M, Arevalo F, Coelho A, Bilgili E. Hybrid nanocrystal-amorphous solid dispersions (HyNASDs) as alternative to ASDs for enhanced release of BCS Class II drugs. Eur J Pharm Biopharm 2019; 145: 12-26.
[http://dx.doi.org/10.1016/j.ejpb.2019.10.002 ] [PMID: 31622652]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy