Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Carbohydrate-functionalized Liposomes in Cancer Therapy

Author(s): Nour M. Al-Sawaftah, Rand H. Abusamra and Ghaleb A. Husseini*

Volume 17, Issue 1, 2021

Published on: 26 June, 2020

Page: [4 - 20] Pages: 17

DOI: 10.2174/1573394716999200626144921

Price: $65

Abstract

Existing cancer treatments are often accompanied by adverse side effects that can greatly reduce the quality of life of cancer patients; this sets the platform for the development and application of nanocarrier-based platforms for the delivery of anticancer drugs. Among these nanocarriers, liposomes have demonstrated excellent potential in drug delivery applications. Furthermore, the overexpression of certain receptors on cancer cells has led to the development of active targeting approaches where liposome surfaces are decorated with ligands against these receptors. Given the central role that sugars play in cancer biology, more and more researchers are integrating “glycoscience” into their anticancer therapeutic designs. Carbohydrate functionalized liposomes present an attractive drug delivery system due to their biocompatibility, biodegradability, low toxicity, and specific cell targeting ability. This review presents an overview of the preparation methods, characterization, evaluation, and applications of carbohydrate functionalized liposomes in cancer therapy.

Keywords: Carbohydrate, liposomes, cancer, receptor, glycan, glycoliposome.

Graphical Abstract

[1]
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4(1): 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[2]
Dhanasekaran S, Chopra S. Getting a handle on smart drug delivery systems – a comprehensive view of therapeutic targeting strategies. In: Smart Drug Delivery System.InTech Open 2016.
[3]
Din FU. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315]
[4]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Sekar TV, Paulmurugan R. Bioluminescence imaging of cancer therapy. In: Cancer Theranostics Elsevier Inc California. 2014.
[6]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3: 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3]
[7]
European Medicines Agency. Myocet liposomal. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/myocet-liposomal-previously-myocet (Accessed on: Nov 27, 2019).
[8]
Celgene Corporation. ABRAXANE®. Available from: https://www.abraxane.com/ (Accessed on: Nov 27, 2019).
[9]
Chemocare. Doxil-Drug Information. Available from: http://chemocare.com/chemotherapy/drug-info/doxil.aspx (Accessed on: Nov 27, 2019).
[10]
European Medicines Agency. Caelyx. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/caelyx (Accessed on: Nov 27, 2019).
[11]
Chemocare. DaunoXome-Drug Information. Available from: http://chemocare.com/chemotherapy/drug-info/daunoXome.aspx (Accessed on: Nov 27, 2019).
[12]
Ranjbari J, Mokhtarzadeh A, Alibakhshi A, Tabarzad M, Hejazi M, Ramezani M. Anti-cancer drug delivery using carbohydrate-based polymers. Curr Pharm Des 2018; 23(39): 6019-32.
[http://dx.doi.org/10.2174/1381612823666170505124927] [PMID: 28482782]
[13]
Davidson EA. Carbohydrate. In: Encyclopædia Britannica. Britannica Inc.: USA, 2020.
[14]
Yang D, Zhou Z, Zhang L. An overview of fungal glycan-based therapeutics. In: Progress in Molecular Biology and Translational Science. Elsevier BV, 2019.
[15]
Johnson GB, Raven PH, Holt R. Chemistry of cells. In: Holt Biology. Holt, Rinehart and Winston: Austin, Texas, 2006.
[16]
Taniguchi N, Kizuka Y. Glycans and cancer: Role of N-Glycans in cancer biomarker, progression and metastasis, and therapeutics. In: Advances in Cancer Research. Academic Press Inc.: USA, 2015.
[http://dx.doi.org/10.1016/bs.acr.2014.11.001]
[17]
Rempel A, Mathupala SP, Pedersen PL. Glucose catabolism in cancer cells: Role and regulation of hexokinase overexpression. In: Cell Growth and Oncogenesis. Birkhäuser Basel: Switzerland, 1998.
[18]
Ambre SG, Barchi JJ. Carbohydrate nanotechnology and its applications for the treatment of cancer. In: Carbohydrate Nanotechnology John Wiley & Sons, Inc: Hoboken, NJ,. 2015.
[http://dx.doi.org/10.1002/9781118860212.ch13]
[19]
Aparicio LA, Calvo MB, Figueroa A, Pulido EG, Campelo RG. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int J Endocrinol 2010; 2010: 205357.
[http://dx.doi.org/10.1155/2010/205357]
[20]
Liberti MV, Locasale JW. The warburg effect: How does it benefit cancer cells? Trends Biochem Sci 2016; 3: 211-8.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001]
[21]
Mathupala SP, Ko YH, Pedersen PL, Hexokinase II. Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 2006; 34: 4777-86.
[http://dx.doi.org/10.1038/sj.onc.1209603]
[22]
Patra KC, Wang Q, Bhaskar PT, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 2013; 24(2): 213-28.
[http://dx.doi.org/10.1016/j.ccr.2013.06.014] [PMID: 23911236]
[23]
Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 1981; 256(16): 8699-704.
[PMID: 7263678]
[24]
Pinho SS, Reis CA. Glycosylation in cancer: Mechanisms and clinical implications. Nat Rev Cancer 2015; 9: 540-55.
[http://dx.doi.org/10.1038/nrc3982]
[25]
Mereiter S, Balmaña M, Campos D, Gomes J, Reis CA. Glycosylation in the era of cancer-targeted therapy: Where are we heading? Cancer Cell 2019; 1: 6-16.
[http://dx.doi.org/10.1016/j.ccell.2019.06.006]
[26]
Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1999; 1473(1): 21-34.
[http://dx.doi.org/10.1016/S0304-4165(99)00167-1]
[27]
Varki A, Kannagi R, Toole B, Stanley P. Glycosylation changes in cancer. In: Essentials of Glycobiology. Cold Spring Harbor Laboratory Press: NY, 2017.
[28]
Monzavi-Karbassi B, Pashov A, Kieber-Emmons T. Tumor-associated glycans and immune surveillance. Vaccines (Basel) 2013; 1(2): 174-203.
[http://dx.doi.org/10.3390/vaccines1020174]
[29]
National Cancer Institute. What is cancer? Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer#cell-differences (Accessed on: Dec 05, 2019).
[30]
Abbadi S, Rodarte JJ, Abutaleb A, et al. Glucose-6-phosphatase is a key metabolic regulator of glioblastoma invasion. Mol Cancer Res 2014; 12(11): 1547-59.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0106-T] [PMID: 25001192]
[31]
Hay N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat Rev Cancer 2016; 10: 635-49.
[http://dx.doi.org/10.1038/nrc.2016.77]
[32]
Wang Z, Dong C. Gluconeogenesis in cancer: Function and regulation of PEPCK, FBPase, and G6Pase. Trends Cancer 2019; 1: 30-45.
[http://dx.doi.org/10.1016/j.trecan.2018.11.003]
[33]
Marbaniang C, Kma L. Dysregulation of glucose metabolism by oncogenes and tumor suppressors in cancer cells. Asian Pac J Cancer Prev 2018; 9: 2377-90.
[34]
de la Fuente JM, Penadés S. Glyconanoparticles: Types, synthesis and applications in glycoscience, biomedicine and material science. Biochim Biophys Acta 2006; 1760(4): 636-51.
[35]
Weingart JJ, Vabbilisetty P, Sun XL. Glyco-functionalized liposomes. In: Carbohydrate Nanotechnology. John Wiley & Sons Inc.: Hoboken, NJ, 2015.
[http://dx.doi.org/10.1002/9781118860212.ch8]
[36]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015; 2015: 6.
[http://dx.doi.org/10.3389/fphar.2015.00286]
[37]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[38]
Berkman SD, Eugene M. Blood Group. Encyclopædia Britannica Inc.: USA, 2019
[39]
Jain K, Kesharwani P, Gupta U, Jain NK. A review of glycosylated carriers for drug delivery. Biomaterials 2012; 33(16): 4166-86.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.033]
[40]
Espuelas S, Haller P, Schuber F, Frisch B. Synthesis of an amphiphilic tetraantennary mannosyl conjugate and incorporation into liposome carriers. Bioorg Med Chem Lett 2003; 13(15): 2557-60.
[http://dx.doi.org/10.1016/S0960-894X(03)00472-4] [PMID: 12852965]
[41]
Xu Z, Jayaseharan J, Marchant RE. Synthesis and characterization of oligomaltose-grafted lipids with application to liposomes. J Colloid Interface Sci 2002; 252(1): 57-65.
[http://dx.doi.org/10.1006/jcis.2002.8355] [PMID: 16290762]
[42]
Zhang H, Xiao Y, Cui S, et al. Novel galactosylated poly(ethylene glycol)-cholesterol for liposomes as a drug carrier for hepatocyte- targeting. J Nanosci Nanotechnol 2015; 15(6): 4058-69.
[http://dx.doi.org/10.1166/jnn.2015.9707] [PMID: 26369013]
[43]
Garg M, Dutta T, Jain NK. Reduced hepatic toxicity, enhanced cellular uptake and altered pharmacokinetics of stavudine loaded galactosylated liposomes. Eur J Pharm Biopharm 2007; 67(1): 76-85.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.019] [PMID: 17303396]
[44]
Macmillan D, Daines AM. Recent developments in the synthesis and discovery of oligosaccharides and glycoconjugates for the treatment of disease. Curr Med Chem 2003; 10(24): 2733-73.
[http://dx.doi.org/10.2174/0929867033456413] [PMID: 14529463]
[45]
Zhang H, Ma Y, Sun XL. Chemically-selective surface glyco-functionalization of liposomes through Staudinger ligation. Chem Commun (Camb) 2009; 21: 3032-4.
[http://dx.doi.org/10.1039/b822420j] [PMID: 19462077]
[46]
Vabbilisetty P, Sun XL. Liposome surface functionalization based on different anchoring lipids via Staudinger ligation. Org Biomol Chem 2014; 12(8): 1237-44.
[http://dx.doi.org/10.1039/c3ob41721b] [PMID: 24413731]
[47]
Garg M, Jain NK. Reduced hematopoietic toxicity, enhanced cellular uptake and altered pharmacokinetics of azidothymidine loaded galactosylated liposomes. J Drug Target 2006; 14(1): 1-11.
[http://dx.doi.org/10.1080/10611860500525370] [PMID: 16603446]
[48]
Talegaonkar S, Mishra P, Khar R, Biju S. Vesicular systems: An overview. Indian J Pharm Sci 2006; 68(2): 141.
[http://dx.doi.org/10.4103/0250-474X.25707]
[49]
Karthikeyan M, Balasubramanian T, Khaleel MI, Sahl M, Rashifa P. Liposomes: Preparations and applications. Int J Drug Deliv 2012; 4(4): 108-15.
[50]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[51]
Lin M, Qi XR. Purification method of drug-loaded liposome. In: Liposome-Based Drug Delivery Systems. Springer: Berlin, Heidelberg, 2018.
[52]
Jin L, Engelhart AE, Adamala KP, Szostak JW. Preparation, purification, and use of fatty acid-containing liposomes. J Vis Exp 2018; 2018: 132.
[http://dx.doi.org/10.3791/57324] [PMID: 29553563]
[53]
Kulkarni VS, Shaw C. Formulating creams, gels, lotions, and suspensions. In: Essential Chemistry for Formulators of Semisolid and Liquid Dosages. Elsevier: 2016.
[http://dx.doi.org/10.1016/B978-0-12-801024-2.00004-2]
[54]
Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): E195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[55]
Crommelin DJA, Fransen GJ, Salemink PJM. Stability of liposomes on storage. In: Targeting of Drugs With Synthetic Systems. Springer: USA, 1986.
[http://dx.doi.org/10.1007/978-1-4684-5185-6_20]
[56]
Cartaxo A. Nanoparticles types and properties – understanding these promising devices in the biomedical area University of Minho Braga. 2010.
[57]
Hupfeld S, Holsaeter AM, Skar M, Frantzen CB, Brandl M. Liposome size analysis by dynamic/static light scattering upon size exclusion-/field flow-fractionation. J Nanosci Nanotechnol 2006; 6(9-10): 3025-31.
[http://dx.doi.org/10.1166/jnn.2006.454] [PMID: 17048514]
[58]
Fields D. Using Dynamic Light Scattering (DLS) for liposome size analysis. News Med Life Sci 2018; p. 1–3.
[59]
Ramos AP. Dynamic light scattering applied to nanoparticle characterization. In: Nanocharacterization Techniques. Elsevier Inc.: 2017.
[60]
Bodycomb J. Interpreting and Understanding Dynamic Light Scattering Data. Horiba Sci.; France, 2012.
[61]
Minton AP. Recent applications of light scattering measurement in the biological and biopharmaceutical sciences. Anal Biochem 2016; 2016: 4-22.
[http://dx.doi.org/10.1016/j.ab.2016.02.007]
[62]
Yu Z, Reid JC, Yang YP. Utilizing dynamic light scattering as a process analytical technology for protein folding and aggregation monitoring in vaccine manufacturing. J Pharm Sci 2013; 102(12): 4284-90.
[http://dx.doi.org/10.1002/jps.23746] [PMID: 24122727]
[63]
Tang CY, Yang Z. Transmission Electron Microscopy (TEM).In: Membrane Characterization Elsevier Inc. 2017.
[64]
University of Nottingham. TEM. Available from: https://www.nottingham.ac.uk/isac/facilities/tem.aspx (Accessed on: Dec 15, 2019).
[65]
Baxa U. Imaging of liposomes by transmission electron microscopy.In: Methods in Molecular Biology Humana Press Inc USA. 2018.
[66]
Oswald M, Platscher M, Geissler S, Goepferich A. HPLC analysis as a tool for assessing targeted liposome composition. Int J Pharm 2016; 497(1-2): 293-300.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.014] [PMID: 26570988]
[67]
Marier RL, Milligan E, Fan YD. Elevated mannose levels detected by gas-liquid chromatography in hydrolysates of serum from rats and humans with candidiasis. J Clin Microbiol 1982; 16(1): 123-8.
[http://dx.doi.org/10.1128/JCM.16.1.123-128.1982] [PMID: 7107851]
[68]
Cserháti T, Szögyi M. Liposomes in chromatography. Biomed Chromatogr 2010; 24(12): 1265-72.
[http://dx.doi.org/10.1002/bmc.1444] [PMID: 21077245]
[69]
Karki G. Tests for specific carbohydrates: Seliwanoff’s test, Bial’s test and Iodine test. Available from: https://www.onlinebiologynotes.com/tests-for-specific-carbohydrates-seliwanoffs-test-bials-test-and-iodine-test/ (Accessed on: Dec 15, 2019).
[70]
Viel M, Collet F, Lanos C. Chemical and multi-physical characterization of agro-resources’ by-product as a possible raw building material. Ind Crops Prod 2018; 120: 214-37.
[http://dx.doi.org/10.1016/j.indcrop.2018.04.025]
[71]
Yadav A, Murthy M, Shete A, Sfurti S. Stability aspects of liposomes. Indian J Pharm Educ Res 2011; 45(4): 402-13.
[72]
Woodle MC, Lasic DD. Sterically stabilized liposomes. Rev Biomembr 1992; 2: 171-99.
[http://dx.doi.org/10.1016/0304-4157(92)90038-C]
[73]
Michel R, Plostica T, Abezgauz L, Danino D, Gradzielski M. Control of the stability and structure of liposomes by means of nanoparticles. Soft Matter 2013; 9(16): 4167-77.
[http://dx.doi.org/10.1039/c3sm27875a]
[74]
Danaei M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2): 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057]
[75]
Edwards K, Almgren M. Surfactant-induced leakage and structural change of lecithin vesicles: Effect of surfactant headgroup size. Langmuir 1992; 8(3): 824-32.
[http://dx.doi.org/10.1021/la00039a016]
[76]
Domecq A, Disalvo EA, Bernik DL, Florenzano F, Politi MJ. A stability test of liposome preparations using steady-state fluorescent measurements. Drug Deliv 2001; 8(3): 155-60.
[http://dx.doi.org/10.1080/107175401316906928] [PMID: 11570596]
[77]
Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 1994; 7: 801-2.
[http://dx.doi.org/10.1039/C39940000801]
[78]
Sangabathuni S, Vasudeva Murthy R, Chaudhary PM, Surve M, Banerjee A, Kikkeri R. Glyco-gold nanoparticle shapes enhance carbohydrate-protein interactions in mammalian cells. Nanoscale 2016; 8(25): 12729-35.
[http://dx.doi.org/10.1039/C6NR03008D] [PMID: 27279022]
[79]
Zhang X, Huang G, Huang H. The glyconanoparticle as carrier for drug delivery. Drug Deliv 2018; 25(1): 1840-5.
[http://dx.doi.org/10.1080/10717544.2018.1519001] [PMID: 30799659]
[80]
de la Fuente JM. Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions. Angew Chem Int Ed 2001; 40(12): 2257-61.
[http://dx.doi.org/10.1002/1521-3773(20010618)40:12<2257:AID-ANIE2257>3.0.CO;2-S]
[81]
Malek JS, Khoshchehreh R, Goodarzi N, et al. cis-Dichlorodiamminoplatinum (II) glyconanoparticles by drug-induced ionic gelation technique targeted to prostate cancer: Preparation, optimization and in vitro characterization. Colloids Surf B Biointerfaces 2014; 122: 350-8.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.065] [PMID: 25078298]
[82]
El-Boubbou K, Zhu DC, Vasileiou C, et al. Magnetic glyco-nanoparticles: A tool to detect, differentiate, and unlock the glyco- codes of cancer via magnetic resonance imaging. J Am Chem Soc 2010; 132(12): 4490-9.
[http://dx.doi.org/10.1021/ja100455c] [PMID: 20201530]
[83]
Cai S, Thati S, Bagby TR, et al. Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J Control Release 2010; 146(2): 212-8.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.006] [PMID: 20403395]
[84]
Lee CM, Jang D, Kim J, et al. Oleyl-chitosan nanoparticles based on a dual probe for optical/MR imaging in vivo . Bioconjug Chem 2011; 22(2): 186-92.
[http://dx.doi.org/10.1021/bc100241a] [PMID: 21243999]
[85]
Shao C, Shang K, Xu H, Zhang Y, Pei Z, Pei Y. Facile fabrication of hypericin-entrapped glyconanoparticles for targeted photodynamic therapy. Int J Nanomedicine 2018; 13: 4319-31.
[http://dx.doi.org/10.2147/IJN.S161262] [PMID: 30087563]
[86]
Conde J, Tian F, Hernandez Y, et al. RNAi-based glyconanoparticles trigger apoptotic pathways for in vitro and in vivo enhanced cancer-cell killing. Nanoscale 2015; 7(19): 9083-91.
[http://dx.doi.org/10.1039/C4NR05742B] [PMID: 25924183]
[87]
Ahire JH, Chambrier I, Mueller A, Bao Y, Chao Y. Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells. ACS Appl Mater Interfaces 2013; 5(15): 7384-91.
[http://dx.doi.org/10.1021/am4017126] [PMID: 23815685]
[88]
Dalal C, Jana NR. Galactose multivalency effect on the cell uptake mechanism of bioconjugated nanoparticles. J Phys Chem C 2018; 122(44): 25651-60.
[http://dx.doi.org/10.1021/acs.jpcc.8b08047]
[89]
Ahire JH, Behray M, Webster CA, et al. Synthesis of carbohydrate capped silicon nanoparticles and their reduced cytotoxicity, in vivo toxicity, and cellular uptake. Adv Healthc Mater 2015; 4(12): 1877-86.
[http://dx.doi.org/10.1002/adhm.201500298] [PMID: 26121084]
[90]
Zayed DG, Ebrahim SM, Helmy MW, et al. Combining hydrophilic chemotherapy and hydrophobic phytotherapy via tumor-targeted albumin-QDs nano-hybrids: Covalent coupling and phospholipid complexation approaches. J Nanobiotechnology 2019; 17(1): 7.
[http://dx.doi.org/10.1186/s12951-019-0445-7] [PMID: 30660179]
[91]
Santos BS. CdS-Cd(OH)2 core shell quantum dots functionalized with Concanavalin A lectin for recognition of mammary tumors. Phys Status Solidi 2006; 3(11): 4017-22.
[http://dx.doi.org/10.1002/pssc.200671568]
[92]
Sheng KC, Kalkanidis M, Pouniotis DS, et al. Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo . Eur J Immunol 2008; 38(2): 424-36.
[http://dx.doi.org/10.1002/eji.200737578] [PMID: 18200633]
[93]
Vannucci L, Fiserová A, Sadalapure K, et al. Effects of N-acetyl-glucosamine-coated glycodendrimers as biological modulators in the B16F10 melanoma model in vivo. Int J Oncol 2003; 23(2): 285-96.
[http://dx.doi.org/10.3892/ijo.23.2.285] [PMID: 12851676]
[94]
Hulikova K, Svoboda J, Benson V, Grobarova V, Fiserova A. N-acetyl-D-glucosamine-coated polyamidoamine dendrimer promotes tumor-specific B cell responses via natural killer cell activation. Int Immunopharmacol 2011; 11(8): 955-61.
[http://dx.doi.org/10.1016/j.intimp.2011.02.009] [PMID: 21349367]
[95]
Andreozzi E, Antonelli A, Cangiotti M, et al. Interactions of nitroxide-conjugated and non-conjugated glycodendrimers with normal and cancer cells and biocompatibility studies. Bioconjug Chem 2017; 28(2): 524-38.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00635] [PMID: 28068077]
[96]
Studzian M, Szulc A, Janaszewska A, Appelhans D, Pułaski Ł, Klajnert-Maculewicz B. Mechanisms of internalization of maltose-modified Poly(propyleneimine) glycodendrimers into leukemic cell lines. Biomacromolecules 2017; 18(5): 1509-20.
[http://dx.doi.org/10.1021/acs.biomac.7b00046] [PMID: 28414464]
[97]
Hong SY, Tobias G, Al-Jamal KT, et al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater 2010; 9(6): 485-90.
[http://dx.doi.org/10.1038/nmat2766] [PMID: 20473287]
[98]
Fahrenholtz CD, Hadimani M, King SB, Torti SV, Singh R. Targeting breast cancer with sugar-coated carbon nanotubes. Nanomedicine (Lond) 2015; 10(16): 2481-97.
[http://dx.doi.org/10.2217/nnm.15.90] [PMID: 26296098]
[99]
Datir SR, Das M, Singh RP, Jain S. Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem 2012; 23(11): 2201-13.
[http://dx.doi.org/10.1021/bc300248t] [PMID: 23039830]
[100]
Zheng L, Wu S, Tan L, Tan H, Yu B. Chitosan-functionalised single-walled carbon nanotube-mediated drug delivery of SNX-2112 in cancer cells. J Biomater Appl 2016; 31(3): 379-86.
[http://dx.doi.org/10.1177/0885328216651183] [PMID: 27231263]
[101]
Cao X, Tao L, Wen S, Hou W, Shi X. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells. Carbohydr Res 2015; 405: 70-7.
[http://dx.doi.org/10.1016/j.carres.2014.06.030] [PMID: 25500334]
[102]
Benvegnu T, Lemiègre L, Ballet C, Portier Y, Plusquellec D. Glycolipid-based nanosystems for the delivery of drugs, genes and vaccine adjuvant applications. Carbohydr Chem 2014; 40: 341-77.
[http://dx.doi.org/10.1039/9781849739986-00341]
[103]
Stavitsky AB. Agglutination. In: Encyclopedia of Immunology. Elsevier: 1998; pp. 56-9.
[http://dx.doi.org/10.1006/rwei.1999.0016]
[104]
Yamazaki N, Kojima S, Gabius S, Gabius HJ. Studies on carbohydrate-binding proteins using liposome-based systems- I. Preparation of neoglycoprotein-conjugated liposomes and the feasibility of their use as drug-targeting devices. Int J Biochem 1992; 24(1): 99-104.
[http://dx.doi.org/10.1016/0020-711X(92)90235-S] [PMID: 1316296]
[105]
Zhao C, Feng Q, Dou Z, et al. Local targeted therapy of liver metastasis from colon cancer by galactosylated liposome encapsulated with doxorubicin. PLoS One 2013; 8(9): e73860.
[http://dx.doi.org/10.1371/journal.pone.0073860] [PMID: 24040096]
[106]
Chen WC, Completo GC, Sigal DS, Crocker PR, Saven A, Paulson JC. In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood 2010; 115(23): 4778-86.
[http://dx.doi.org/10.1182/blood-2009-12-257386] [PMID: 20181615]
[107]
Boks MA, Ambrosini M, Bruijns SC, et al. MPLA incorporation into DC-targeting glycoliposomes favours anti-tumour T cell responses. J Control Release 2015; 216: 37-46.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.033] [PMID: 26151293]
[108]
Xiong M, Lei Q, You X, et al. Mannosylated liposomes improve therapeutic effects of paclitaxel in colon cancer models. J Microencapsul 2017; 34(6): 513-21.
[http://dx.doi.org/10.1080/02652048.2017.1339739] [PMID: 28705043]
[109]
Minnelli C, Cianfruglia L, Laudadio E, et al. Selective induction of apoptosis in MCF7 cancer-cell by targeted liposomes functionalised with mannose-6-phosphate. J Drug Target 2018; 26(3): 242-51.
[http://dx.doi.org/10.1080/1061186X.2017.1365873] [PMID: 28795851]
[110]
Zhang X, Lin CC, Chan WKN, Liu KL, Yang ZJ, Zhang HQ. Augmented anticancer effects of cantharidin with liposomal encapsulation: In vitro and in vivo evaluation. Molecules 2017; 22(7): 1052.
[http://dx.doi.org/10.3390/molecules22071052] [PMID: 28672816]
[111]
Zhou L, Zou M, Zhu K, Ning S, Xia X. Development of 11-DGA-3-O-Gal-modified cantharidin liposomes for treatment of hepatocellular carcinoma. Molecules 2019; 24(17): E3080.
[http://dx.doi.org/10.3390/molecules24173080] [PMID: 31450608]
[112]
Jiang L, Li L, He X, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 2015; 52(1): 126-39.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.004] [PMID: 25818419]
[113]
Tian Y, Zhang H, Qin Y, et al. Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Dev Ind Pharm 2018; 44(12): 2071-82.
[http://dx.doi.org/10.1080/03639045.2018.1512613] [PMID: 30112929]
[114]
Ke X, Lin W, Li X, Wang H, Xiao X, Guo Z. Synergistic dual- modified liposome improves targeting and therapeutic efficacy of bone metastasis from breast cancer. Drug Deliv 2017; 24(1): 1680-9.
[http://dx.doi.org/10.1080/10717544.2017.1396384] [PMID: 29092646]
[115]
Li T, Amari T, Semba K, Yamamoto T, Takeoka S. Construction and evaluation of pH-sensitive immunoliposomes for enhanced delivery of anticancer drug to ErbB2 over-expressing breast cancer cells. Nanomedicine (Lond) 2017; 13(3): 1219-27.
[http://dx.doi.org/10.1016/j.nano.2016.11.018] [PMID: 27965166]
[116]
Thomas E, Menon JU, Owen J, et al. Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics 2019; 9(19): 5595-609.
[http://dx.doi.org/10.7150/thno.34669] [PMID: 31534505]
[117]
Deng Z, Xiao Y, Pan M, et al. Hyperthermia-triggered drug delivery from iRGD-modified temperature-sensitive liposomes enhances the anti-tumor efficacy using high intensity focused ultrasound. J Control Release 2016; 243: 333-41.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.030] [PMID: 27984104]
[118]
Managit C, Kawakami S, Yamashita F, Hashida M. Effect of galactose density on asialoglycoprotein receptor-mediated uptake of galactosylated liposomes. J Pharm Sci 2005; 94(10): 2266-75.
[http://dx.doi.org/10.1002/jps.20443] [PMID: 16136555]
[119]
Wang S, Xu H, Xu J, et al. Sustained liver targeting and improved antiproliferative effect of doxorubicin liposomes modified with galactosylated lipid and PEG-lipid. AAPS PharmSciTech 2010; 11(2): 870-7.
[http://dx.doi.org/10.1208/s12249-010-9450-8] [PMID: 20490957]
[120]
Zhou X, Zhang M, Yung B, et al. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int J Nanomed 2012; 7: 5465-74.
[http://dx.doi.org/10.2147/IJN.S33965] [PMID: 23093902]
[121]
Lee E, Lee J, Lee IH, et al. Conjugated chitosan as a novel platform for oral delivery of paclitaxel. J Med Chem 2008; 51(20): 6442-9.
[http://dx.doi.org/10.1021/jm800767c] [PMID: 18826299]
[122]
Rosato A, Banzato A, De Luca G, et al. HYTAD1-p20: A new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer. Urol Oncol 2006; 24(3): 207-15.
[http://dx.doi.org/10.1016/j.urolonc.2005.08.020] [PMID: 16678050]
[123]
Song CK, Jung SH, Kim DD, Jeong KS, Shin BC, Seong H. Disaccharide-modified liposomes and their in vitro intracellular uptake. Int J Pharm 2009; 380(1-2): 161-9.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.014] [PMID: 19635539]
[124]
Hirai M, Minematsu H, Hiramatsu Y, et al. Novel and simple loading procedure of cisplatin into liposomes and targeting tumor endothelial cells. Int J Pharm 2010; 391(1-2): 274-83.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.030] [PMID: 20211714]
[125]
Markov OV, Mironova NL, Shmendel EV, et al. Multicomponent mannose-containing liposomes efficiently deliver RNA in murine immature dendritic cells and provide productive anti-tumour response in murine melanoma model. J Control Release 2015; 213: 45-56.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.028] [PMID: 26134071]
[126]
Matsukawa S, Yamamoto M, Ichinose K, et al. Selective uptake by cancer cells of liposomes coated with polysaccharides bearing 1-aminolactose. Anticancer Res 2000; 20(4): 2339-44.
[PMID: 10953294]
[127]
Alshraim MO, Sangi S, Harisa GI, Alomrani AH, Yusuf O, Badran MM. Chitosan-coated flexible liposomes magnify the anticancer activity and bioavailability of docetaxel: Impact on composition. Molecules 2019; 24(2): 1-14.
[http://dx.doi.org/10.3390/molecules24020250] [PMID: 30641899]
[128]
Bansal D, Yadav K, Pandey V, Ganeshpurkar A, Agnihotri A, Dubey N. Lactobionic acid coupled liposomes: An innovative strategy for targeting hepatocellular carcinoma. Drug Deliv 2016; 23(1): 140-6.
[http://dx.doi.org/10.3109/10717544.2014.907373] [PMID: 24786484]
[129]
Bagari R, Bansal D, Gulbake A, Jain A, Soni V, Jain SK. Chondroitin sulfate functionalized liposomes for solid tumor targeting. J Drug Target 2011; 19(4): 251-7.
[http://dx.doi.org/10.3109/1061186X.2010.492525] [PMID: 20545459]
[130]
Zeisig R, Stahn R, Wenzel K, Behrens D, Fichtner I. Effect of sialyl Lewis X-glycoliposomes on the inhibition of E-selectin-mediated tumour cell adhesion in vitro. Biochim Biophys Acta 2004; 1660(1-2): 31-40.
[http://dx.doi.org/10.1016/j.bbamem.2003.10.014] [PMID: 14757218]
[131]
Oh HR, Jo HY, Park JS, et al. Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin sirna to hepatocellular carcinoma. Nanomaterials (Basel) 2016; 6(8): E141.
[http://dx.doi.org/10.3390/nano6080141] [PMID: 28335269]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy