Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

CRISPR Genome Editing Technology and its Application in Genetic Diseases: A Review

Author(s): Sepideh Khatibi, Amirhossein Sahebkar and Seyed H. Aghaee-Bakhtiari*

Volume 22, Issue 4, 2021

Published on: 21 June, 2020

Page: [468 - 479] Pages: 12

DOI: 10.2174/1389201021666200621161610

Price: $65

Abstract

Gene therapy has been a long lasting goal for scientists, and there are many optimal methods and tools to correct disease-causing mutations in humans. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been progressively adopted for the assessment a treatment of human diseases, including thalassemia, Parkinson's disease, cystic fibrosis, glaucoma, Huntington’s disease, and Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS). CRISPR sequences belong to the bacterial immune system, which includes the nuclease Cas enzyme and an RNA sequence. The RNA sequence is unique and pathogen-specific, and identifies and binds to the DNA of invasive viruses, allowing the nuclease Cas enzyme to cut the identified DNA and destroy the invasive viruses. This feature provides the possibility to edit mutations in the DNA sequence of live cells by replacing a specific targeted RNA sequence with the RNA sequence in the CRISPR system. Previous studies have reported the improvement steps in confrontation with human diseases caused by single-nucleotide mutations using this system. In this review, we first introduce CRISPR and its functions and then elaborate on the use of CRISPR in the treatment of human diseases.

Keywords: CRISPR technology, genome editing, human genetic disease, nuclease Cas enzyme, AIDS, mutations.

Graphical Abstract

[1]
Bianco, A.M.; Marcuzzi, A.; Zanin, V.; Girardelli, M.; Vuch, J.; Crovella, S. Database tools in genetic diseases research. Genomics, 2013, 101(2), 75-85.
[http://dx.doi.org/10.1016/j.ygeno.2012.11.001] [PMID: 23147677]
[2]
Xu, C.; Wu, K.; Zhang, J.G.; Shen, H.; Deng, H.W. Low-, high-coverage, and two-stage DNA sequencing in the design of the genetic association study. Genet. Epidemiol., 2017, 41(3), 187-197.
[http://dx.doi.org/10.1002/gepi.22015] [PMID: 27813156]
[3]
Tebas, P.; Stein, D.; Tang, W.W.; Frank, I.; Wang, S.Q.; Lee, G.; Spratt, S.K.; Surosky, R.T.; Giedlin, M.A.; Nichol, G.; Holmes, M.C.; Gregory, P.D.; Ando, D.G.; Kalos, M.; Collman, R.G.; Binder-Scholl, G.; Plesa, G.; Hwang, W.T.; Levine, B.L.; June, C.H. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med., 2014, 370(10), 901-910.
[http://dx.doi.org/10.1056/NEJMoa1300662] [PMID: 24597865]
[4]
Folger, K.R.; Wong, E.A.; Wahl, G.; Capecchi, M.R. Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell. Biol., 1982, 2(11), 1372-1387.
[http://dx.doi.org/10.1128/MCB.2.11.1372] [PMID: 6298598]
[5]
Cox, D.B.T.; Platt, R.J.; Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med., 2015, 21(2), 121-131.
[http://dx.doi.org/10.1038/nm.3793] [PMID: 25654603]
[6]
Maeder, M.L.; Gersbach, C.A. Genome-editing technologies for gene and cell therapy. Mol. Ther., 2016, 24(3), 430-446.
[http://dx.doi.org/10.1038/mt.2016.10] [PMID: 26755333]
[7]
Sachdeva, M.; Sachdeva, N.; Pal, M.; Gupta, N.; Khan, I.A.; Majumdar, M.; Tiwari, A. CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer. Cancer Gene Ther., 2015, 22(11), 509-517.
[http://dx.doi.org/10.1038/cgt.2015.54] [PMID: 26494554]
[8]
Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, 169(12), 5429-5433.
[http://dx.doi.org/10.1128/JB.169.12.5429-5433.1987] [PMID: 3316184]
[9]
Jansen, R.; Embden, J.D.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 2002, 43(6), 1565-1575.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[10]
Bolotin, A.; Quinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, 151(Pt 8), 2551-2561.
[http://dx.doi.org/10.1099/mic.0.28048-0] [PMID: 16079334]
[11]
Pourcel, C.; Salvignol, G.; Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005, 151(Pt 3), 653-663.
[http://dx.doi.org/10.1099/mic.0.27437-0] [PMID: 15758212]
[12]
Marson, F.A.L.; Bertuzzo, C.S.; Ribeiro, J.D. Personalized or precision medicine? The example of cystic fibrosis. Front. Pharmacol., 2017, 8, 390.
[http://dx.doi.org/10.3389/fphar.2017.00390] [PMID: 28676762]
[13]
Lander, E.S. The Heroes of CRISPR. Cell, 2016, 164(1-2), 18-28.
[http://dx.doi.org/10.1016/j.cell.2015.12.041] [PMID: 26771483]
[14]
Botkin, J.R. Ethical issues in pediatric genetic testing and screening. Curr. Opin. Pediatr., 2016, 28(6), 700-704.
[http://dx.doi.org/10.1097/MOP.0000000000000418] [PMID: 27606958]
[15]
Tang, T-H.; Bachellerie, J-P.; Rozhdestvensky, T.; Bortolin, M-L.; Huber, H.; Drungowski, M.; Elge, T.; Brosius, J.; Hüttenhofer, A. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7536-7541.
[http://dx.doi.org/10.1073/pnas.112047299] [PMID: 12032318]
[16]
Tang, T.H.; Polacek, N.; Zywicki, M.; Huber, H.; Brugger, K.; Garrett, R.; Bachellerie, J.P.; Hüttenhofer, A. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol. Microbiol., 2005, 55(2), 469-481.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04428.x] [PMID: 15659164]
[17]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[18]
Grissa, I.; Vergnaud, G.; Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8, 172.
[http://dx.doi.org/10.1186/1471-2105-8-172] [PMID: 17521438]
[19]
Karginov, F.V.; Hannon, G.J. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell, 2010, 37(1), 7-19.
[http://dx.doi.org/10.1016/j.molcel.2009.12.033] [PMID: 20129051]
[20]
Brouns, S.J.; Jore, M.M.; Lundgren, M.; Westra, E.R.; Slijkhuis, R.J.; Snijders, A.P.; Dickman, M.J.; Makarova, K.S.; Koonin, E.V.; van der Oost, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891), 960-964.
[http://dx.doi.org/10.1126/science.1159689] [PMID: 18703739]
[21]
Marraffini, L. A.; Sontheimer, E. J. 2008.
[22]
Hale, C.; Kleppe, K.; Terns, R.M.; Terns, M.P. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA, 2008, 14(12), 2572-2579.
[http://dx.doi.org/10.1261/rna.1246808] [PMID: 18971321]
[23]
Lillestøl, R.K.; Redder, P.; Garrett, R.A.; Brügger, K. A putative viral defence mechanism in archaeal cells. Archaea, 2006, 2(1), 59-72.
[http://dx.doi.org/10.1155/2006/542818] [PMID: 16877322]
[24]
Lillestøl, R.K.; Shah, S.A.; Brügger, K.; Redder, P.; Phan, H.; Christiansen, J.; Garrett, R.A. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol. Microbiol., 2009, 72(1), 259-272.
[http://dx.doi.org/10.1111/j.1365-2958.2009.06641.x] [PMID: 19239620]
[25]
van der Oost, J.; Jore, M.M.; Westra, E.R.; Lundgren, M.; Brouns, S.J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci., 2009, 34(8), 401-407.
[http://dx.doi.org/10.1016/j.tibs.2009.05.002] [PMID: 19646880]
[26]
Wang, T.; Wei, J.J.; Sabatini, D.M.; Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science, 2014, 343(6166), 80-84.
[http://dx.doi.org/10.1126/science.1246981] [PMID: 24336569]
[27]
Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelson, T.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; Zhang, F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014, 343(6166), 84-87.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571]
[28]
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819), 1709-1712.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[29]
Peng, X.; Brügger, K.; Shen, B.; Chen, L.; She, Q.; Garrett, R.A. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes. J. Bacteriol., 2003, 185(8), 2410-2417.
[http://dx.doi.org/10.1128/JB.185.8.2410-2417.2003] [PMID: 12670964]
[30]
Deveau, H.; Barrangou, R.; Garneau, J.E.; Labonté, J.; Fremaux, C.; Boyaval, P.; Romero, D.A.; Horvath, P.; Moineau, S. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol., 2008, 190(4), 1390-1400.
[http://dx.doi.org/10.1128/JB.01412-07] [PMID: 18065545]
[31]
Horvath, P.; Romero, D.A.; Coûté-Monvoisin, A-C.; Richards, M.; Deveau, H.; Moineau, S.; Boyaval, P.; Fremaux, C.; Barrangou, R. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol., 2008, 190(4), 1401-1412.
[http://dx.doi.org/10.1128/JB.01415-07] [PMID: 18065539]
[32]
Mojica, F.J.M.; Díez-Villaseñor, C.; García-Martínez, J.; Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009, 155(Pt 3), 733-740.
[http://dx.doi.org/10.1099/mic.0.023960-0] [PMID: 19246744]
[33]
Han, D.; Krauss, G. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett., 2009, 583(4), 771-776.
[http://dx.doi.org/10.1016/j.febslet.2009.01.024] [PMID: 19174159]
[34]
Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6), 1262-1278.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[35]
Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc., 2013, 8(11), 2281-2308.
[http://dx.doi.org/10.1038/nprot.2013.143] [PMID: 24157548]
[36]
Tsai, S.Q.; Wyvekens, N.; Khayter, C.; Foden, J.A.; Thapar, V.; Reyon, D.; Goodwin, M.J.; Aryee, M.J.; Joung, J.K. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol., 2014, 32(6), 569-576.
[http://dx.doi.org/10.1038/nbt.2908] [PMID: 24770325]
[37]
Guilinger, J.P.; Thompson, D.B.; Liu, D.R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol., 2014, 32(6), 577-582.
[http://dx.doi.org/10.1038/nbt.2909] [PMID: 24770324]
[38]
Wu, X.; Scott, D.A.; Kriz, A.J.; Chiu, A.C.; Hsu, P.D.; Dadon, D.B.; Cheng, A.W.; Trevino, A.E.; Konermann, S.; Chen, S.; Jaenisch, R.; Zhang, F.; Sharp, P.A. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol., 2014, 32(7), 670-676.
[http://dx.doi.org/10.1038/nbt.2889] [PMID: 24752079]
[39]
Esvelt, K.M.; Mali, P.; Braff, J.L.; Moosburner, M.; Yaung, S.J.; Church, G.M. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods, 2013, 10(11), 1116-1121.
[http://dx.doi.org/10.1038/nmeth.2681] [PMID: 24076762]
[40]
Niewoehner, J.; Bohrmann, B.; Collin, L.; Urich, E.; Sade, H.; Maier, P.; Rueger, P.; Stracke, J.O.; Lau, W.; Tissot, A.C.; Loetscher, H.; Ghosh, A.; Freskgård, P.O. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron, 2014, 81(1), 49-60.
[http://dx.doi.org/10.1016/j.neuron.2013.10.061] [PMID: 24411731]
[41]
Weatherall, D.J.; Clegg, J.B. Thalassemia--a global public health problem. Nat. Med., 1996, 2(8), 847-849.
[http://dx.doi.org/10.1038/nm0896-847] [PMID: 8705845]
[42]
Olivieri, N.F. The β-thalassemias. N. Engl. J. Med., 1999, 341(2), 99-109.
[http://dx.doi.org/10.1056/NEJM199907083410207] [PMID: 10395635]
[43]
Yanpanitch, O.-u.; Hatairaktham, S.; Charoensakdi, R.; Panichkul, N.; Fucharoen, S.; Srichairatanakool, S.; Siritanaratkul, N.; Kalpravidh, R. W. 2015.
[44]
Darvishi-Khezri, H.; Salehifar, E.; Kosaryan, M.; Karami, H.; Alipour, A.; Shaki, F.; Aliasgharian, A. The impact of silymarin on antioxidant and oxidative status in patients with β-thalassemia major: A crossover, randomized controlled trial. Complement. Ther. Med., 2017, 35, 25-32.
[http://dx.doi.org/10.1016/j.ctim.2017.08.007] [PMID: 29154063]
[45]
Liang, P.; Ding, C.; Sun, H.; Xie, X.; Xu, Y.; Zhang, X.; Sun, Y.; Xiong, Y.; Ma, W.; Liu, Y.; Wang, Y.; Fang, J.; Liu, D.; Songyang, Z.; Zhou, C.; Huang, J. Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell, 2017, 8(11), 811-822.
[http://dx.doi.org/10.1007/s13238-017-0475-6] [PMID: 28942539]
[46]
Yang, Y.; Wang, Q.; Li, Q.; Men, K.; He, Z.; Deng, H.; Ji, W.; Wei, Y. Recent advances in therapeutic genome editing in China. Hum. Gene Ther., 2018, 29(2), 136-145.
[http://dx.doi.org/10.1089/hum.2017.210] [PMID: 29446996]
[47]
Bonomo, M.E.; Deem, M.W. The physicist’s guide to one of biotechnology’s hottest new topics: CRISPR-Cas. Phys. Biol., 2018, 15(4)041002
[http://dx.doi.org/10.1088/1478-3975/aab6d6] [PMID: 29543191]
[48]
Yang, H.; Jaeger, M.; Walker, A.; Wei, D.; Leiker, K.; Weitao, T. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing. J. Cancer, 2018, 9(2), 219-231.
[http://dx.doi.org/10.7150/jca.22554] [PMID: 29344267]
[49]
Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(3), 177-193.
[http://dx.doi.org/10.3322/caac.21395] [PMID: 28248415]
[50]
Matano, M.; Date, S.; Shimokawa, M.; Takano, A.; Fujii, M.; Ohta, Y.; Watanabe, T.; Kanai, T.; Sato, T. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med., 2015, 21(3), 256-262.
[http://dx.doi.org/10.1038/nm.3802] [PMID: 25706875]
[51]
Seshagiri, S.; Stawiski, E.W.; Durinck, S.; Modrusan, Z.; Storm, E.E.; Conboy, C.B.; Chaudhuri, S.; Guan, Y.; Janakiraman, V.; Jaiswal, B.S.; Guillory, J.; Ha, C.; Dijkgraaf, G.J.; Stinson, J.; Gnad, F.; Huntley, M.A.; Degenhardt, J.D.; Haverty, P.M.; Bourgon, R.; Wang, W.; Koeppen, H.; Gentleman, R.; Starr, T.K.; Zhang, Z.; Largaespada, D.A.; Wu, T.D.; de Sauvage, F.J. Recurrent R-spondin fusions in colon cancer. Nature, 2012, 488(7413), 660-664.
[http://dx.doi.org/10.1038/nature11282] [PMID: 22895193]
[52]
Willett, C.G.; Chang, D.T.; Czito, B.G.; Meyer, J.; Wo, J. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012.(5). Int. J. Radiat. Oncol. Biol. Phys., 2013, 86(1), 330.
[53]
Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; Clevers, H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244), 262-265.
[http://dx.doi.org/10.1038/nature07935] [PMID: 19329995]
[54]
Sato, T.; van Es, J.H.; Snippert, H.J.; Stange, D.E.; Vries, R.G.; van den Born, M.; Barker, N.; Shroyer, N.F.; van de Wetering, M.; Clevers, H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011, 469(7330), 415-418.
[http://dx.doi.org/10.1038/nature09637] [PMID: 21113151]
[55]
Sato, T.; Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science, 2013, 340(6137), 1190-1194.
[http://dx.doi.org/10.1126/science.1234852] [PMID: 23744940]
[56]
Jubair, L.; McMillan, N.A.J. The Therapeutic Potential of CRISPR/Cas9 Systems in Oncogene-Addicted Cancer Types: Virally Driven Cancers as a Model System. Mol. Ther. Nucleic Acids, 2017, 8, 56-63.
[http://dx.doi.org/10.1016/j.omtn.2017.06.006] [PMID: 28918056]
[57]
Tycko, J.; Myer, V.E.; Hsu, P.D. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol. Cell, 2016, 63(3), 355-370.
[http://dx.doi.org/10.1016/j.molcel.2016.07.004] [PMID: 27494557]
[58]
Pagliarini, R.; Shao, W.; Sellers, W.R. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep., 2015, 16(3), 280-296.
[http://dx.doi.org/10.15252/embr.201439949] [PMID: 25680965]
[59]
Fanales-Belasio, E.; Raimondo, M.; Suligoi, B.; Buttò, S. HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann. Ist. Super. Sanita, 2010, 46(1), 5-14.
[http://dx.doi.org/10.1590/S0021-25712010000100002] [PMID: 20348614]
[60]
Weatherley, D.A.V.; Boswell, M.T.; Rowland-Jones, S.L. Targeting TRIM5α in HIV Cure Strategies for the CRISPR-Cas9 Era. Front. Immunol., 2017, 8, 1616.
[http://dx.doi.org/10.3389/fimmu.2017.01616] [PMID: 29213273]
[61]
Zulfiqar, H.F.; Javed, A. Sumbal; Afroze, B.; Ali, Q.; Akbar, K.; Nadeem, T.; Rana, M.A.; Nazar, Z.A.; Nasir, I.A.; Husnain, T. HIV diagnosis and treatment through advanced technologies. Front. Public Health, 2017, 5, 32.
[http://dx.doi.org/10.3389/fpubh.2017.00032] [PMID: 28326304]
[62]
Abecasis, A.B.; Wensing, A.M.; Paraskevis, D.; Vercauteren, J.; Theys, K.; Van de Vijver, D.A.; Albert, J.; Asjö, B.; Balotta, C.; Beshkov, D.; Camacho, R.J.; Clotet, B.; De Gascun, C.; Griskevicius, A.; Grossman, Z.; Hamouda, O.; Horban, A.; Kolupajeva, T.; Korn, K.; Kostrikis, L.G.; Kücherer, C.; Liitsola, K.; Linka, M.; Nielsen, C.; Otelea, D.; Paredes, R.; Poljak, M.; Puchhammer-Stöckl, E.; Schmit, J.C.; Sönnerborg, A.; Stanekova, D.; Stanojevic, M.; Struck, D.; Boucher, C.A.; Vandamme, A.M. HIV-1 subtype distribution and its demographic determinants in newly diagnosed patients in Europe suggest highly compartmentalized epidemics. Retrovirology, 2013, 10(1), 7.
[http://dx.doi.org/10.1186/1742-4690-10-7] [PMID: 23317093]
[63]
Fauci, A.S.; Marston, H.D. Ending AIDS--is an HIV vaccine necessary? N. Engl. J. Med., 2014, 370(6), 495-498.
[http://dx.doi.org/10.1056/NEJMp1313771] [PMID: 24499210]
[64]
Persaud, D.; Gay, H.; Ziemniak, C.; Chen, Y.H.; Piatak, M., Jr; Chun, T-W.; Strain, M.; Richman, D.; Luzuriaga, K. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N. Engl. J. Med., 2013, 369(19), 1828-1835.
[http://dx.doi.org/10.1056/NEJMoa1302976] [PMID: 24152233]
[65]
Ebina, H.; Misawa, N.; Kanemura, Y.; Koyanagi, Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep., 2013, 3, 2510.
[http://dx.doi.org/10.1038/srep02510] [PMID: 23974631]
[66]
Dong, W.; Li, B.; Wang, J.; Song, Y.; Zhang, Z.; Fu, C.; Zhang, P. Diagnostic and predictive significance of serum microRNA-7 in esophageal squamous cell carcinoma. Oncol. Rep., 2016, 35(3), 1449-1456.
[http://dx.doi.org/10.3892/or.2015.4499] [PMID: 26708917]
[67]
Yaqoob, A.; Shehzad, U.; Ahmad, Z.; Naseer, N.; Bashir, S. Effective treatment strategies against Ebola virus. Advancements in Life Sciences, 2015, 2(4), 176-182.
[68]
Arias-Fuenzalida, J.; Jarazo, J.; Qing, X.; Walter, J.; Gomez-Giro, G.; Nickels, S.L.; Zaehres, H.; Schöler, H.R.; Schwamborn, J.C. FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson’s Disease Modeling. Stem Cell Reports, 2017, 9(5), 1423-1431.
[http://dx.doi.org/10.1016/j.stemcr.2017.08.026] [PMID: 28988985]
[69]
Devine, M.J.; Ryten, M.; Vodicka, P.; Thomson, A.J.; Burdon, T.; Houlden, H.; Cavaleri, F.; Nagano, M.; Drummond, N.J.; Taanman, J-W.; Schapira, A.H.; Gwinn, K.; Hardy, J.; Lewis, P.A.; Kunath, T. Parkinson’s disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nat. Commun., 2011, 2, 440.
[http://dx.doi.org/10.1038/ncomms1453] [PMID: 21863007]
[70]
Bendor, J.T.; Logan, T.P.; Edwards, R.H. The function of α-synuclein. Neuron, 2013, 79(6), 1044-1066.
[http://dx.doi.org/10.1016/j.neuron.2013.09.004] [PMID: 24050397]
[71]
Veres, A.; Gosis, B.S.; Ding, Q.; Collins, R.; Ragavendran, A.; Brand, H.; Erdin, S.; Cowan, C.A.; Talkowski, M.E.; Musunuru, K. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell, 2014, 15(1), 27-30.
[http://dx.doi.org/10.1016/j.stem.2014.04.020] [PMID: 24996167]
[72]
Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr; Laird, P.W.; Baty, J.D.; Fulton, L.L.; Fulton, R.; Heath, S.E.; Kalicki-Veizer, J.; Kandoth, C.; Klco, J.M.; Koboldt, D.C.; Kanchi, K.L.; Kulkarni, S.; Lamprecht, T.L.; Larson, D.E.; Lin, L.; Lu, C.; McLellan, M.D.; McMichael, J.F.; Payton, J.; Schmidt, H.; Spencer, D.H.; Tomasson, M.H.; Wallis, J.W.; Wartman, L.D.; Watson, M.A.; Welch, J.; Wendl, M.C.; Ally, A.; Balasundaram, M.; Birol, I.; Butterfield, Y.; Chiu, R.; Chu, A.; Chuah, E.; Chun, H.J.; Corbett, R.; Dhalla, N.; Guin, R.; He, A.; Hirst, C.; Hirst, M.; Holt, R.A.; Jones, S.; Karsan, A.; Lee, D.; Li, H.I.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, K.; Parker, J.; Pleasance, E.; Plettner, P.; Schein, J.; Stoll, D.; Swanson, L.; Tam, A.; Thiessen, N.; Varhol, R.; Wye, N.; Zhao, Y.; Gabriel, S.; Getz, G.; Sougnez, C.; Zou, L.; Leiserson, M.D.; Vandin, F.; Wu, H.T.; Applebaum, F.; Baylin, S.B.; Akbani, R.; Broom, B.M.; Chen, K.; Motter, T.C.; Nguyen, K.; Weinstein, J.N.; Zhang, N.; Ferguson, M.L.; Adams, C.; Black, A.; Bowen, J.; Gastier-Foster, J.; Grossman, T.; Lichtenberg, T.; Wise, L.; Davidsen, T.; Demchok, J.A.; Shaw, K.R.; Sheth, M.; Sofia, H.J.; Yang, L.; Downing, J.R.; Eley, G. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med., 2013, 368(22), 2059-2074.
[http://dx.doi.org/10.1056/NEJMoa1301689] [PMID: 23634996]
[73]
Lucas, D.; O’Leary, H.A.; Ebert, B.L.; Cowan, C.A.; Tremblay, C.S. Utility of CRISPR/Cas9 systems in hematology research. Exp. Hematol., 2017, 54, 1-3.
[http://dx.doi.org/10.1016/j.exphem.2017.06.006] [PMID: 28668351]
[74]
Bejar, R.; Lord, A.; Stevenson, K.; Bar-Natan, M.; Pérez-Ladaga, A.; Zaneveld, J.; Wang, H.; Caughey, B.; Stojanov, P.; Getz, G.; Garcia-Manero, G.; Kantarjian, H.; Chen, R.; Stone, R.M.; Neuberg, D.; Steensma, D.P.; Ebert, B.L. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood, 2014, 124(17), 2705-2712.
[http://dx.doi.org/10.1182/blood-2014-06-582809] [PMID: 25224413]
[75]
Grasemann, H.; Stehling, F.; Brunar, H.; Widmann, R.; Laliberte, T.W.; Molina, L.; Döring, G.; Ratjen, F. Inhalation of Moli1901 in patients with cystic fibrosis. Chest, 2007, 131(5), 1461-1466.
[http://dx.doi.org/10.1378/chest.06-2085] [PMID: 17494794]
[76]
Schwank, G.; Koo, B-K.; Sasselli, V.; Dekkers, J.F.; Heo, I.; Demircan, T.; Sasaki, N.; Boymans, S.; Cuppen, E.; van der Ent, C.K.; Nieuwenhuis, E.E.; Beekman, J.M.; Clevers, H. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 2013, 13(6), 653-658.
[http://dx.doi.org/10.1016/j.stem.2013.11.002] [PMID: 24315439]
[77]
Riordan, J.R.; Rommens, J.M.; Kerem, B.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J-L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 1989, 245(4922), 1066-1073.
[http://dx.doi.org/10.1126/science.2475911] [PMID: 2475911]
[78]
Kerem, B.; Rommens, J.M.; Buchanan, J.A.; Markiewicz, D.; Cox, T.K.; Chakravarti, A.; Buchwald, M.; Tsui, L-C. Identification of the cystic fibrosis gene: genetic analysis. Science, 1989, 245(4922), 1073-1080.
[http://dx.doi.org/10.1126/science.2570460] [PMID: 2570460]
[79]
Schneider, E.K.; Reyes-Ortega, F.; Li, J.; Velkov, T. Can cystic fibrosis patients finally catch a breath with lumacaftor/ivacaftor? Clin. Pharmacol. Ther., 2017, 101(1), 130-141.
[http://dx.doi.org/10.1002/cpt.548] [PMID: 27804127]
[80]
Rafeeq, M.M.; Murad, H.A.S. Cystic fibrosis: current therapeutic targets and future approaches. J. Transl. Med., 2017, 15(1), 84.
[http://dx.doi.org/10.1186/s12967-017-1193-9] [PMID: 28449677]
[81]
Hoffman, E.P.; Brown, R.H., Jr; Kunkel, L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell, 1987, 51(6), 919-928.
[http://dx.doi.org/10.1016/0092-8674(87)90579-4] [PMID: 3319190]
[82]
Emery, A.E. Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul. Disord., 1991, 1(1), 19-29.
[http://dx.doi.org/10.1016/0960-8966(91)90039-U] [PMID: 1822774]
[83]
Rando, T.A. The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve, 2001, 24(12), 1575-1594.
[http://dx.doi.org/10.1002/mus.1192] [PMID: 11745966]
[84]
Gee, P.; Xu, H.; Hotta, A. Cellular reprogramming, genome editing, and alternative CRISPR Cas9 technologies for precise gene therapy of Duchenne muscular dystrophy., 2017.
[85]
England, S.B.; Nicholson, L.V.; Johnson, M.A.; Forrest, S.M.; Love, D.R.; Zubrzycka-Gaarn, E.E.; Bulman, D.E.; Harris, J.B.; Davies, K.E. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature, 1990, 343(6254), 180-182.
[http://dx.doi.org/10.1038/343180a0] [PMID: 2404210]
[86]
Mirabella, M.; Galluzzi, G.; Manfredi, G.; Bertini, E.; Ricci, E.; De Leo, R.; Tonali, P.; Servidei, S. Giant dystrophin deletion associated with congenital cataract and mild muscular dystrophy. Neurology, 1998, 51(2), 592-595.
[http://dx.doi.org/10.1212/WNL.51.2.592] [PMID: 9710043]
[87]
Gloss, D.; Moxley, R.T., III; Ashwal, S.; Oskoui, M. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology, 2016, 86(5), 465-472.
[http://dx.doi.org/10.1212/WNL.0000000000002337] [PMID: 26833937]
[88]
Haas, M.; Vlcek, V.; Balabanov, P.; Salmonson, T.; Bakchine, S.; Markey, G.; Weise, M.; Schlosser-Weber, G.; Brohmann, H.; Yerro, C.P.; Mendizabal, M.R.; Stoyanova-Beninska, V.; Hillege, H.L. European Medicines Agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene. Neuromuscul. Disord., 2015, 25(1), 5-13.
[http://dx.doi.org/10.1016/j.nmd.2014.11.011] [PMID: 25497400]
[89]
Aartsma-Rus, A.; Krieg, A. M. 2017.
[90]
Li, H.L.; Nakano, T.; Hotta, A. Genetic correction using engineered nucleases for gene therapy applications. Dev. Growth Differ., 2014, 56(1), 63-77.
[http://dx.doi.org/10.1111/dgd.12107] [PMID: 24329887]
[91]
Bello, L.; Pegoraro, E. Genetic diagnosis as a tool for personalized treatment of Duchenne muscular dystrophy. Acta Myol., 2016, 35(3), 122-127.
[PMID: 28484312]
[92]
Jain, A.; Zode, G.; Kasetti, R.B.; Ran, F.A.; Yan, W.; Sharma, T.P.; Bugge, K.; Searby, C.C.; Fingert, J.H.; Zhang, F.; Clark, A.F.; Sheffield, V.C. CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc. Natl. Acad. Sci. USA, 2017, 114(42), 11199-11204.
[http://dx.doi.org/10.1073/pnas.1706193114] [PMID: 28973933]
[93]
Hollands, H.; Johnson, D.; Hollands, S.; Simel, D.L.; Jinapriya, D.; Sharma, S. Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review. JAMA, 2013, 309(19), 2035-2042.
[http://dx.doi.org/10.1001/jama.2013.5099] [PMID: 23677315]
[94]
Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: a review. JAMA, 2014, 311(18), 1901-1911.
[http://dx.doi.org/10.1001/jama.2014.3192] [PMID: 24825645]
[95]
Abderrahim, H.; Jaramillo-Babb, V.L.; Zhou, Z.; Vollrath, D. Characterization of the murine TIGR/myocilin gene. Mamm. Genome, 1998, 9(8), 673-675.
[http://dx.doi.org/10.1007/s003359900844] [PMID: 9680392]
[96]
Stone, E.M.; Fingert, J.H.; Alward, W.L.; Nguyen, T.D.; Polansky, J.R.; Sunden, S.L.; Nishimura, D.; Clark, A.F.; Nystuen, A.; Nichols, B.E.; Mackey, D.A.; Ritch, R.; Kalenak, J.W.; Craven, E.R.; Sheffield, V.C. Identification of a gene that causes primary open angle glaucoma. Science, 1997, 275(5300), 668-670.
[http://dx.doi.org/10.1126/science.275.5300.668] [PMID: 9005853]
[97]
Zode, G.S.; Bugge, K.E.; Mohan, K.; Grozdanic, S.D.; Peters, J.C.; Koehn, D.R.; Anderson, M.G.; Kardon, R.H.; Stone, E.M.; Sheffield, V.C. Topical ocular sodium 4-phenylbutyrate rescues glaucoma in a myocilin mouse model of primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci., 2012, 53(3), 1557-1565.
[http://dx.doi.org/10.1167/iovs.11-8837] [PMID: 22328638]
[98]
Zode, G.S.; Kuehn, M.H.; Nishimura, D.Y.; Searby, C.C.; Mohan, K.; Grozdanic, S.D.; Bugge, K.; Anderson, M.G.; Clark, A.F.; Stone, E.M.; Sheffield, V.C. Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J. Clin. Invest., 2015, 125(8), 3303-3303.
[http://dx.doi.org/10.1172/JCI82799] [PMID: 26237042]
[99]
Wu, X.; Kriz, A.J.; Sharp, P.A. Target specificity of the CRISPR-Cas9 system. Quant. Biol., 2014, 2(2), 59-70.
[http://dx.doi.org/10.1007/s40484-014-0030-x] [PMID: 25722925]
[100]
Dayalu, P.; Albin, R.L. Huntington disease: pathogenesis and treatment. Neurol. Clin., 2015, 33(1), 101-114.
[http://dx.doi.org/10.1016/j.ncl.2014.09.003] [PMID: 25432725]
[101]
Vonsattel, J.P.G.; DiFiglia, M. Huntington disease. J. Neuropathol. Exp. Neurol., 1998, 57(5), 369-384.
[http://dx.doi.org/10.1097/00005072-199805000-00001] [PMID: 9596408]
[102]
Despard, J.; Ternes, A-M.; Dimech-Betancourt, B.; Poudel, G.; Churchyard, A.; Georgiou-Karistianis, N. Characterising Upper Limb Movements in Huntington’s Disease and the Impact of Restricted Visual Cues. PLoS One, 2015, 10(8)e0133709
[http://dx.doi.org/10.1371/journal.pone.0133709] [PMID: 26248012]
[103]
Drouet, V.; Ruiz, M.; Zala, D.; Feyeux, M.; Auregan, G.; Cambon, K.; Troquier, L.; Carpentier, J.; Aubert, S.; Merienne, N.; Bourgois-Rocha, F.; Hassig, R.; Rey, M.; Dufour, N.; Saudou, F.; Perrier, A.L.; Hantraye, P.; Déglon, N. Allele-specific silencing of mutant huntingtin in rodent brain and human stem cells. PLoS One, 2014, 9(6)e99341
[http://dx.doi.org/10.1371/journal.pone.0099341] [PMID: 24926995]
[104]
Monteys, A.M.; Ebanks, S.A.; Keiser, M.S.; Davidson, B.L. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol. Ther., 2017, 25(1), 12-23.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.010] [PMID: 28129107]
[105]
Yang, S.; Chang, R.; Yang, H.; Zhao, T.; Hong, Y.; Kong, H.E.; Sun, X.; Qin, Z.; Jin, P.; Li, S.; Li, X-J. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Invest., 2017, 127(7), 2719-2724.
[http://dx.doi.org/10.1172/JCI92087] [PMID: 28628038]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy