Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Association of Micro RNA and Postoperative Cognitive Dysfunction: A Review

Author(s): Noor Anisah Abu Yazit, Norsham Juliana*, Srijit Das, Nur Islami Mohd Fahmi Teng, Nadia Mohd Fahmy, Sahar Azmani and Suhaini Kadiman

Volume 20, Issue 17, 2020

Page: [1781 - 1790] Pages: 10

DOI: 10.2174/1389557520666200621182717

Price: $65

Abstract

Postoperative Cognitive Dysfunction (POCD) refers to the condition of neurocognitive decline following surgery in a cognitive and sensory manner. There are several risk factors, which may be life-threatening for this condition. Neuropsychological assessment of this condition is very important. In the present review, we discuss the association of apolipoprotein epsilon 4 (APOE ε4) and few miRNAs with POCD, and highlight the clinical importance for prognosis, diagnosis and treatment of POCD. Microarray is a genome analysis that can be used to determine DNA abnormalities. This current technique is rapid, efficient and high-throughout. Microarray techniques are widely used to diagnose diseases, particularly in genetic disorder, chromosomal abnormalities, mutations, infectious diseases and disease-relevant biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are widely found distributed in eukaryotes. Few miRNAs influence the nervous system development, and nerve damage repair. Microarray approach can be utilized to understand the miRNAs involved and their pathways in POCD development, unleashing their potential to be considered as a diagnostic marker for POCD. This paper summarizes and identifies the studies that use microarray based approaches for POCD analysis. Since the application of microarray in POCD is expanding, there is a need to review the current knowledge of this approach.

Keywords: miRNA, POCD, cognitive, function, treatment, microarray.

Graphical Abstract

[1]
Androsova, G.; Krause, R.; Winterer, G.; Schneider, R. Biomarkers of postoperative delirium and cognitive dysfunction. Front. Aging Neurosci., 2015, 7(112), 112.
[http://dx.doi.org/10.3389/fnagi.2015.00112] [PMID: 26106326]
[2]
Carr, Z.J.; Cios, T.J.; Potter, K.F.; Swick, J.T. Does dexmedetomidine ameliorate postoperative cognitive dysfunction? A brief review of the recent literature. Curr. Neurol. Neurosci. Rep., 2018, 18(10), 64.
[http://dx.doi.org/10.1007/s11910-018-0873-z] [PMID: 30083844]
[3]
Ghaffary, S.; Ghaeli, P.; Talasaz, A.H.; Karimi, A.; Noroozian, M.; Salehiomran, A.; Jalali, A. Effect of memantine on post-operative cognitive dysfunction after cardiac surgeries: A randomized clinical trial. Daru, 2017, 25(1), 24.
[http://dx.doi.org/10.1186/s40199-017-0190-0] [PMID: 29157293]
[4]
Nemeth, E.; Vig, K.; Racz, K.; Koritsanszky, K.B.; Ronkay, K.I.; Hamvas, F.P.; Borbély, C.; Eory, A.; Merkely, B.; Gal, J. Influence of the postoperative inflammatory response on cognitive decline in elderly patients undergoing on-pump cardiac surgery: A controlled, prospective observational study. BMC Anesthesiol., 2017, 17(1), 113.
[http://dx.doi.org/10.1186/s12871-017-0408-1] [PMID: 28851286]
[5]
Brown, E.N.; Purdon, P.L. The aging brain and anesthesia. Curr. Opin. Anaesthesiol., 2013, 26(4), 414-419.
[http://dx.doi.org/10.1097/00001503-198908000-00005 PMID: 23820102]
[6]
Kok, W.F.; Koerts, J.; Tucha, O.; Scheeren, T.W.; Absalom, A.R. Neuronal damage biomarkers in the identification of patients at risk of long-term postoperative cognitive dysfunction after cardiac surgery. Anaesthesia, 2017, 72(3), 359-369.
[http://dx.doi.org/10.1111/anae.13712] [PMID: 27987229]
[7]
Evered, L.; Silbert, B.; Scott, D.A. Pre-existing cognitive impairment and post-operative cognitive dysfunction: should we be talking the same language? Int. Psychogeriatr., 2016, 28(7), 1053-1055.
[http://dx.doi.org/10.1017/S1041610216000661] [PMID: 27145889]
[8]
Berger, M.; Terrando, N.; Smith, S.K.; Browndyke, J.N.; Newman, M.F.; Mathew, J.P. Neurocognitive function after cardiac surgery: From phenotypes to mechanisms. Anesthesiology, 2018, 129(4), 829-851.
[http://dx.doi.org/10.1097/ALN.0000000000002194 PMID: 29621031]
[9]
Duan, X.; Zhu, T.; Chen, C.; Zhang, G.; Zhang, J.; Wang, L.; Zhang, L.; Wang, M.; Wang, X. Serum glial cell line-derived neurotrophic factor levels and postoperative cognitive dysfunction after surgery for rheumatic heart disease. J. Thorac. Cardiovasc. Surg., 2018, 155(3), 958-965.e1.
[http://dx.doi.org/10.1016/j.jtcvs.2017.07.073] [PMID: 28918204]
[10]
Rundshagen, I. Postoperative cognitive dysfunction. Dtsch. Arztebl. Int., 2014, 111(8), 119-125.
[PMID: 24622758]
[11]
Newman, M.F.; Kirchner, J.L.; Phillips-Bute, B.; Gaver, V.; Grocott, H.; Jones, R.H.; Mark, D.B.; Reves, J.G.; Blumenthal, J.A. Neurological outcome research group and the cardiothoracic anesthesiology research endeavors investigators. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N. Engl. J. Med., 2001, 344(6), 395-402.
[http://dx.doi.org/10.1056/NEJM200102083440601 PMID: 11172175]
[12]
Moller, J.T.; Cluitmans, P.; Rasmussen, L.S.; Houx, P.; Rasmussen, H.; Canet, J.; Rabbitt, P.; Jolles, J.; Larsen, K.; Hanning, C.D.; Langeron, O.; Johnson, T.; Lauven, P.M.; Kristensen, P.A.; Biedler, A.; van Beem, H.; Fraidakis, O.; Silverstein, J.H.; Beneken, J.E.; Gravenstein, J.S. International Study of Post-Operative Cognitive Dysfunction. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. Lancet, 1998, 351(9106), 857-861.
[http://dx.doi.org/10.1016/S0140-6736(97)07382-0] [PMID: 9525362]
[13]
Yang, R.; Wolfson, M.; Lewis, M.C. Unique aspects of the elderly surgical population: An Anesthesiologist’s perspective. Geriatr. Orthop. Surg. Rehabil., 2011, 2(2), 56-64.
[http://dx.doi.org/10.1177/2151458510394606] [PMID: 23569671]
[14]
Ortapamuk, H.; Naldoken, S. Brain perfusion abnormalities in chronic obstructive pulmonary disease: Comparison with cognitive impairment. Ann. Nucl. Med., 2006, 20(2), 99-106.
[http://dx.doi.org/10.1007/BF02985621] [PMID: 16615418]
[15]
Bhamidipati, D.; Goldhammer, J.E.; Sperling, M.R.; Torjman, M.C.; McCarey, M.M.; Whellan, D.J. Cognitive outcomes after coronary artery bypass grafting. J. Cardiothorac. Vasc. Anesth., 2017, 31(2), 707-718.
[http://dx.doi.org/10.1053/j.jvca.2016.09.028] [PMID: 28094177]
[16]
Ghaffary, S.; Hajhossein Talasaz, A.; Ghaeli, P.; Karimi, A.; Salehiomran, A.; Hajighasemi, A.; Bina, P.; Darabi, S.; Jalali, A.; Dianatkhah, M.; Noroozian, M.; Shahmansouri, N. Association between perioperative parameters and cognitive impairment in post-cardiac surgery patients. J Tehran Heart Cent, 2015, 10(2), 85-92.
[PMID: 26110007]
[17]
Mullen, K.D. Review of the final report of the 1998 Working Party on definition, nomenclature and diagnosis of hepatic encephalopathy. Aliment. Pharmacol. Ther., 2007, 25(Suppl. 1), 11-16.
[http://dx.doi.org/10.1111/j.1746-6342.2006.03216.x PMID: 17295847]
[18]
Kotekar, N.; Shenkar, A.; Nagaraj, R. Postoperative cognitive dysfunction - current preventive strategies. Clin. Interv. Aging, 2018, 13, 2267-2273.
[http://dx.doi.org/10.2147/CIA.S133896] [PMID: 30519008]
[19]
Tardiff, B.E.; Newman, M.F.; Saunders, A.M.; Strittmatter, W.J.; Blumenthal, J.A.; White, W.D.; Croughwell, N.D.; Davis, R.D., Jr; Roses, A.D.; Reves, J.G. The Neurologic Outcome Research Group of the Duke Heart Center. Preliminary report of a genetic basis for cognitive decline after cardiac operations. Ann. Thorac. Surg., 1997, 64(3), 715-720.
[http://dx.doi.org/10.1016/S0003-4975(97)00757-1] [PMID: 9307463]
[20]
Cao, L.; Wang, K.; Gu, T.; Du, B.; Song, J. Association between APOE epsilon 4 allele and postoperative cognitive dysfunction: A meta-analysis. Int. J. Neurosci., 2014, 124(7), 478-485.
[http://dx.doi.org/10.3109/00207454.2013.860601] [PMID: 24168388]
[21]
Terrando, N.; Eriksson, L.I.; Ryu, J.K.; Yang, T.; Monaco, C.; Feldmann, M.; Jonsson Fagerlund, M.; Charo, I.F.; Akassoglou, K.; Maze, M. Resolving postoperative neuroinflammation and cognitive decline. Ann. Neurol., 2011, 70(6), 986-995.
[http://dx.doi.org/10.1002/ana.22664] [PMID: 22190370]
[22]
He, H.J.; Wang, Y.; Le, Y.; Duan, K.M.; Yan, X.B.; Liao, Q.; Liao, Y.; Tong, J.B.; Terrando, N.; Ouyang, W. Surgery upregulates high mobility group box-1 and disrupts the blood-brain barrier causing cognitive dysfunction in aged rats. CNS Neurosci. Ther., 2012, 18(12), 994-1002.
[http://dx.doi.org/10.1111/cns.12018] [PMID: 23078219]
[23]
Abrahamov, D.; Levran, O.; Naparstek, S.; Refaeli, Y.; Kaptson, S.; Abu Salah, M.; Ishai, Y.; Sahar, G. Blood-Brain barrier disruption after cardiopulmonary bypass: Diagnosis and correlation to cognition. Ann. Thorac. Surg., 2017, 104(1), 161-169.
[http://dx.doi.org/10.1016/j.athoracsur.2016.10.043 PMID: 28193536]
[24]
Capuron, L.; Miller, A.H. Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol. Ther., 2011, 130(2), 226-238.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.014 PMID: 21334376]
[25]
Hogue, C.W.; Gottesman, R.F.; Stearns, J. Mechanisms of cerebral injury from cardiac surgery. Crit. Care Clin., 2008, 24(1), 83-98 viii-ix.
[http://dx.doi.org/10.1016/j.ccc.2007.09.004] [PMID: 18241780]
[26]
Newman, M.F.; Croughwell, N.D.; Blumenthal, J.A.; White, W.D.; Lewis, J.B.; Smith, L.R.; Frasco, P.; Towner, E.A.; Schell, R.M.; Hurwitz, B.J.; Reves, J.G. Effect of aging on cerebral autoregulation during cardiopulmonary bypass. Association with postoperative cognitive dysfunction. Circulation, 1994, 90(5 Pt 2), II243-II249.
[PMID: 7955260]
[27]
Kumpaitiene, B.; Svagzdiene, M.; Sirvinskas, E. Cerebrovascular autoregulation impairments during cardiac surgery with cardiopulmonary bypass are related to postoperative cognitive deterioration: Prospective observational study. Minerva Anestesiol., 2018.
[PMID: 29756691]
[28]
Schoen, J.; Meyerrose, J.; Paarmann, H.; Heringlake, M.; Hueppe, M.; Berger, K.U. Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: a prospective observational trial. Crit. Care, 2011, 15(5), R218.
[http://dx.doi.org/10.1186/cc10454] [PMID: 21929765]
[29]
Slater, J.P.; Guarino, T.; Stack, J.; Vinod, K.; Bustami, R.T.; Brown, J.M., III; Rodriguez, A.L.; Magovern, C.J.; Zaubler, T.; Freundlich, K.; Parr, G.V. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann. Thorac. Surg., 2009, 87(1), 36-44.
[http://dx.doi.org/10.1016/j.athoracsur.2008.08.070 PMID: 19101265]
[30]
de Tournay-Jetté, E.; Dupuis, G.; Bherer, L.; Deschamps, A.; Cartier, R.; Denault, A. The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J. Cardiothorac. Vasc. Anesth., 2011, 25(1), 95-104.
[http://dx.doi.org/10.1053/j.jvca.2010.03.019] [PMID: 20650659]
[31]
Mathew, J.P.; Mackensen, G.B.; Phillips-Bute, B.; Stafford-Smith, M.; Podgoreanu, M.V.; Grocott, H.P.; Hill, S.E.; Smith, P.K.; Blumenthal, J.A.; Reves, J.G.; Newman, M.F. Neurologic Outcome Research Group (NORG) of the Duke Heart Center. Effects of extreme hemodilution during cardiac surgery on cognitive function in the elderly. Anesthesiology, 2007, 107(4), 577-584.
[http://dx.doi.org/10.1097/01.anes.0000281896.07256.71 PMID: 17893453]
[32]
Choi, K.E.; Hall, C.L.; Sun, J.M.; Wei, L.; Mohamad, O.; Dix, T.A.; Yu, S.P. A novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice. FASEB J., 2012, 26(7), 2799-2810.
[http://dx.doi.org/10.1096/fj.11-201822] [PMID: 22459147]
[33]
Grossestreuer, A.V.; Gaieski, D.F.; Donnino, M.W.; Wiebe, D.J.; Abella, B.S. Magnitude of temperature elevation is associated with neurologic and survival outcomes in resuscitated cardiac arrest patients with postrewarming pyrexia. J. Crit. Care, 2017, 38, 78-83.
[http://dx.doi.org/10.1016/j.jcrc.2016.11.003] [PMID: 27866109]
[34]
Engelman, R. Baker, R.A.; Likosky, D.S.; Grigore, A.; Dickinson, T.A.; Shore-Lesserson, L.; Hammon, J.W. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists, and The american society of extracorporeal technology: clinical practice guidelines for cardiopulmonary Bypass–Temperature Management during cardiopulmonary bypass. J. Extra Corpor. Technol., 2015, 47, 145-154.
[PMID: 26543248]
[35]
Berger, M.; Browndyke, J.; Mathew, J.P. Intraoperative glycemic control to prevent delirium after cardiac surgery: Steering a course between scylla and charybdis. Anesthesiology, 2015, 122(6), 1186-1188.
[http://dx.doi.org/10.1097/ALN.0000000000000670 PMID: 25844843]
[36]
Schricker, T.; Sato, H.; Beaudry, T.; Codere, T.; Hatzakorzian, R.; Pruessner, J.C. Intraoperative maintenance of normoglycemia with insulin and glucose preserves verbal learning after cardiac surgery. PLoS One, 2014, 9(6)e99661
[http://dx.doi.org/10.1371/journal.pone.0099661] [PMID: 24941010]
[37]
Evered, L.; Scott, D.A.; Silbert, B.; Maruff, P. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth. Analg., 2011, 112(5), 1179-1185.
[http://dx.doi.org/10.1213/ANE.0b013e318215217e PMID: 21474666]
[38]
Liu, X.; Xie, G.; Zhang, K.; Song, S.; Song, F.; Jin, Y.; Fang, X. Dexmedetomidine vs propofol sedation reduces delirium in patients after cardiac surgery: A meta-analysis with trial sequential analysis of randomized controlled trials. J. Crit. Care, 2017, 38, 190-196.
[http://dx.doi.org/10.1016/j.jcrc.2016.10.026] [PMID: 27936404]
[39]
Glumac, S.; Kardum, G.; Karanovic, N. Postoperative cognitive decline after cardiac surgery: A narrative review of current Knowledge in 2019. Med. Sci. Monit., 2019, 25, 3262-3270.
[http://dx.doi.org/10.12659/MSM.914435] [PMID: 31048667]
[40]
Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res., 1975, 12(3), 189-198.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[41]
Helkala, E.L.; Kivipelto, M.; Hallikainen, M.; Alhainen, K.; Heinonen, H.; Tuomilehto, J.; Soininen, H.; Nissinen, A. Usefulness of repeated presentation of Mini-Mental state examination as a diagnostic procedure--a population-based study. Acta Neurol. Scand., 2002, 106(6), 341-346.
[http://dx.doi.org/10.1034/j.1600-0404.2002.01315.x PMID: 12460138]
[42]
Mitchell, A.J. A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J. Psychiatr. Res., 2009, 43(4), 411-431.
[http://dx.doi.org/10.1016/j.jpsychires.2008.04.014 PMID: 18579155]
[43]
Gluhm, S.; Goldstein, J.; Loc, K.; Colt, A.; Liew, C.V.; Corey-Bloom, J. Cognitive performance on the mini-mental state examination and the montreal cognitive assessment across the healthy adult lifespan. Cogn. Behav. Neurol., 2013, 26(1), 1-5.
[http://dx.doi.org/10.1097/WNN.0b013e31828b7d26 PMID: 23538566]
[44]
Murkin, J.M.; Newman, S.P.; Stump, D.A.; Blumenthal, J.A. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann. Thorac. Surg., 1995, 59(5), 1289-1295.
[http://dx.doi.org/10.1016/0003-4975(95)00106-U] [PMID: 7733754]
[45]
Arrowsmith, J.E.; Grocott, H.P.; Reves, J.G.; Newman, M.F. Central nervous system complications of cardiac surgery. Br. J. Anaesth., 2000, 84(3), 378-393.
[http://dx.doi.org/10.1093/oxfordjournals.bja.a013444 PMID: 10793601]
[46]
Berger, R.P.; Adelson, P.D.; Pierce, M.C.; Dulani, T.; Cassidy, L.D.; Kochanek, P.M. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J. Neurosurg., 2005, 103(1)(Suppl.), 61-68.
[PMID: 16122007]
[47]
Gerriets, T.; Schwarz, N.; Bachmann, G.; Kaps, M.; Kloevekorn, W.P.; Sammer, G.; Tschernatsch, M.; Nottbohm, R.; Blaes, F.; Schönburg, M. Evaluation of methods to predict early long-term neurobehavioral outcome after coronary artery bypass grafting. Am. J. Cardiol., 2010, 105(8), 1095-1101.
[http://dx.doi.org/10.1016/j.amjcard.2009.12.009] [PMID: 20381659]
[48]
Gheyas, A.A.; Burt, D.W. Microarray resources for genetic and genomic studies in chicken: A review. Genesis, 2013, 51(5), 337-356.
[http://dx.doi.org/10.1002/dvg.22387] [PMID: 23468091]
[49]
Yoo, S.M.; Choi, J.H.; Lee, S.Y.; Yoo, N.C. Applications of DNA microarray in disease diagnostics. J. Microbiol. Biotechnol., 2009, 19(7), 635-646.
[PMID: 19652509]
[50]
Govindarajan, R.; Duraiyan, J.; Kaliyappan, K.; Palanisamy, M. Microarray and its applications. J. Pharm. Bioallied Sci., 2012, 4(2)(Suppl. 2), S310-S312.
[PMID: 23066278]
[51]
Bungamer, R. DNA Microarrays: Types, Applications and their Future Curr. Protocol Mol. Biol, 2013, 22(1)
[52]
Richter, A.; Schwager, C.; Hentze, S.; Ansorge, W.; Hentze, M.W.; Muckenthaler, M. Comparison of fluorescent tag DNA labeling methods used for expression analysis by DNA microarrays. Biotechniques, 2002, 33(3), 620-628, 630.
[http://dx.doi.org/10.2144/02333rr05] [PMID: 12238772]
[53]
Wu, L.; Williams, P.M.; Koch, W.H. Clinical applications of microarray-based diagnostic tests. Biotechniques, 2005, 39(4), 577-582.
[PMID: 16235572]
[54]
Ahonen, J.; Salmenperä, M. Brain injury after adult cardiac surgery. Acta Anaesthesiol. Scand., 2004, 48(1), 4-19.
[http://dx.doi.org/10.1111/j.1399-6576.2004.00275.x PMID: 14674968]
[55]
Bartels, K.; McDonagh, D.L.; Newman, M.F.; Mathew, J.P. Neurocognitive outcomes after cardiac surgery. Curr. Opin. Anaesthesiol., 2013, 26(1), 91-97.
[http://dx.doi.org/10.1097/ACO.0b013e32835bf24c PMID: 23235523]
[56]
Bartels, K.; Li, Y.J.; Li, Y.W.; White, W.D.; Laskowitz, D.T.; Kertai, M.D.; Stafford-Smith, M.; Podgoreanu, M.V.; Newman, M.F.; Mathew, J.P. Apolipoprotein epsilon 4 genotype is associated with less improvement in cognitive function five years after cardiac surgery: a retrospective cohort study. Can. J. Anaesth., 2015, 62(6), 618-626.
[http://dx.doi.org/10.1007/s12630-015-0337-8] [PMID: 25744138]
[57]
Hsiung, G.Y.; Sadovnick, A.D.; Feldman, H. Apolipoprotein E ε4 genotype as a risk factor for cognitive decline and dementia: data from the Canadian Study of Health and Aging. CMAJ, 2004, 171(8), 863-867.
[http://dx.doi.org/10.1503/cmaj.1031789] [PMID: 15477624]
[58]
Heyer, E.J.; Wilson, D.A.; Sahlein, D.H.; Mocco, J.; Williams, S.C.; Sciacca, R.; Rampersad, A.; Komotar, R.J.; Zurica, J.; Benvenisty, A.; Quest, D.O.; Todd, G.; Solomon, R.A.; Connolly, E.S. Jr APOE-ε4 predisposes to cognitive dysfunction following uncomplicated carotid endarterectomy. Neurology, 2005, 65(11), 1759-1763.
[http://dx.doi.org/10.1212/01.wnl.0000184579.23624.6b PMID: 16207841]
[59]
Lelis, R.G.B.; Krieger, J.E.; Pereira, A.C.; Schmidt, A.P.; Carmona, M.J.; Oliveira, S.A.; Auler, J.O. Jr Apolipoprotein E4 genotype increases the risk of postoperative cognitive dysfunction in patients undergoing coronary artery bypass graft surgery. J. Cardiovasc. Surg. (Torino), 2006, 47(4), 451-456.
[PMID: 16953165]
[60]
Cai, Y.; Hu, H.; Liu, P.; Feng, G.; Dong, W.; Yu, B.; Zhu, Y.; Song, J.; Zhao, M. Association between the apolipoprotein E4 and postoperative cognitive dysfunction in elderly patients undergoing intravenous anesthesia and inhalation anesthesia. Anesthesiology, 2012, 116(1), 84-93.
[http://dx.doi.org/10.1097/ALN.0b013e31823da7a2 PMID: 22108393]
[61]
Stewart, A.; Katznelson, R.; Kraeva, N.; Carroll, J.; Pickworth, T.; Rao, V.; Djaiani, G. Genetic variation and cognitive dysfunction one year after cardiac surgery. Anaesthesia, 2013, 68(6), 571-575.
[http://dx.doi.org/10.1111/anae.12170] [PMID: 23384292]
[62]
Schenning, K.J.; Murchison, C.F.; Mattek, N.C.; Kaye, J.A.; Quinn, J.F. Sex and genetic differences in postoperative cognitive dysfunction: A longitudinal cohort analysis. Biol. Sex Differ., 2019, 10(1), 14.
[http://dx.doi.org/10.1186/s13293-019-0228-8] [PMID: 30922389]
[63]
Askar, F.Z.; Cetin, H.Y.; Kumral, E.; Cetin, O.; Acarer, A.; Kosova, B.; Yagdi, T. Apolipoprotein E ε4 allele and neurobehavioral status after on-pump coronary artery bypass grafting. J. Card. Surg., 2005, 20(5), 501-505.
[http://dx.doi.org/10.1111/j.1540-8191.2005.2004138.x PMID: 16153291]
[64]
Silbert, B.S.; Evered, L.A.; Scott, D.A.; Cowie, T.F. The Apolipoprotein E-4 Allele is not Associated With Cognitive Dysfunction in Cardiac Surgery; Annual Thoracic Surgeon, 2008, p. 86.
[65]
Bryson, G.L.; Wyand, A.; Wozny, D.; Rees, L.; Taljaard, M.; Nathan, H. A prospective cohort study evaluating associations among delirium, postoperative cognitive dysfunction, and apolipoprotein E genotype following open aortic repair. Can. J. Anaesth., 2011, 58(3), 246-255.
[http://dx.doi.org/10.1007/s12630-010-9446-6] [PMID: 21222188]
[66]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne), 2018, 9(402), 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[67]
Wei, C.; Luo, T.; Zou, S.; Zhou, X.; Shen, W.; Ji, X.; Li, Q.; Wu, A. Differentially expressed lncRNAs and miRNAs with associated ceRNA networks in aged mice with postoperative cognitive dysfunction. Oncotarget, 2017, 8(34), 55901-55914.
[http://dx.doi.org/10.18632/oncotarget.18362] [PMID: 28915561]
[68]
Tüfekci, K.U.; Oner, M.G.; Meuwissen, R.L.J.; Genç, S. The role of microRNAs in human diseases. Methods Mol. Biol., 2014, 1107, 33-50.
[http://dx.doi.org/10.1007/978-1-62703-748-8_3] [PMID: 24272430]
[69]
Gao, J.; Wang, W.Y.; Mao, Y.W.; Gräff, J.; Guan, J.S.; Pan, L.; Mak, G.; Kim, D.; Su, S.C.; Tsai, L.H. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, 2010, 466(7310), 1105-1109.
[http://dx.doi.org/10.1038/nature09271] [PMID: 20622856]
[70]
Yu, X.; Liu, S.; Li, J.; Chen, Y.; Bi, X.; Liu, S.; Deng, X. MicroRNA-572 Improves Early Postoperative Cognitive Dysfunction by Down-Regulating Neural Cell Adhesion Molecule 1. PLoS One, 2015, 10(2)
[http://dx.doi.org/10.1371/journal.pone.0118511]
[71]
Lu, Y.; Xu, X.; Dong, R.; Sun, L.; Chen, L.; Zhang, Z.; Peng, M. MicroRNA-181b-5p attenuates early postoperative cognitive dysfunction by suppressing hippocampal neuroinflammation in mice. Cytokine, 2019, 120, 41-53.
[http://dx.doi.org/10.1016/j.cyto.2019.04.005] [PMID: 31003188]
[72]
Wu, C.; Wang, R.; Li, X.; Chen, J. Preoperative Serum MicroRNA-155 Expression independently predicts postoperative cognitive dysfunction after laparoscopic surgery for colon cancer. Med. Sci. Monit., 2016, 22, 4503-4508.
[http://dx.doi.org/10.12659/MSM.898397] [PMID: 27872469]
[73]
Kurowska-Stolarska, M.; Alivernini, S.; Ballantine, L.E.; Asquith, D.L.; Millar, N.L.; Gilchrist, D.S.; Reilly, J.; Ierna, M.; Fraser, A.R.; Stolarski, B.; McSharry, C.; Hueber, A.J.; Baxter, D.; Hunter, J.; Gay, S.; Liew, F.Y.; McInnes, I.B. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 11193-11198.
[http://dx.doi.org/10.1073/pnas.1019536108] [PMID: 21690378]
[74]
Marchese, F.P.; Raimondi, I.; Huarte, M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol., 2017, 18(1), 206.
[http://dx.doi.org/10.1186/s13059-017-1348-2] [PMID: 29084573]
[75]
Li, M.; Chen, C.; Zhang, W.; Gao, R.; Wang, Q.; Chen, H.; Zhang, S.; Mao, X.; Leblanc, M.; Behensky, A.; Zhang, Z.; Gan, L.; Yu, H.; Zhu, T.; Liu, J. Identification of the potential key long non-coding RNAs in aged mice with postoperative cognitive dysfunction. Fronstiers in Aging Neurosciences, 2019, 11(181)
[http://dx.doi.org/10.3389/fnagi.2019.00181]
[76]
Zhang, Y.; Liu, Y-X.; Xiao, Q-X.; Liu, Q.; Deng, R.; Bian, J.; Deng, I.B.; Al-Hawwas, M.; Yu, F-X. Microarray Expression Profiles of lncRNAs and mRNAs in postoperative cognitive dysfunction. Front. Neurosci., 2018, 12(694), 694.
[http://dx.doi.org/10.3389/fnins.2018.00694] [PMID: 30349449]
[77]
Floris, G.; Zhang, L.; Follesa, P.; Sun, T. Regulatory role of circular RNAs and neurological disorders. Mol. Neurobiol., 2017, 54(7), 5156-5165.
[http://dx.doi.org/10.1007/s12035-016-0055-4] [PMID: 27558238]
[78]
Ghosal, S.; Das, S.; Sen, R.; Basak, P.; Chakrabarti, J. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front. Genet., 2013, 4, 283.
[http://dx.doi.org/10.3389/fgene.2013.00283] [PMID: 24339831]
[79]
Lukiw, W.J. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front. Genet., 2013, 4, 307.
[http://dx.doi.org/10.3389/fgene.2013.00307] [PMID: 24427167]
[80]
Wang, M.; Su, P.; Liu, Y.; Zhang, X.; Yan, J.; An, X.; Wang, X.; Gu, S. Abnormal expression of circRNA_089763 in the plasma exosomes of patients with post-operative cognitive dysfunction after coronary artery bypass grafting. Mol. Med. Rep., 2019, 20(3), 2549-2562.
[http://dx.doi.org/10.3892/mmr.2019.10521] [PMID: 31524256]
[81]
Rajaei, M.; Tabari, M.; Soltani, G.; Alizadeh, K.; Nazari, A.; Noroozian, M.; Morovatdar, N. Comparison between the effects of dexmedetomidine and midazolam on postoperative cognitive Impairment after coronary artery bypasses graft surgery: A Randomized clinical trial. J. Tehran Heart Cent., 2019, 14(2), 67-73.
[http://dx.doi.org/10.18502/jthc.v14i2.1374] [PMID: 31723348]
[82]
Vedin, J.; Nyman, H.; Ericsson, A.; Hylander, S.; Vaage, J. Cognitive function after on or off pump coronary artery bypass grafting. Eur. J. Cardiothorac. Surg., 2006, 30(2), 305-310.
[http://dx.doi.org/10.1016/j.ejcts.2006.03.037] [PMID: 16828295]
[83]
Soenarto, R.F.; Mansjoer, A.; Amir, N.; Aprianti, M.; Perdana, A. Cardiopulmonary bypass alone does not cause postoperative cognitive dysfunction following open heart surgery. Anesth. Pain Med., 2018, 8(6)e83610
[http://dx.doi.org/10.5812/aapm.83610] [PMID: 30719417]
[84]
Su, W.; Hopkins, S.; Nesser, N.K.; Sopher, B.; Silvestroni, A.; Ammanuel, S.; Jayadev, S.; Möller, T.; Weinstein, J.; Garden, G.A. The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. J. Immunol., 2014, 192(1), 358-366.
[http://dx.doi.org/10.4049/jimmunol.1301397] [PMID: 24319262]
[85]
Wang, R.Y.; Phang, R.Z.; Hsu, P.H.; Wang, W.H.; Huang, H.T.; Liu, I.Y. In vivo knockdown of hippocampal miR-132 expression impairs memory acquisition of trace fear conditioning. Hippocampus, 2013, 23(7), 625-633.
[http://dx.doi.org/10.1002/hipo.22123] [PMID: 23520022]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy