Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Editorial

Applications of Nanocomposites in Humidity Sensors and Solar Cells

Author(s): Muhammad Tariq Saeed Chani and Sher Bahadar Khan

Volume 16, Issue 4, 2020

Page: [504 - 506] Pages: 3

DOI: 10.2174/157341371604200622095240

[1]
Ahmed, S.; Kamal, T.; Khan, S.A.; Anwar, Y.; Saeed, M.T.; Asiri, A.M.; Khan, S.B. Assessment of anti-bacterial Ni-Al/chitosan composite spheres for adsorption assisted photo-degradation of organic pollutants. Curr. Nanosci., 2016, 12, 569-575.
[http://dx.doi.org/10.2174/1573413712666160204000517]
[2]
Chani, M.T.S. Impedimetric sensing of temperature and humidity by using organic-inorganic nanocomposites composed of chitosan and a CuO-Fe3O4 nanopowder. Mikrochim. Acta, 2017, 184, 2349-2356.
[http://dx.doi.org/10.1007/s00604-017-2259-3]
[3]
Chani, M.T.S.; Asiri, A.M.; Karimov, K.S.; Bashir, M.; Khan, S.B.; Rahman, M.M. Carbon nanotubes-silicon nanocomposites based resistive temperature sensors. Int. J. Electrochem. Sci., 2015, 10, 3784-3791.
[4]
Chani, M.T.S.; Karimov, K.S.; Asiri, A.M. Fabrication and characterization of organic-inorganic (orange dye-vanadium oxide) composite based humidity sensors. Int. J. Electrochem. Sci., 2017, 12, 1434-1444.
[http://dx.doi.org/10.20964/2017.02.59]
[5]
Chani, M.T.S.; Karimov, K.S.; Asiri, A.M. Impedimetric humidity and temperature sensing properties of the graphene–carbon nanotubes-silicone adhesive nanocomposite. J. Mater. Sci. Mater. Electron., 2019, 30, 6419-6429.
[http://dx.doi.org/10.1007/s10854-019-00945-6]
[6]
Chani, M.T.S.; Karimov, K.S.; Asiri, A.M.; Ahmed, N.; Bashir, M.M.; Khan, S.B.; Rub, M.A.; Azum, N. Temperature gradient measurements by using thermoelectric effect in CNTs-silicone adhesive composite. PLoS One, 2014, 9, e95287
[http://dx.doi.org/10.1371/journal.pone.0095287]
[7]
Kamal, T.; Anwar, Y.; Khan, S.B.; Chani, M.T.S.; Asiri, A.M. Dye adsorption and bactericidal properties of TiO2/chitosan coating layer. Carbohydr. Polym., 2016, 148, 153-160.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.042]
[8]
Karimov, K.S.; Chani, M.T.S.; Khalid, F.A. Carbon nanotubes film based temperature sensors. Physica E, 2011, 43, 1701-1703.
[http://dx.doi.org/10.1016/j.physe.2011.05.025]
[9]
Karimov, K.S.; Chani, M.T.S.; Khalid, F.A.; Khan, A. Strain sensors based on carbon nanotubes–cuprous oxide composite. Physica E, 2012, 44, 778-781.
[http://dx.doi.org/10.1016/j.physe.2011.11.026]
[10]
Karimov, K.S.; Chani, M.T.S.; Khalid, F.A.; Khan, A.; Khan, R. Carbon nanotube-cuprous oxide composite based pressure sensors. Chin. Phys. B, 2012, 21, 016102
[http://dx.doi.org/10.1088/1674-1056/21/1/016102]
[11]
Karimov, K.S.; Khalid, F.; Chani, M.; Mateen, A.; Hussain, M.A.; Maqbool, A.; Ahn, J. Carbon nanotubes based flexible temperature sensors. Optoelectron. Adv. Mater. Rapid Commun., 2012, 6, 194-196.
[12]
Karimov, K.S.; Khalid, F.A.; Chani, M.T.S. Carbon nanotubes based strain sensors. Measurement, 2012, 45, 918-921.
[http://dx.doi.org/10.1016/j.measurement.2012.02.003]
[13]
Lee, Y.; Kim, D.; Seo, J.; Han, H.; Khan, S.B. Preparation and characterization of poly(propylene carbonate)/exfoliated graphite nanocomposite films with improved thermal stability, mechanical properties and barrier properties. Polym. Int., 2013, 62, 1386-1394.
[http://dx.doi.org/10.1002/pi.4434]]
[14]
Jang, E.S.; Khan, S.B.; Seo, J.; Nam, Y.H.; Choi, W.J.; Akhtar, K.; Han, H. Synthesis and characterization of novel UV-curable polyurethane–clay nanohybrid: Influence of organically modified layered silicates on the properties of polyurethane. Prog. Org. Coat., 2011, 71, 36-42.
[http://dx.doi.org/10.1016/j.porgcoat.2010.12.007]
[15]
Ismail, M.; Khan, M.I.; Khan, S.B.; Khan, M.A.; Akhtar, K.; Asiri, A.M. Green synthesis of plant supported Cu-Ag and Cu-Ni bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J. Mol. Liq., 2018, 260, 78-91.
[http://dx.doi.org/10.1016/j.molliq.2018.03.058]]
[16]
Chani, M.T.S.; Marwani, H.M.; Danish, E.Y.; Karimov, K.S.; Hilal, M.; Hagfeldt, A.; Asiri, A.M. Organic-inorganic hybrid tandem bulk heterojunction ITO/A1Pc: H2Pc/n-Si/Al photoelectric cell. J. Optoelectron. Adv. Mater., 2017, 19, 178-183.
[17]
Chani, M.T.S.; Asiri, A.M.; Karimov, K.S.; Niaz, A.K.; Khan, S.B.; Alamry, K.A. Aluminium phthalocyanine chloride thin films for temperature sensing. Chin. Phys. B, 2013, 22, 118101
[http://dx.doi.org/10.1088/1674-1056/22/11/118101]
[18]
Chani, M.T.S.; Karimov, K.S.; Khalid, F.A.; Raza, K.; Farooq, M.U.; Zafar, Q. Humidity sensors based on aluminum phthalocyanine chloride thin films. Physica E, 2012, 45, 77-81.
[http://dx.doi.org/10.1016/j.physe.2012.07.012]
[19]
Chani, M.T.S.; Karimov, K.S.; Khalid, F.A.; Abbas, S.Z.; Bhatty, M.B. Orange dye-polyaniline composite based impedance humidity sensors. Chin. Phys. B, 2013, 22, 010701
[http://dx.doi.org/10.1088/1674-1056/22/1/010701]
[20]
Chani, M.T.S.; Karimov, K.S.; Khalid, F.A.; Moiz, S.A. Polyaniline based impedance humidity sensors. Solid. State. Sci., 2013, 18, 78-82.
[http://dx.doi.org/10.1016/j.solidstatesciences.2013.01.005]
[21]
Chani, M.T.S.; Karimov, K.S.; Khan, S.B.; Asiri, A.M. Fabrication and investigation of flexible photo-thermo electrochemical cells based on Cu/orange dye aqueous solution/Cu. Int. J. Electrochem. Sci., 2015, 10, 5694-5701.
[22]
Chani, M.T.S.; Karimov, K.S.; Khan, S.B.; Asiri, A.M. Fabrication and investigation of cellulose acetate-copper oxide nano-composite based humidity sensors. Sens. Actuators A Phys., 2016, 246, 58-65.
[http://dx.doi.org/10.1016/j.sna.2016.05.016]
[23]
Chani, M.T.S.; Karimov, K.S.; Khan, S.B.; Asiri, A.M.; Saleem, M.; Bashir, M.M. Fe2O3-silicone adhesive composite based humidity sensors. Optoelectron. Adv. Mater. Rapid Commun., 2013, 7, 861-865.
[24]
Chani, M.T.S.; Karimov, K.S.; Khan, S.B.; Fatima, N.; Asiri, A.M. Impedimetric humidity and temperature sensing properties of chitosan-CuMn2O4 spinel nanocomposite. Ceram. Int., 2019, 45, 10565-10571.
[http://dx.doi.org/10.1016/j.ceramint.2019.02.122]
[25]
Chani, M.T.S.; Karimov, K.S.; Nabi, J-u.; Hashim, M.; Kiran, I.; Asiri, A.M. Design, fabrication and investigation of semitransparent thermoelectric cells based on graphene. Int. J. Electrochem. Sci., 2018, 13, 11777-11786.
[http://dx.doi.org/10.20964/2018.12.77]
[26]
Chani, M.T.S.; Khan, S.B.; Asiri, A.M.; Karimov, K.; Abid, M.; Bashir, M.M.; Akhtar, K. Influence of pressure on the impedance of SnO2 nanopowder. Optoelectron. Adv. Mater. Rapid Commun., 2015, 9, 114-119.
[27]
Chani, M.T.S.; Khan, S.B.; Asiri, A.M.; Karimov, K.S.; Rub, M.A. Photo-thermoelectric cells based on pristine α-Al2O3 co-doped CdO, CNTs and their single and bi-layer composites with silicone adhesive. J. Taiwan Inst. Chem. Eng., 2015, 52, 93-99.
[http://dx.doi.org/10.1016/j.jtice.2015.02.005]
[28]
Chani, M.T.S.; Khan, S.B.; Karimov, K.S.; Abid, M.; Asiri, A.M.; Akhtar, K. Synthesis of metal oxide composite nanosheets and their pressure sensing properties. J. Semicond., 2015, 36, 023002
[http://dx.doi.org/10.1088/1674-4926/36/2/023002]
[29]
Chani, M.T.S.; Khan, S.B.; Karimov, K.S.; Asiri, A.M.; Akhtar, K.; Arshad, M.N. Synthesis and pressure sensing properties of the pristine cobalt oxide nanopowder. Int. J. Electrochem. Sci., 2015, 10, 10433.
[30]
Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L-C. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys., 2011, 13, 17615-17624.
[http://dx.doi.org/10.1039/c1cp21910c]
[31]
Karimov, K.S.; Mahroof-Tahir, M.; Saleem, M.; Chani, M.T.S.; Niaz, A.K. Temperature sensor based on composite film of vanadium complex (VO2(3-fl)) and CNT. J. Semicond., 2015, 36, 073004
[http://dx.doi.org/10.1088/1674-4926/36/7/073004]
[32]
Karimov, K.S.; Saeed, M.T.; Khalid, F.A.; Moiz, S.A. Effect of displacement on resistance and capacitance of polyaniline film. Chin. Phys. B, 2011, 20, 040601
[http://dx.doi.org/10.1088/1674-1056/20/4/040601]
[33]
Karimov, K.S.; Saleem, M.; Akhmedov, K.M.; Ali, T.; Bashir, M.M. Photo-thermo electric effect in Zn/orange dye aqueous solution/carbon cell. Kuwait J. Sci., 2017, 44, 86-90.
[34]
Karimov, K.S.; Saleem, M.; Mahroof-Tahir, M.; Akram, R.; Chanee, M.S.; Niaz, A. Resistive humidity sensor based on vanadium complex films. J. Semicond., 2014, 35, 094001
[http://dx.doi.org/10.1088/1674-4926/35/9/094001]
[35]
Karimov, K.S.; Sayyad, M.H.; Ali, M.; Khan, M.N.; Moiz, S.A.; Khan, K.B.; Farah, H.; Karieva, Z.M. Electrochemical properties of Zn/orange dye aqueous solution/carbon cell. J. Power Sources., 2006, 155, 475-477.
[http://dx.doi.org/10.1016/j.jpowsour.2005.05.017]
[36]
Khan, S.B.; Chani, M.T.S.; Karimov, K.S.; Asiri, A.M.; Bashir, M.; Tariq, R. Humidity and temperature sensing properties of copper oxide-Si-adhesive nanocomposite. Talanta, 2014, 120, 443-449.
[http://dx.doi.org/10.1016/j.talanta.2013.11.089]
[37]
Khan, S.B.; Karimov, K.S.; Chani, M.T.S.; Asiri, A.M.; Akhtar, K.; Fatima, N. Impedimetric sensing of humidity and temperature using CeO2-Co3O4 nanoparticles in polymer hosts. Mikrochim. Acta., 2015, 182, 2019-2026.
[http://dx.doi.org/10.1007/s00604-015-1529-1]
[38]
Marwani, H.M.; Chani, M.T.S.; Danish, E.Y.; Karimov, K.S.; Hagfeldt, A.; Asiri, A.M. Tandem heterojunction photoelectric cell based on organic-inorganic hybrid of AlPc-H2Pc and n-Si. Int. J. Electrochem. Sci., 2017, 12, 4096-4106.
[http://dx.doi.org/10.20964/2017.05.20]
[39]
Saeed, M.T.; Khalid, F.A.; Karimov, K.S.; Shah, M. Organic Cu/cellulose/PEPC/Cu humidity sensor. Optoelectron. Adv. Mater. Rapid Commun., 2010, 4, 888-892.
[40]
Chani, M.T.S.; Khan, S.B.; Asiri, A.M.; Saeed, G.; Arshad, M.N. Humidity sensing properties of zinc oxide-indigo dye nanocomposite. Curr. Nanosci., 2016, 12, 564-568.
[http://dx.doi.org/10.2174/1573413712666160204233800]
[41]
Chani, M.T.S.; Karimov, K.S.; Khan, S.B.; Kamal, T.; Asiri, A.M. Synthesis and pressure sensing properties of pristine zinc oxide nanopowder and its blend with carbon nanotubes. Curr. Nanosci., 2016, 12, 586-591.
[http://dx.doi.org/10.2174/1573413712666160502123744]
[42]
Rahman, M.M.; Jamal, A.; Khan, S.B.; Faisal, M. Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional β-Fe2O3 nanoparticles. Superlattices Microstruct., 2011, 50, 369-376.
[http://dx.doi.org/10.1016/j.spmi.2011.07.016]
[43]
Baoyu, G.; Zhigang, L.; Yuanzhe, X.; Lingling, Y.; Ruiyong, W.; Junbiao, C. Determination of tigecycline by quantum dots/gold nanoparticles-based fluorescent and colorimetric sensing system. Curr. Nanosci., 2015, 11, 206-213.
[http://dx.doi.org/10.2174/1573413711666141219215710]
[44]
Rahman, M.M.; Khan, S.B.; Jamal, A.; Faisal, M.; Asiri, A.M. Fabrication of a methanol chemical sensor based on hydrothermally prepared α-Fe2O3 codoped SnO2 nanocubes. Talanta, 2012, 95, 18-24.
[http://dx.doi.org/10.1016/j.talanta.2012.03.027]
[45]
Khan, S.B.; Alamry, K.A.; Bifari, E.N.; Asiri, A.M.; Yasir, M.; Gzara, L.; Ahmad, R.Z. Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection. J. Ind. Eng. Chem., 2015, 24, 266-275.
[http://dx.doi.org/10.1016/j.jiec.2014.09.040]

© 2024 Bentham Science Publishers | Privacy Policy