Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Research Article

Comparative Protein Composition and Biological Effects Caused by Bothrops jararacussu and B. moojeni Crude Venoms

Author(s): Otacílio B. Paixão-Júnior, Diana P. Silva, Sarah S. Ferreira, Ayrton R. Barbosa, Pedro G. N. dos Santos, Paula H. Santa-Rita, Guilherme H. M. Salvador, Hilzeth L. F. Pêssoa and Daniela P. Marchi-Salvador*

Volume 1, Issue 1, 2021

Published on: 17 June, 2020

Page: [67 - 84] Pages: 18

DOI: 10.2174/2666121701999200618102634

Abstract

Background: The World Health Organization added snakebite envenoming to its priority list of neglected tropical diseases. Snakebite envenoming is a particularly important public health problem in rural areas of tropical and sub-tropical countries. In 2017, more than 30 thousand cases of snakebites were reported in Brazil, with the North and Northeast regions being the most affected and Bothrops sp snakes causing most of these cases.

Objective: The objective of this study was to evaluate, in vitro, the coagulating, cytotoxic, oxidizing and antioxidant effects caused by Bothrops jararacussu and B. moojeni crude venoms.

Methods: The crude venoms protein profiles were characterized, and the biological effects were evaluated and compared between the species.

Results: The crude venoms composition showed similar protein profiles. The B. jararacussu and B. moojeni crude venoms showed coagulant activity and were capable of causing indirect hemolysis on the erythrocyte membrane, but did not protect the erythrocyte membrane from damage against hypotonic solutions. The B. jararacussu crude venom promoted hemagglutination.

Conclusion: The crude venoms were not able to promote an oxidizing effect on hemoglobin and could not prevent the phenylhydrazine oxidizing effect; however, the crude venoms presence caused increase in the methemoglobin formation by phenylhydrazine oxidation.

Keywords: Snake venom, coagulating effect, hemolytic activity, oxidative stress, antioxidant effect, phenylhydrazine oxidation.

Graphical Abstract

[1]
WHO, World Health Organization, Snakebite envenoming 2019a.http://www.who.int/snakebites/disease/en/ [03 March 2019];
[2]
WHO, World Health Organization, Neglected tropical diseasess 2019b.www.who.int/neglected_diseases/en/ [05 February 2019];
[3]
Chippaux JP. Snakebite envenomation turns again into a neglected tropical disease! J Venom Anim Toxins Incl Trop Dis 2017; 23: 38.
[http://dx.doi.org/10.1186/s40409-017-0127-6] [PMID: 28804495]
[4]
Brasil, Ministério da Saúde, Portal Saúde, Acidentes por serpentes - Situação epidemiológica 2019.http://portalarquivos2.saude.gov.br/images/pdf/2018/junho/25/2-Incidencia-Ofidismo-2000-2017.pdf [04 March 2019];
[5]
Uetz P, Freed P. Jirí Hošek, The Reptile Database 2019.http://www.reptile-database.org [25 January 2019];
[6]
J.L.C.F. Cardoso F O S. Wen F H, Malaque C M S, et al Epidemiologia dos Acidentes por Animais Peçonhentos, Animais Peçonhentos no Brasil: Biologia, Clínica e Terapêutica dos Acidentes. São Paulo: Sarvier 2003.
[7]
Markland FS. Snake venoms and the hemostatic system. Toxicon 1998; 36(12): 1749-800.
[http://dx.doi.org/10.1016/S0041-0101(98)00126-3] [PMID: 9839663]
[8]
Georgieva D, Arni RK, Betzel C. Proteome analysis of snake venom toxins: pharmacological insights. Expert Rev Proteomics 2008; 5(6): 787-97.
[http://dx.doi.org/10.1586/14789450.5.6.787] [PMID: 19086859]
[9]
Stocker K. Composition of snake venom, medical use of snake venom proteins. Boca Raton: CRC Press 1990.
[10]
Havt A, Fonteles MC, Monteiro HS. The renal effects of Bothrops jararacussu venom and the role of PLA(2) and PAF blockers. Toxicon 2001; 39(12): 1841-6.
[http://dx.doi.org/10.1016/S0041-0101(01)00146-5] [PMID: 11600146]
[11]
Girón ME, Salazar AM, Aguilar I, et al. Hemorrhagic, coagulant and fibrino(geno)lytic activities of crude venom and fractions from mapanare (Bothrops colombiensis) snakes. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147(1): 113-21.
[http://dx.doi.org/10.1016/j.cbpc.2007.09.001] [PMID: 17933591]
[12]
Gutiérrez JM, Escalante T, Rucavado A. Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon 2009; 54(7): 976-87.
[http://dx.doi.org/10.1016/j.toxicon.2009.01.039] [PMID: 19303034]
[13]
Warrell DA. Snake bite. Lancet 2010; 375(9708): 77-88.
[http://dx.doi.org/10.1016/S0140-6736(09)61754-2] [PMID: 20109866]
[14]
Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon 1991; 29(11): 1279-303.
[http://dx.doi.org/10.1016/0041-0101(91)90116-9] [PMID: 1814005]
[15]
Furtado MF, Travaglia-Cardoso SR, Rocha MM. Sexual dimorphism in venom of Bothrops jararaca(Serpentes: Viperidae). Toxicon 2006; 48(4): 401-10.
[http://dx.doi.org/10.1016/j.toxicon.2006.06.005] [PMID: 16889808]
[16]
Calvete JJ, Borges A, Segura A, et al. Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: Contributing to its taxonomy and snakebite management. J Proteomics 2009; 72(2): 227-40.
[http://dx.doi.org/10.1016/j.jprot.2009.01.005] [PMID: 19457355]
[17]
Calvete JJ, Marcinkiewicz C, Sanz L. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2. J Proteome Res 2007; 6(1): 326-36.
[http://dx.doi.org/10.1021/pr060494k] [PMID: 17203976]
[18]
Desjardins P, Hansen JB, Allen M. Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer. J Vis Exp 2009; 33(33): e1610.
[http://dx.doi.org/10.3791/1610] [PMID: 19890248]
[19]
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680-5.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[20]
Alvarado J, Gutiérrez JM. Anticoagulant effect of myotoxic phospholipase A2 isolated from the venom of the snake Bothrops asper (Viperidae). Rev Biol Trop 1988; 36(2B): 563-5.
[PMID: 3273606]
[21]
Rogalski A, Soerensen C, Op den Brouw B, et al. Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies. Toxicol Lett 2017; 280: 159-70.
[http://dx.doi.org/10.1016/j.toxlet.2017.08.020] [PMID: 28847519]
[22]
Hubert F, Cooper EL, Roch P. Structure and differential target sensitivity of the stimulable cytotoxic complex from hemolymph of the Mediterranean mussel Mytilus galloprovincialis. Biochim Biophys Acta 1997; 1361(1): 29-41.
[http://dx.doi.org/10.1016/S0925-4439(97)00013-6] [PMID: 9247087]
[23]
Anvisa, Agência Nacional de Vigilância Sanitária. Farmacopeia Brasileira, Brasília 2010; 1: 904.
[24]
Jain NC. Osmotic fragility of erythrocytes of dogs and cats in health and in certain hematologic disorders. Cornell Vet 1973; 63(3): 411-23.
[PMID: 4782558]
[25]
Naoum PCRJ;, Moraes MS. Dosagem espectrométrica de metaemoglobina sem interferentes químicos ou enzimáticos. Rev Bras Hematol Hemoter 2004; 26: 19-22.
[http://dx.doi.org/10.1590/S1516-84842004000100004]
[26]
Arbos KA, Claro LM, Borges L, Santos CA, Weffort-Santos AM. Human erythrocytes as a system for evaluating the antioxidant capacity of vegetable extracts. Nutr Res 2008; 28(7): 457-63.
[http://dx.doi.org/10.1016/j.nutres.2008.04.004] [PMID: 19083446]
[27]
Swenson MJ. Circulação sanguínea e sistema cardiovascularDukes Fisiologia dos Animais Domésticos. Guanabara Koogan, Rio de 1996.
[28]
Majerus PW, Tollefsen DM. Anticoagulantes, trombolíticos e fármacos antiplaquetáriosGoodman & Gilman: as bases farmacológicas da terapêutica. Rio de Janeiro: McGraw Hill 2003.
[29]
Smith SA. The cell-based model of coagulation. J Vet Emerg Crit Care (San Antonio) 2009; 19(1): 3-10.
[http://dx.doi.org/10.1111/j.1476-4431.2009.00389.x] [PMID: 19691581]
[30]
Kashima S, Roberto PG, Soares AM, et al. Analysis of Bothrops jararacussu venomous gland transcriptome focusing on structural and functional aspects: I--gene expression profile of highly expressed phospholipases A2. Biochimie 2004; 86(3): 211-9.
[http://dx.doi.org/10.1016/j.biochi.2004.02.002] [PMID: 15134836]
[31]
Valentin E, Lambeau G. Increasing molecular diversity of secreted phospholipases A(2) and their receptors and binding proteins. Biochim Biophys Acta 2000; 1488(1-2): 59-70.
[http://dx.doi.org/10.1016/S1388-1981(00)00110-4] [PMID: 11080677]
[32]
Valentin E, Lambeau G. What can venom phospholipases A(2) tell us about the functional diversity of mammalian secreted phospholipases A(2)? Biochimie 2000; 82(9-10): 815-31.
[http://dx.doi.org/10.1016/S0300-9084(00)01168-8] [PMID: 11086212]
[33]
Homsi-Brandeburgo MI, Queiroz LS, Santo-Neto H, Rodrigues-Simioni L, Giglio JR. Fractionation of Bothrops jararacussu snake venom: partial chemical characterization and biological activity of bothropstoxin. Toxicon 1988; 26(7): 615-27.
[http://dx.doi.org/10.1016/0041-0101(88)90244-9] [PMID: 3176051]
[34]
Spencer PJ, Aird SD, Boni-Mitake M, Nascimento N, Rogero JR. A single-step purification of bothropstoxin-1. Braz J Med Biol Res 1998; 31(9): 1125-7.
[http://dx.doi.org/10.1590/S0100-879X1998000900004] [PMID: 9876278]
[35]
Cintra AC, Marangoni S, Oliveira B, Giglio JR. Bothropstoxin-I: amino acid sequence and function. J Protein Chem 1993; 12(1): 57-64.
[http://dx.doi.org/10.1007/BF01024915] [PMID: 8427634]
[36]
Andrião-Escarso SH, Soares AM, Rodrigues VM, et al. Myotoxic phospholipases A(2) in bothrops snake venoms: effect of chemical modifications on the enzymatic and pharmacological properties of bothropstoxins from Bothrops jararacussu. Biochimie 2000; 82(8): 755-63.
[http://dx.doi.org/10.1016/S0300-9084(00)01150-0] [PMID: 11018293]
[37]
Andrião-Escarso SH, Soares AM, Fontes MR, et al. Structural and functional characterization of an acidic platelet aggregation inhibitor and hypotensive phospholipase A(2) from Bothrops jararacussu snake venom. Biochem Pharmacol 2002; 64(4): 723-32.
[http://dx.doi.org/10.1016/S0006-2952(02)01210-8] [PMID: 12167491]
[38]
Ketelhut DF, de Mello MH, Veronese EL, et al. Isolation, characterization and biological activity of acidic phospholipase A2 isoforms from Bothrops jararacussu snake venom. Biochimie 2003; 85(10): 983-91.
[http://dx.doi.org/10.1016/j.biochi.2003.09.011] [PMID: 14644553]
[39]
Sousa LF, Nicolau CA, Peixoto PS, et al. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex. PLoS Negl Trop Dis 2013; 7(9): e2442.
[http://dx.doi.org/10.1371/journal.pntd.0002442] [PMID: 24069493]
[40]
Silva FP Jr, Alexandre GM, Ramos CH, De-Simone SG. On the quaternary structure of a C-type lectin from Bothrops jararacussu venom--BJ-32 (BjcuL). Toxicon 2008; 52(8): 944-53.
[http://dx.doi.org/10.1016/j.toxicon.2008.10.014] [PMID: 18948130]
[41]
Carvalho DD, Marangoni S, Oliveira B, Novello JC. Isolation and characterization of a new lectin from the venom of the snake Bothrops jararacussu. IUBMB Life 1998; 44: 933-8.
[http://dx.doi.org/10.1080/15216549800201992]
[42]
de Carvalho DD, Marangoni S, Novello JC. Primary structure characterization of Bothrops jararacussu snake venom lectin. J Protein Chem 2002; 21(1): 43-50.
[http://dx.doi.org/10.1023/A:1014131115951] [PMID: 11902666]
[43]
Klein RC, Fabres-Klein MH, de Oliveira LL, Feio RN, Malouin F, Ribon Ade O. A C-type lectin from Bothrops jararacussu venom disrupts Staphylococcal biofilms. PLoS One 2015; 10(3): e0120514.
[http://dx.doi.org/10.1371/journal.pone.0120514] [PMID: 25811661]
[44]
Sartim MA, Pinheiro MP, de Pádua RAP, Sampaio SV, Nonato MC. Structural and binding studies of a C-type galactose-binding lectin from Bothrops jararacussu snake venom. Toxicon 2017; 126: 59-69.
[http://dx.doi.org/10.1016/j.toxicon.2016.12.007] [PMID: 28003128]
[45]
Bortoleto RK, Murakami MT, Watanabe L, Soares AM, Arni RK. Purification, characterization and crystallization of Jararacussin-I, a fibrinogen-clotting enzyme isolated from the venom of Bothrops jararacussu. Toxicon 2002; 40(9): 1307-12.
[http://dx.doi.org/10.1016/S0041-0101(02)00140-X] [PMID: 12220716]
[46]
Silva-Junior FP, Guedes HL, Garvey LC, et al. BJ-48, a novel thrombin-like enzyme from the Bothrops jararacussu venom with high selectivity for Arg over Lys in P1: Role of N-glycosylation in thermostability and active site accessibility. Toxicon 2007; 50(1): 18-31.
[http://dx.doi.org/10.1016/j.toxicon.2007.02.018] [PMID: 17433397]
[47]
Sant’Ana CD, Bernardes CP, Izidoro LF, et al. Molecular characterization of BjussuSP-I, a new thrombin-like enzyme with procoagulant and kallikrein-like activity isolated from Bothrops jararacussu snake venom. Biochimie 2008; 90(3): 500-7.
[http://dx.doi.org/10.1016/j.biochi.2007.10.005] [PMID: 17996740]
[48]
C.D. Sant’ Ana, Ticli FK, Oliveira LL, et al.. BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom. Comp Biochem Physiol A Mol Integr Physiol 2008; 151: 443-54.
[http://dx.doi.org/10.1016/j.cbpa.2007.02.036]
[49]
Zaganelli GL, Zaganelli MG, Magalhães A, Diniz CR, de Lima ME. Purification and characterization of a fibrinogen-clotting enzyme from the venom of jararacuçu (Bothrops jararacussu). Toxicon 1996; 34(7): 807-19.
[http://dx.doi.org/10.1016/0041-0101(96)00006-2] [PMID: 8843581]
[50]
Marcussi S, Bernardes CP, Santos-Filho NA, et al. Molecular and functional characterization of a new non-hemorrhagic metalloprotease from Bothrops jararacussu snake venom with antiplatelet activity. Peptides 2007; 28(12): 2328-39.
[http://dx.doi.org/10.1016/j.peptides.2007.10.010] [PMID: 18006118]
[51]
Ticli FK. Caracterização Funcional e Estrutural de um L-aminoácido oxidase do veneno de Bothrops jararacussu e avaliação da sua ação antitumoral, antiparasitária e bactericida. Ribeirão Preto: Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo 2006.
[52]
Costa NCS. Caracterização parcial e avaliação do potencial antibacteriano e antitumoral de uma L-aminoácido oxidase isolada de Bothrops jararacussu, Universidade Federal de Vioçosa. Viçosa 2012.
[53]
Ullah A, Coronado M, Murakami MT, Betzel C, Arni RK. Crystallization and preliminary X-ray diffraction analysis of an L-amino-acid oxidase from Bothrops jararacussu venom. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68(Pt 2): 211-3.
[http://dx.doi.org/10.1107/S1744309111054923] [PMID: 22298002]
[54]
Carone SEI, Costa TR, Burin SM, et al. A new l-amino acid oxidase from Bothrops jararacussu snake venom: Isolation, partial characterization, and assessment of pro-apoptotic and antiprotozoal activities. Int J Biol Macromol 2017; 103: 25-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.025] [PMID: 28495622]
[55]
Mazzi MV, Marcussi S, Carlos GB, et al. A new hemorrhagic metalloprotease from Bothrops jararacussu snake venom: isolation and biochemical characterization. Toxicon 2004; 44(2): 215-23.
[http://dx.doi.org/10.1016/j.toxicon.2004.06.002] [PMID: 15246772]
[56]
Mazzi MV, Magro AJ, Amui SF, et al. Molecular characterization and phylogenetic analysis of BjussuMP-I: a RGD-P-III class hemorrhagic metalloprotease from Bothrops jararacussu snake venom. J Mol Graph Model 2007; 26(1): 69-85.
[http://dx.doi.org/10.1016/j.jmgm.2006.09.010] [PMID: 17081786]
[57]
Amorim FG, Morandi-Filho R, Fujimura PT, Ueira-Vieira C, Sampaio SV. New findings from the first transcriptome of the Bothrops moojeni snake venom gland. Toxicon 2017; 140: 105-17.
[http://dx.doi.org/10.1016/j.toxicon.2017.10.025] [PMID: 29107670]
[58]
Soares AM, Andrião-Escarso SH, Angulo Y, et al. Structural and functional characterization of myotoxin I, a Lys49 phospholipase A(2) homologue from Bothrops moojeni (Caissaca) snake venom. Arch Biochem Biophys 2000; 373(1): 7-15.
[http://dx.doi.org/10.1006/abbi.1999.1492] [PMID: 10620318]
[59]
Soares AM, Rodrigues VM, Homsi-Brandeburgo MI, et al. A rapid procedure for the isolation of the Lys-49 myotoxin II from Bothrops moojeni (caissaca) venom: biochemical characterization, crystallization, myotoxic and edematogenic activity. Toxicon 1998; 36(3): 503-14.
[http://dx.doi.org/10.1016/S0041-0101(97)00133-5] [PMID: 9637370]
[60]
Queiroz M, Mamede C, Fonseca K, et al. Biological characterization of a myotoxin phosphoplipase A2 homologue purified from the venom of the snake Bothrops moojeni. J Venom Anim Toxins Incl Trop Dis 2011; 17: 49-58.
[http://dx.doi.org/10.1590/S1678-91992011000100007]
[61]
Santos-Filho NA, Silveira LB, Oliveira CZ, et al. A new acidic myotoxic, anti-platelet and prostaglandin I2 inductor phospholipase A2 isolated from Bothrops moojeni snake venom. Toxicon 2008; 52(8): 908-17.
[http://dx.doi.org/10.1016/j.toxicon.2008.08.020] [PMID: 18929590]
[62]
Silveira LB, Marchi-Salvador DP, Santos-Filho NA, et al. Isolation and expression of a hypotensive and anti-platelet acidic phospholipase A2 from Bothrops moojeni snake venom. J Pharm Biomed Anal 2013; 73: 35-43.
[http://dx.doi.org/10.1016/j.jpba.2012.04.008] [PMID: 22571953]
[63]
Calgarotto AK, Damico DC, Ponce-Soto LA, et al. Biological and biochemical characterization of new basic phospholipase A(2) BmTX-I isolated from Bothrops moojeni snake venom. Toxicon 2008; 51(8): 1509-19.
[http://dx.doi.org/10.1016/j.toxicon.2008.03.030] [PMID: 18501940]
[64]
Serrano SM, Matos MF, Mandelbaum FR, Sampaio CA. Basic proteinases from Bothrops moojeni (caissaca) venom--I. Isolation and activity of two serine proteinases, MSP 1 and MSP 2, on synthetic substrates and on platelet aggregation. Toxicon 1993; 31(4): 471-81.
[http://dx.doi.org/10.1016/0041-0101(93)90182-I] [PMID: 8503135]
[65]
Barbosa P, Martins A, Toyama M, et al. Purification and biological effects of a C-type lectin isolated from Bothrops moojeni. J Venom Anim Toxins Incl Trop Dis 2010; 16: 493-504.
[http://dx.doi.org/10.1590/S1678-91992010000300016]
[66]
de Queiroz MR, Mamede CC, de Morais NC, et al. Purification and characterization of BmooAi: a new toxin from Bothrops moojeni snake venom that inhibits platelet aggregation. BioMed Res Int 2014; 2014: 920942.
[http://dx.doi.org/10.1155/2014/920942] [PMID: 24971359]
[67]
Oliveira F, Rodrigues VM, Borges MH, et al. Purification and partial characterization of a new proteolytic enzyme from the venom of Bothrops moojeni (CAISSACA). Biochem Mol Biol Int 1999; 47(6): 1069-77.
[http://dx.doi.org/10.1080/15216549900202193] [PMID: 10410253]
[68]
de Oliveira F, de Sousa BB, Mamede CC, et al. Biochemical and functional characterization of BmooSP, a new serine protease from Bothrops moojeni snake venom. Toxicon 2016; 111: 130-8.
[http://dx.doi.org/10.1016/j.toxicon.2016.01.055] [PMID: 26797102]
[69]
Assakura MT, Reichl AP, Asperti MC, Mandelbaum FR. Isolation of the major proteolytic enzyme from the venom of the snake Bothrops moojeni (caissaca). Toxicon 1985; 23(4): 691-706.
[http://dx.doi.org/10.1016/0041-0101(85)90374-5] [PMID: 3933145]
[70]
Bernardes CP, Santos-Filho NA, Costa TR, et al. Isolation and structural characterization of a new fibrin(ogen)olytic metalloproteinase from Bothrops moojeni snake venom. Toxicon 2008; 51(4): 574-84.
[http://dx.doi.org/10.1016/j.toxicon.2007.11.017] [PMID: 18187176]
[71]
Gomes MS, Mendes MM, de Oliveira F, et al. BthMP: a new weakly hemorrhagic metalloproteinase from Bothrops moojeni snake venom. Toxicon 2009; 53(1): 24-32.
[http://dx.doi.org/10.1016/j.toxicon.2008.10.007] [PMID: 19000915]
[72]
Torres FS, Rates B, Gomes MT, et al. Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom. ISRN Toxicol 2012; 2012: 673941.
[http://dx.doi.org/10.5402/2012/673941] [PMID: 23762636]
[73]
de Queiroz MR, Mamede CC, Fonseca KC, et al. Rapid purification of a new P-I class metalloproteinase from Bothrops moojeni venom with antiplatelet activity. BioMed Res Int 2014; 2014: 352420.
[http://dx.doi.org/10.1155/2014/352420] [PMID: 24982866]
[74]
Fox JW, Serrano SM. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 2008; 275(12): 3016-30.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06466.x] [PMID: 18479462]
[75]
Stábeli RG, Sant’Ana CD, Ribeiro PH, et al. Cytotoxic L-amino acid oxidase from Bothrops moojeni: biochemical and functional characterization. Int J Biol Macromol 2007; 41(2): 132-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.01.006] [PMID: 17320169]
[76]
Serrano SM, Sampaio CA, Mandelbaum FR. Basic proteinases from Bothrops moojeni (caissaca) venom--II. Isolation of the metalloproteinase MPB. Comparison of the proteolytic activity on natural substrates by MPB, MSP 1 and MSP 2. Toxicon 1993; 31(4): 483-92.
[http://dx.doi.org/10.1016/0041-0101(93)90183-J] [PMID: 8503136]
[77]
de Morais NC, Neves Mamede CC, Fonseca KC, et al. Isolation and characterization of moojenin, an acid-active, anticoagulant metalloproteinase from Bothrops moojeni venom. Toxicon 2012; 60(7): 1251-8.
[http://dx.doi.org/10.1016/j.toxicon.2012.08.017] [PMID: 22975266]
[78]
Sartim MA, Costa TR, Laure HJ, et al. Moojenactivase, a novel pro-coagulant PIIId metalloprotease isolated from Bothrops moojeni snake venom, activates coagulation factors II and X and induces tissue factor up-regulation in leukocytes. Arch Toxicol 2016; 90(5): 1261-78.
[http://dx.doi.org/10.1007/s00204-015-1533-6] [PMID: 26026608]
[79]
Sano-Martins IS, Santoro MM. Distúrbios hemostáticos em envenenamentos por animais peçonhentos no Brasil, Animais peçonhentos no Brasil. São Paulo: Sarvier 2003; pp. 289-309.
[80]
Tanjoni I, Butera D, Bento L, et al. Snake venom metalloproteinases: structure/function relationships studies using monoclonal antibodies. Toxicon 2003; 42(7): 801-8.
[http://dx.doi.org/10.1016/j.toxicon.2003.10.010] [PMID: 14757212]
[81]
Bogarín G, Morais JF, Yamaguchi IK, et al. Neutralization of crotaline snake venoms from Central and South America by antivenoms produced in Brazil and Costa Rica. Toxicon 2000; 38(10): 1429-41.
[http://dx.doi.org/10.1016/S0041-0101(99)00236-6] [PMID: 10758277]
[82]
Jacome D, Melo MM, Santos MMB, Heneine LG. Kinetics of venom and antivenom serum and clinical parameters and treatment efficacy in Bothrops alternatus envenomed dogs. Vet Hum Toxicol 2002; 44(6): 334-8.
[PMID: 12458635]
[83]
Castro HC, Zingali RB, Albuquerque MG, Pujol-Luz M, Rodrigues CR. Snake venom thrombin-like enzymes: from reptilase to now. Cell Mol Life Sci 2004; 61(7-8): 843-56.
[http://dx.doi.org/10.1007/s00018-003-3325-z] [PMID: 15095007]
[84]
Sousa LF, Zdenek CN, Dobson JS, et al. Coagulotoxicity of Bothrops (Lancehead Pit-Vipers) venoms from Brazil: differential biochemistry and antivenom efficacy resulting from prey driven venom variation. Toxins (Basel) 2018; 10(10): 411-33.
[http://dx.doi.org/10.3390/toxins10100411] [PMID: 30314373]
[85]
Nielsen VG, Frank N, Afshar S. De Novo assessment and review of Pan-American Pit Viper anticoagulant and procoagulant venom activities via kinetomic analyses. Toxins (Basel) 2019; 11(2): 94-109.
[http://dx.doi.org/10.3390/toxins11020094] [PMID: 30736322]
[86]
Nielsen VG, Boyer LV, Redford DT, Ford P. Thrombelastographic characterization of the thrombin-like activity of Crotalus simus and Bothrops asper venoms. Blood Coagul Fibrinolysis 2017; 28(3): 211-7.
[http://dx.doi.org/10.1097/MBC.0000000000000577] [PMID: 27314863]
[87]
Magalhães A, Magalhães HP, Richardson M, et al. Purification and properties of a coagulant thrombin-like enzyme from the venom of Bothrops leucurus. Comp Biochem Physiol A Mol Integr Physiol 2007; 146(4): 565-75.
[http://dx.doi.org/10.1016/j.cbpa.2005.12.033] [PMID: 16481207]
[88]
Suntravat M, Nuchprayoon I, Pérez JC. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell’s viper venom-factor X activator (RVV-X). Toxicon 2010; 56(4): 544-53.
[http://dx.doi.org/10.1016/j.toxicon.2010.05.012] [PMID: 20677373]
[89]
Kelen EMA, Rosenfeld G, Nudel F. Hemolytic Activity of Animal Venoms. II Variation in relation to Erythrocyte Species. Mem Inst Butantan 1962; 30: 133-42.
[90]
Pharmacology of phospholipases A2 from snake venoms, Snake Venoms. Rosenberg P. Handbook for experimental pharmacology- Berlin: Springer 1979; pp. 403-7.
[91]
Rosenberg P. The Relationship Between Enzymatic Activity and Pharmacological Properties of PhospholipasesNatural Toxins. Oxford: Oxford University Press 1986; pp. 129-74.
[92]
Rosenberg P. Pitfalls to avoid in the study of correlations between enzymatic activity and pharmacological properties of phospholipase A2 enzymesVenom Phospholipase A2 enzymes: Structure, Function and Mechanism. Chichester: Wiley 1997; pp. 155-83.
[93]
Kini RM. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 2003; 42(8): 827-40.
[http://dx.doi.org/10.1016/j.toxicon.2003.11.002] [PMID: 15019485]
[94]
Vital-Brazil O. Peçonhas, Farmacodinâmica, Guanabara Koogan, Rio de Janeiro 1982; 1044-72.
[95]
Fernandes CA, Borges RJ, Lomonte B, Fontes MR. A structure-based proposal for a comprehensive myotoxic mechanism of phospholipase A2-like proteins from viperid snake venoms. Biochim Biophys Acta 2014; 1844(12): 2265-76.
[http://dx.doi.org/10.1016/j.bbapap.2014.09.015] [PMID: 25278377]
[96]
Chaves-Moreira D, Chaim OM, Sade YB, et al. Identification of a direct hemolytic effect dependent on the catalytic activity induced by phospholipase-D (dermonecrotic toxin) from brown spider venom. J Cell Biochem 2009; 107(4): 655-66.
[http://dx.doi.org/10.1002/jcb.22148] [PMID: 19455508]
[97]
Elias F, Lucas SRR, Hagiwara MK, Kogika MM, Mirandola RMS. Fragilidade osmótica eritrocitária em gatos acometidos por hepatopatias e gatos com insuficiência renal. Cienc Rural 2004; 34: 413-8.
[http://dx.doi.org/10.1590/S0103-84782004000200012]
[98]
Gupta RK, Pande AH, Gulla KC, Gabius H-J, Hajela K. Carbohydrate-induced modulation of cell membrane. VIII. Agglutination with mammalian lectin galectin-1 increases osmofragility and membrane fluidity of trypsinized erythrocytes. FEBS Lett 2006; 580(6): 1691-5.
[http://dx.doi.org/10.1016/j.febslet.2006.02.006] [PMID: 16497300]
[99]
Mendonça-Franqueiro Ede P, Alves-Paiva Rde M, Sartim MA, et al. Isolation, functional, and partial biochemical characterization of galatrox, an acidic lectin from Bothrops atrox snake venom. Acta Biochim Biophys Sin (Shanghai) 2011; 43(3): 181-92.
[http://dx.doi.org/10.1093/abbs/gmr003] [PMID: 21297119]
[100]
Kayano AM. Isolamento, caracterização bioquímica e funcional de lectina do veneno de Bothrops jararacussu. Rondônia: Universidade Federal de Rondônia 2016; p. 69.
[101]
Baraka AS, Ayoub CM, Kaddoum RN, Maalouli JM, Chehab IR, Hadi UM. Severe oxyhemoglobin desaturation during induction of anesthesia in a patient with congenital methemoglobinemia. Anesthesiology 2001; 95(5): 1296-7.
[http://dx.doi.org/10.1097/00000542-200111000-00041] [PMID: 11685006]
[102]
Sunitha K, Hemshekhar M, Thushara RM, et al. Inflammation and oxidative stress in viper bite: an insight within and beyond. Toxicon 2015; 98: 89-97.
[http://dx.doi.org/10.1016/j.toxicon.2015.02.014] [PMID: 25727382]
[103]
Williams HF, Hayter P, Ravishankar D, et al. Impact of Naja nigricollis venom on the production of methaemoglobin. Toxins (Basel) 2018; 10(12): 539-51.
[http://dx.doi.org/10.3390/toxins10120539] [PMID: 30558289]
[104]
Meléndez-Martínez D, Muñoz JM, Barraza-Garza G, et al. Rattlesnake Crotalus molossus nigrescens venom induces oxidative stress on human erythrocytes. J Venom Anim Toxins Incl Trop Dis 2017; 23: 24-30.
[http://dx.doi.org/10.1186/s40409-017-0114-y] [PMID: 28439287]
[105]
Rodrigues RS, da Silva JF, Boldrini França J, et al. Structural and functional properties of Bp-LAAO, a new L-amino acid oxidase isolated from Bothrops pauloensis snake venom. Biochimie 2009; 91(4): 490-501.
[http://dx.doi.org/10.1016/j.biochi.2008.12.004] [PMID: 19135502]
[106]
Naumann GB, Silva LF, Silva L, et al. Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom. Biochim Biophys Acta 2011; 1810(7): 683-94.
[http://dx.doi.org/10.1016/j.bbagen.2011.04.003] [PMID: 21539897]
[107]
Wei JF, Wei Q, Lu QM, et al. Purification, characterization and biological activity of an L-amino acid oxidase from Trimeresurus mucrosquamatus venom. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2003; 35(3): 219-24.
[PMID: 12621545]
[108]
Guo C, Liu S, Yao Y, Zhang Q, Sun MZ. Past decade study of snake venom L-amino acid oxidase. Toxicon 2012; 60(3): 302-11.
[http://dx.doi.org/10.1016/j.toxicon.2012.05.001] [PMID: 22579637]
[109]
Fox JW. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon 2013; 62: 75-82.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.009] [PMID: 23010165]
[110]
Santhosh MS, Sundaram MS, Sunitha K, et al. Propensity of crocin to offset Vipera russelli venom induced oxidative stress mediated neutrophil apoptosis: a biochemical insight. Cytotechnology 2016; 68(1): 73-85.
[http://dx.doi.org/10.1007/s10616-014-9752-x] [PMID: 25149285]
[111]
Goldberg B, Stern A, Peisach J. The mechanism of superoxide anion generation by the interaction of phenylhydrazine with hemoglobin. J Biol Chem 1976; 251(10): 3045-51.
[PMID: 5452]
[112]
Misra HP, Fridovich I. The oxidation of phenylhydrazine: superoxide and mechanism. Biochemistry 1976; 15(3): 681-7.
[http://dx.doi.org/10.1021/bi00648a036] [PMID: 175827]
[113]
Chakrabarti S, Sonaye B, Naik AA, Nadkarni PP. Erythrocyte membrane protein damage by oxidation products of phenylhydrazine. Biochem Mol Biol Int 1995; 35(2): 255-63.
[PMID: 7663379]

© 2024 Bentham Science Publishers | Privacy Policy