Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

Upper Limb Extremity Muscle-Dysfunction in Chronic Obstructive Pulmonary Disease: A Narrative Review

Author(s): Kulkarni M. Suhas, Gopala K. Alaparthi*, Shyam K. Krishnan and Kalyana C. Bairapareddy

Volume 16, Issue 1, 2020

Page: [11 - 20] Pages: 10

DOI: 10.2174/1573398X16999200621201220

Price: $65

Abstract

Background: Peripheral muscle dysfunction is one of the major comorbidities seen in chronic obstructive pulmonary disease. Focusing more on upper extremity, unsupported elevation of arms results in a change in the recruitment pattern of the respiratory muscles. Over the years, many tests were developed to assess the upper limb capacity and include them in various rehabilitation protocol.

Objective: To review the evidence on mechanism, tests, and rehabilitation protocol for the upper limb extremity muscle-dysfunction occurring in chronic obstructive pulmonary disease.

Methods: PubMed and Google scholar databases were searched. Based on the inclusion criteria’s:- Chronic Obstructive Pulmonary Diseases patients, any Randomized Controlled or clinical trials, systematic reviews, explaining upper limb extremity muscle dysfunction, various tests to assess upper limb functional capacity and different ways of upper limb extremity training, a total of 15 articles were retrieved.

Results: The mechanism of upper extremity muscle dysfunction is now well understood. Various tests were designed in order to assess arm strength, arm endurance and functional capacity. All the studies which included upper limb extremity training as a part of the rehabilitation program, showed beneficial results in terms of reduction of dyspnoea and arm fatigue, as well as improving the activity performing capacity.

Conclusion: This review concluded that the alteration in the upper limb extremity muscles is an inevitable consequence of chronic obstructive pulmonary diseases, which can be confirmed by various upper extremity tests, with patients responding positively to the upper limb training incorporated during pulmonary rehabilitation protocols.

Keywords: Chronic obstructive pulmonary disease, grocery shelving task, pulmonary rehabilitation, six-minute peg-board, supported upper limb exercise test, unsupported upper limb exercise test, upper limb exercise training, upper limb extremity muscle dysfunction.

Graphical Abstract

[1]
Global Initiative for Chronic Obstructive Lung Disease; Global strategy for the diagnosis, management, and prevention of Chronic Obstructive Pulmonary Disease 2015.Available from: . http://www. goldcopd.org/guidelines-global-strategy-for-diagnosis management. html
[2]
Karuga J. Top ten leading causes of death in the World World Atlas 2019.Available from: . https://www.worldatlas.com/articles/top-ten-leading-causes-of-death-in-the-world.html
[3]
Baarends EM, Schols AM, Slebos DJ, Mostert R, Janssen PP, Wouters EF. Metabolic and ventilatory response pattern to arm elevation in patients with COPD and healthy age-matched subjects. Eur Respir J 1995; 8(8): 1345-51.
[http://dx.doi.org/10.1183/09031936.95.08081345] [PMID: 7489802]
[4]
Couser JI Jr, Martinez FJ, Celli BR. Respiratory response and ventilatory muscle recruitment during arm elevation in normal subjects. Chest 1992; 101(2): 336-40.
[http://dx.doi.org/10.1378/chest.101.2.336] [PMID: 1735251]
[5]
Criner GJ, Celli BR. Effect of unsupported arm exercise on ventilatory muscle recruitment in patients with severe chronic air-flow obstruction. Am Rev Respir Dis 1988; 138(4): 856-61.
[http://dx.doi.org/10.1164/ajrccm/138.4.856] [PMID: 3202459]
[6]
Dodd DS, Brancatisano T, Engel LA. Chest wall mechanics during exercise in patients with severe chronic air-flow obstruction. Am Rev Respir Dis 1984; 129(1): 33-8.
[PMID: 6230971]
[7]
Epstein SK, Celli BR, Williams J, Tarpy S, Roa J, Shannon T. Ventilatory response to arm elevation. Its determinants and use in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1995; 152(1): 211-6.
[http://dx.doi.org/10.1164/ajrccm.152.1.7599826] [PMID: 7599826]
[8]
Martinez FJ, Couser JI, Celli BR. Factors influencing ventilatory muscle recruitment in patients with chronic air-flow obstruction. Am Rev Respir Dis 1990; 142(2): 276-82.
[http://dx.doi.org/10.1164/ajrccm/142.2.276] [PMID: 2382890]
[9]
Martinez FJ, Couser JI, Celli BR. Respiratory response to arm elevation in patients with chronic air-flow obstruction. Am Rev Respir Dis 1991; 143(3): 476-80.
[http://dx.doi.org/10.1164/ajrccm/143.3.476] [PMID: 1900400]
[10]
Velloso M, Stella SG, Cendon S, Silva AC, Jardim JR. Metabolic and ventilatory parameters of four activities of daily living accomplished with arms in COPD patients. Chest 2003; 123(4): 1047-53.
[http://dx.doi.org/10.1378/chest.123.4.1047] [PMID: 12684292]
[11]
Kim HC, Mofarrahi M, Hussain SN. Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2008; 3(4): 637-58.
[PMID: 19281080]
[12]
Patel AR, Hurst JR. Extra-pulmonary comorbidities in chronic obstructive pulmonary disease: state of the art. Expert Rev Respir Med 2011; 5(5): 647-62.
[http://dx.doi.org/10.1586/ers.11.62] [PMID: 21955235]
[13]
Takahashi T, Jenkins SC, Strauss GR, Watson CP, Lake FR. A new unsupported upper limb exercise test for patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil 2003; 23(6): 430-7.
[http://dx.doi.org/10.1097/00008483-200311000-00007] [PMID: 14646791]
[14]
Hill CJ, Denehy L, Holland AE, McDonald CF. Measurement of functional activity in chronic obstructive pulmonary disease: the grocery shelving task. J Cardiopulm Rehabil Prev 2008; 28(6): 402-9.
[http://dx.doi.org/10.1097/HCR.0b013e31818c3c65] [PMID: 19008696]
[15]
Zhan S, Cerny FJ, Gibbons WJ, Mador MJ, Wu YW. Development of an unsupported arm exercise test in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil 2006; 26(3): 180-7.
[http://dx.doi.org/10.1097/00008483-200605000-00013] [PMID: 16738459]
[16]
Janaudis-Ferreira T, Hill K, Goldstein RS, et al. Resistance arm training in patients with COPD: a randomized controlled trial. Chest 2011; 139(1): 151-8.
[http://dx.doi.org/10.1378/chest.10-1292] [PMID: 20724740]
[17]
Subin RV, Prem VS. Effect of upper limb, lower limb and combined training on health-related quality of life in COPD. Lung India 2010. a-7
[18]
Jaitovich A, Barreiro E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. What we know and can do for our patients. Am J Respir Crit Care Med 2018; 198(2): 175-86.
[http://dx.doi.org/10.1164/rccm.201710-2140CI] [PMID: 29554438]
[19]
Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev 2011; 91(4): 1447-531.
[http://dx.doi.org/10.1152/physrev.00031.2010] [PMID: 22013216]
[20]
Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S. Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 2013; 45(10): 2191-9.
[http://dx.doi.org/10.1016/j.biocel.2013.05.016] [PMID: 23702032]
[21]
Abdulai RM, Jensen TJ, Patel NR, et al. Deterioration of limb muscle function during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2018; 197(4): 433-49.
[http://dx.doi.org/10.1164/rccm.201703-0615CI] [PMID: 29064260]
[22]
Rochester DF, Braun NM. Determinants of maximal inspiratory pressure in chronic obstructive pulmonary disease. Am Rev Respir Dis 1985; 132(1): 42-7.
[PMID: 4014871]
[23]
Rochester DF, Braun NM, Arora NS. Respiratory muscle strength in chronic obstructive pulmonary disease. Am Rev Respir Dis 1979; 119(2 Pt 2): 151-4.
[PMID: 426343]
[24]
Gea J, Pascual S, Casadevall C, Orozco-Levi M, Barreiro E. Muscle dysfunction in chronic obstructive pulmonary disease: update on causes and biological findings. J Thorac Dis 2015; 7(10): E418-38.
[PMID: 26623119]
[25]
Gosselink R, Troosters T, Decramer M. Distribution of muscle weakness in patients with stable chronic obstructive pulmonary disease. J Cardiopulm Rehabil 2000; 20(6): 353-60.
[http://dx.doi.org/10.1097/00008483-200011000-00004] [PMID: 11144041]
[26]
Zhang J, Liu Y, Shi J, Larson DF, Watson RR. Side-stream cigarette smoke induces dose-response in systemic inflammatory cytokine production and oxidative stress. Exp Biol Med (Maywood) 2002; 227(9): 823-9.
[http://dx.doi.org/10.1177/153537020222700916] [PMID: 12324664]
[27]
Barreiro E, Peinado VI, Galdiz JB, et al. ENIGMA in COPD Project. Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am J Respir Crit Care Med 2010; 182(4): 477-88.
[http://dx.doi.org/10.1164/rccm.200908-1220OC] [PMID: 20413628]
[28]
Wüst RC, Morse CI, de Haan A, Rittweger J, Jones DA, Degens H. Skeletal muscle properties and fatigue resistance in relation to smoking history. Eur J Appl Physiol 2008; 104(1): 103-10.
[http://dx.doi.org/10.1007/s00421-008-0792-9] [PMID: 18560879]
[29]
Rom O, Kaisari S, Aizenbud D, Reznick AZ. Sarcopenia and smoking: a possible cellular model of cigarette smoke effects on muscle protein breakdown. Ann N Y Acad Sci 2012; 1259: 47-53.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06532.x] [PMID: 22758636]
[30]
Petersen AM, Magkos F, Atherton P, et al. Smoking impairs muscle protein synthesis and increases the expression of myostatin and MAFbx in muscle. Am J Physiol Endocrinol Metab 2007; 293(3): E843-8.
[http://dx.doi.org/10.1152/ajpendo.00301.2007] [PMID: 17609255]
[31]
Goldberg AL, Goodman HM. Relationship between cortisone and muscle work in determining muscle size. J Physiol 1969; 200(3): 667-75.
[http://dx.doi.org/10.1113/jphysiol.1969.sp008715] [PMID: 5765854]
[32]
Decramer M, de Bock V, Dom R. Functional and histologic picture of steroid-induced myopathy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996; 153(6 Pt 1): 1958-64.
[http://dx.doi.org/10.1164/ajrccm.153.6.8665061] [PMID: 8665061]
[33]
Barreiro E, Gea J. Respiratory and limb muscle dysfunction in COPD. COPD 2015; 12(4): 413-26.
[http://dx.doi.org/10.3109/15412555.2014.974737] [PMID: 25438125]
[34]
Deboeck G, Moraine JJ, Naeije R. Respiratory muscle strength may explain hypoxia-induced decrease in vital capacity. Med Sci Sports Exerc 2005; 37(5): 754-8.
[http://dx.doi.org/10.1249/01.MSS.0000162687.18387.97] [PMID: 15870628]
[35]
Romer LM, Haverkamp HC, Amann M, et al. Effect of acute severe hypoxia on peripheral fatigue and endurance capacity in healthy humans. Am J Physiol Regul Integr Comp Physiol 2007; 292: R598-606.
[36]
Takabatake N, Nakamura H, Abe S, et al. The relationship between chronic hypoxemia and activation of the tumor necrosis factor-alpha system in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000; 161(4 Pt 1): 1179-84.
[http://dx.doi.org/10.1164/ajrccm.161.4.9903022] [PMID: 10764309]
[37]
Caron MA, Thériault ME, Paré ME, Maltais F, Debigaré R. Hypoxia alters contractile protein homeostasis in L6 myotubes. FEBS Lett 2009; 583(9): 1528-34.
[http://dx.doi.org/10.1016/j.febslet.2009.04.006] [PMID: 19364505]
[38]
Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000; 275(33): 25130-8.
[http://dx.doi.org/10.1074/jbc.M001914200] [PMID: 10833514]
[39]
Koechlin C, Maltais F, Saey D, et al. Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease. Thorax 2005; 60(10): 834-41.
[http://dx.doi.org/10.1136/thx.2004.037531] [PMID: 15964914]
[40]
de Theije C, Costes F, Langen RC, Pison C, Gosker HR. de TC. Hypoxia and muscle maintenance regulation: implications for chronic respiratory disease. Curr Opin Clin Nutr Metab Care 2011; 14(6): 548-53.
[http://dx.doi.org/10.1097/MCO.0b013e32834b6e79] [PMID: 21934612]
[41]
Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest 1996; 97(6): 1447-53.
[http://dx.doi.org/10.1172/JCI118566] [PMID: 8617877]
[42]
Franch HA, Raissi S, Wang X, Zheng B, Bailey JL, Price SR. Acidosis impairs insulin receptor substrate-1-associated phosphoinositide 3-kinase signaling in muscle cells: consequences on proteolysis. Am J Physiol Renal Physiol 2004; 287(4): F700-6.
[http://dx.doi.org/10.1152/ajprenal.00440.2003] [PMID: 15161606]
[43]
Maltais F, Decramer M, Casaburi R, et al. ATS/ERS Ad Hoc committee on limb muscle dysfunction in COPD. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189(9): e15-62.
[http://dx.doi.org/10.1164/rccm.201402-0373ST] [PMID: 24787074]
[44]
Gea JG, Pasto M, Carmona MA, Orozco-Levi M, Palomeque J, Broquetas J. Metabolic characteristics of the deltoid muscle in patients with chronic obstructive pulmonary disease. Eur Respir J 2001; 17(5): 939-45.
[http://dx.doi.org/10.1183/09031936.01.17509390] [PMID: 11488330]
[45]
Whittom F, Jobin J, Simard PM, et al. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc 1998; 30(10): 1467-74.
[http://dx.doi.org/10.1097/00005768-199810000-00001] [PMID: 9789845]
[46]
Jobin J, Maltais F, Doyon JF, et al. Chronic obstructive pulmonary disease: capillarity and fiber-type characteristics of skeletal muscle. J Cardiopulm Rehabil 1998; 18(6): 432-7.
[http://dx.doi.org/10.1097/00008483-199811000-00005] [PMID: 9857275]
[47]
Fryer MW, Stephenson DG. Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle. J Physiol 1996; 493(Pt 2): 357-70.
[http://dx.doi.org/10.1113/jphysiol.1996.sp021388] [PMID: 8782101]
[48]
Salviati G, Volpe P. Ca2+ release from sarcoplasmic reticulum of skinned fast- and slow-twitch muscle fibers. Am J Physiol 1988; 254(3 Pt 1): C459-65.
[http://dx.doi.org/10.1152/ajpcell.1988.254.3.C459] [PMID: 2450472]
[49]
Gosker HR, Hesselink MK, Duimel H, Ward KA, Schols AM. Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD. Eur Respir J 2007; 30(1): 73-9.
[http://dx.doi.org/10.1183/09031936.00146906] [PMID: 17428811]
[50]
Puente-Maestu L, Pérez-Parra J, Godoy R, et al. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur Respir J 2009; 33(5): 1045-52.
[http://dx.doi.org/10.1183/09031936.00112408] [PMID: 19129279]
[51]
Maltais F, LeBlanc P, Whittom F, et al. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax 2000; 55(10): 848-53.
[http://dx.doi.org/10.1136/thorax.55.10.848] [PMID: 10992537]
[52]
Green HJ, Bombardier E, Burnett M, et al. Organization of metabolic pathways in vastus lateralis of patients with chronic obstructive pulmonary disease. Am J Physiol Regul Integr Comp Physiol 2008; 295: 935-41.
[http://dx.doi.org/10.1152/ajpregu.00167.2008]
[53]
Picard M, Godin R, Sinnreich M, et al. The mitochondrial phenotype of peripheral muscle in chronic obstructive pulmonary disease: disuse or dysfunction? Am J Respir Crit Care Med 2008; 178(10): 1040-7.
[http://dx.doi.org/10.1164/rccm.200807-1005OC] [PMID: 18755922]
[54]
Boland R. Role of vitamin D in skeletal muscle function. Endocr Rev 1986; 7(4): 434-48.
[http://dx.doi.org/10.1210/edrv-7-4-434] [PMID: 3536463]
[55]
Janssens W, Lehouck A, Carremans C, Bouillon R, Mathieu C, Decramer M. Vitamin D beyond bones in chronic obstructive pulmonary disease: time to act. Am J Respir Crit Care Med 2009; 179(8): 630-6.
[http://dx.doi.org/10.1164/rccm.200810-1576PP] [PMID: 19164701]
[56]
Jackson AS, Shrikrishna D, Kelly JL, et al. Vitamin D and skeletal muscle strength and endurance in COPD. Eur Respir J 2013; 41(2): 309-16.
[http://dx.doi.org/10.1183/09031936.00043112] [PMID: 22556020]
[57]
Booth FW, Gollnick PD. Effects of disuse on the structure and function of skeletal muscle. Med Sci Sports Exerc 1983; 15(5): 415-20.
[http://dx.doi.org/10.1249/00005768-198315050-00013] [PMID: 6645872]
[58]
Larsson L, Ansved T. Effects of long-term physical training and detraining on enzyme histochemical and functional skeletal muscle characteristic in man. Muscle Nerve 1985; 8(8): 714-22.
[http://dx.doi.org/10.1002/mus.880080815] [PMID: 2932641]
[59]
Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 2009; 24: 97-106.
[http://dx.doi.org/10.1152/physiol.00045.2008] [PMID: 19364912]
[60]
Jatta K, Eliason G, Portela-Gomes GM, et al. Overexpression of von Hippel-Lindau protein in skeletal muscles of patients with chronic obstructive pulmonary disease. J Clin Pathol 2009; 62(1): 70-6.
[http://dx.doi.org/10.1136/jcp.2008.057190] [PMID: 18818266]
[61]
England BK, Chastain JL, Mitch WE. Abnormalities in protein synthesis and degradation induced by extracellular pH in BC3H1 myocytes. Am J Physiol 1991; 260(2 Pt 1): C277-82.
[http://dx.doi.org/10.1152/ajpcell.1991.260.2.C277] [PMID: 1996610]
[62]
Gea J, Agustí A, Roca J. Pathophysiology of muscle dysfunction in COPD. J Appl Physiol 2013; 114(9): 1222-34.
[http://dx.doi.org/10.1152/japplphysiol.00981.2012] [PMID: 23519228]
[63]
Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 2005; 37(10): 1974-84.
[http://dx.doi.org/10.1016/j.biocel.2005.04.018] [PMID: 16087388]
[64]
Gea J, Casadevall C, Pascual S, Orozco-Levi M, Barreiro E. Respiratory diseases and muscle dysfunction. Expert Rev Respir Med 2012; 6(1): 75-90.
[http://dx.doi.org/10.1586/ers.11.81] [PMID: 22283581]
[65]
Barreiro E, Gea J, Corominas JM, Hussain SN. Nitric oxide synthases and protein oxidation in the quadriceps femoris of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2003; 29(6): 771-8.
[http://dx.doi.org/10.1165/rcmb.2003-0138OC] [PMID: 12816735]
[66]
Barreiro E, de la Puente B, Minguella J, Corominas JM, Serrano S, Hussain S, et al. Oxidative stress and respiratory muscle dysfunction in severe COPD. Am J Respir Crit Care Med 2005; 171: 1116-24.
[http://dx.doi.org/10.1164/rccm.200407-887OC] [PMID: 15735057]
[67]
Aguar MC, Gea J, Aran X, Guiu R, Orozco-Levi M, Broquetas JM. Modifications in the mechanical activity of the diaphragm induced by the inhalation of CO2 in patients with chronic obstructive pulmonary disease. Arch Bronconeumol 1993; 29: 226-8.
[http://dx.doi.org/10.1016/S0300-2896(15)31216-3]
[68]
Kent BD, Mitchell PD, McNicholas WT. Hypoxemia in patients with COPD: cause, effects, and disease progression. Int J Chron Obstruct Pulmon Dis 2011; 6: 199-208.
[PMID: 21660297]
[69]
Mador MJ, Bozkanat E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res 2001; 2(4): 216-24.
[http://dx.doi.org/10.1186/rr60] [PMID: 11686887]
[70]
Scalvini S, Volterrani M, Vitacca M, et al. Plasma hormone levels and haemodynamics in patients with chronic obstructive lung disease. Monaldi Arch Chest Dis 1996; 51(5): 380-6.
[PMID: 9009625]
[71]
Morley JE. Sarcopenia in the elderly. Fam Pract 2012; 29(Suppl. 1): i44-8.
[http://dx.doi.org/10.1093/fampra/cmr063] [PMID: 22399555]
[72]
Lima VP, Almeida FD, Janaudis-Ferreira T, Carmona B, Ribeiro-Samora GA, Velloso M. Reference values for the six-minute peg-board and ring test in healthy adults in Brazil. J Bras Pneumol 2018; 44(3): 190-4.
[http://dx.doi.org/10.1590/s1806-37562017000000388] [PMID: 30043884]
[73]
Lima VP, Brooks D, Konidis S, Araujo T, Ribeiro-Samora GA, Goldstein R, et al. Normative Values for the Unsupported Upper Limb Exercise Test and 6-Minute Peg-board and Ring Test in Healthy Canadian Adults. Physiother Can 2017.; e20190021
[74]
Lima VP, Velloso M, Pessoa BP, Almeida FD, Ribeiro-Samora GA, Janaudis-Ferreira T. Reference values for the unsupported upper limb exercise test in healthy adults in Brazil. J Bras Pneumol 2020; 46(1); e20180267
[http://dx.doi.org/10.1590/1806-3713/e20180267] [PMID: 32130343]
[75]
Marques A, Rebelo P, Paixao C, Almeida S, Oliveira AL. Predictive equation for the unsupported upper limb exercise test (UULEX) in healthy adults. Eur Respir Rev 2018. ; 52PA1433
[76]
Wu ZY, Han YX, Niu ME, Chen Y, Zhang XQ, Qian HY. Handgrip strength is associated with dyspnoea and functional exercise capacity in male patients with stable COPD. Int J Tuberc Lung Dis 2019; 23(4): 428-32.
[http://dx.doi.org/10.5588/ijtld.18.0269] [PMID: 31064621]
[77]
Toosizadeh N, Berry C, Bime C, Najafi B, Kraft M, Mohler J. Assessing upper-extremity motion: An innovative method to quantify functional capacity in patients with chronic obstructive pulmonary disease. PLoS One 2017; 12(2): e0172766
[http://dx.doi.org/10.1371/journal.pone.0172766] [PMID: 28235045]
[78]
Felisberto RM, de Barros CF, Nucci KCA, et al. Is the 6-minute peg-board and ring test valid to evaluate upper limb function in hospitalized patients with acute exacerbation of COPD? Int J Chron Obstruct Pulmon Dis 2018; 13: 1663-73.
[http://dx.doi.org/10.2147/COPD.S161463] [PMID: 29861629]
[79]
Janaudis-Ferreira T, Hill K, Goldstein RS, Wadell K, Brooks D. Relationship and responsiveness of three upper-limb tests in patients with chronic obstructive pulmonary disease. Physiother Can 2013; 65(1): 40-3.
[http://dx.doi.org/10.3138/ptc.2011-49] [PMID: 24381380]
[80]
Kruapanich C, Tantisuwat A, Thaveeratitham P, Lertmaharit S, Ubolnuar N, Mathiyakom W. Effects of different modes of upper limb training in individuals with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ann Rehabil Med 2019; 43(5): 592-614.
[http://dx.doi.org/10.5535/arm.2019.43.5.592] [PMID: 31693849]
[81]
Silva CMDSE, Gomes Neto M, Saquetto MB, Conceição CSD, Souza-Machado A. Effects of upper limb resistance exercise on aerobic capacity, muscle strength, and quality of life in COPD patients: a randomized controlled trial. Clin Rehabil 2018; 32(12): 1636-44.
[http://dx.doi.org/10.1177/0269215518787338] [PMID: 30012033]
[82]
McKeough ZJ, Bye PT, Alison JA. Arm exercise training in chronic obstructive pulmonary disease: a randomized controlled trial. Chron Respir Dis 2012; 9(3): 153-62.
[http://dx.doi.org/10.1177/1479972312440814] [PMID: 22452973]
[83]
Rekha K, Vijayalakshmi A, Doss DS, Anandh V. Effects of home based upper extremity exercise in chronic obstructive pulmonary disease. Int J Pharmaceutial Clin Res 2016; 8(8): 1351-5.
[84]
Calik-Kutukcu E, Arikan H, Saglam M, et al. Arm strength training improves activities of daily living and occupational performance in patients with COPD. Clin Respir J 2017; 11(6): 820-32.
[http://dx.doi.org/10.1111/crj.12422] [PMID: 26621050]
[85]
Velloso M, do Nascimento NH, Gazzotti MR, Jardim JR. Evaluation of effects of shoulder girdle training on strength and performance of activities of daily living in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2013; 8: 187-92.
[PMID: 23589685]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy