Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

Using Alendronic Acid Coupled Fluorescently Labelled SM Liposomes as a Vehicle for Bone Targeting

Author(s): Oula P. Medina*, Tuula P. Medina*, Jana Humbert, Bao Qi, Wolfgang Baum, Olga Will, Timo Damm and Claus Glüer

Volume 26, Issue 46, 2020

Page: [6021 - 6027] Pages: 7

DOI: 10.2174/1381612826666200614175905

Price: $65

Abstract

Background: We recently developed a liposomal nanoparticle system that can be used for drug delivery and simultaneously be monitored by optical or photoacoustic imaging devices. Here we tested the efficacy of alendronate as a homing molecule in SM-liposomes for bone targeting.

Methods: Alendronate was immobilized covalently on the liposomal surface and the fluorescent dye indocyanine green was used as a payload in the liposomes. The indocyanine green delivery was analyzed by 3D optical tomography, optical fluorescence scanner, photoacoustic imaging, and by ex-vivo biodistribution studies.

Results: The results show that the alendronate, coupled to the liposomal surface, increases sphingomyelin containing liposome targeting up to several-folds.

Conclusion: The alendronate targeted liposomes open possibilities for an application in active bone targeting.

Keywords: Alendronic acid, liposomes, multimodal imaging, ICG, sphingomyelin, bone targeting.

[1]
Salerno M, Cenni E, Fotia C, et al. Bone-targeted doxorubicinloaded nanoparticles as a tool for the treatment of skeletal metastases. Curr Cancer Drug Targets 2010; 10(7): 649-59..
[http://dx.doi.org/10.2174/156800910793605767] [PMID: 20578992]
[2]
Whitmire RE, Wilson DS, Singh A, Levenston ME, Murthy N, García AJ. Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials 2012; 33(30): 7665-75.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.101] [PMID: 22818981]
[3]
Peng KT, Chen CF, Chu IM, et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 2010; 31(19): 5227-36.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.027] [PMID: 20381140]
[4]
Jafari S, Maleki-Dizaji N, Barar J, Barzegar-Jalali M, Rameshrad M, Adibkia K. Methylprednisolone acetate-loaded hydroxyapatite nanoparticles as a potential drug delivery system for treatment of rheumatoid arthritis: In vitro and in vivo evaluations. Eur J Pharm Sci 2016; 91(91): 225-35.
[http://dx.doi.org/10.1016/j.ejps.2016.05.014] [PMID: 27189528]
[5]
D'Oronzo S, Coleman R, Brown J, Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J Bone Oncol 2018; 15: 004-4..
[http://dx.doi.org/10.1016/j.jbo.2018.10.004]
[6]
Jordan KM, Arden NK, Doherty M, et al. Standing Committee for International Clinical Studies Including Therapeutic Trials ESCISIT. EULAR Recommendations 2003: An evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 2003; 62(12): 1145-55.
[http://dx.doi.org/10.1136/ard.2003.011742] [PMID: 14644851]
[7]
Walter G1, Kemmerer M, Kappler C, Hoffmann R. Treatment algorithms for chronic osteomyelitis. Dtch Arztebl Int 2012; 109(14): 257-64..
[8]
Singh JA, Saag KG, Bridges SL Jr, et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res (Hoboken) 2016; 68(1): 1-25.
[http://dx.doi.org/10.1002/acr.22783]] [PMID: 26545825]
[9]
Katsumi H, Sano J, Nishikawa M, Hanzawa K, Sakane T, Yamamoto A. Molecular design of bisphosphonate-modified proteins for efficient bone targeting in vivo. PLoS One 2015; 19(10): 8: e0135966..
[http://dx.doi.org/10.1371/journal.pone.0135966]
[10]
Ferreira DdosS, Boratto FA, Cardoso VN, et al. Alendronatecoated long-circulating liposomes containing 99mtechnetiumceftizoxime used to identify osteomyelitis. Int J Nanomedicine 2015; 10(10): 2441-50..
[http://dx.doi.org/10.2147/IJN.S76168] [PMID: 25848262]
[11]
Swami A, Reagan MR, Basto P, et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci USA 2014; 111(28): 10287-92.
[http://dx.doi.org/10.1073/pnas.1401337111] [PMID: 24982170]
[12]
Mühlbauer RC, Russell RG, Williams DA, Fleisch H. The effects of diphosphonates, polyphosphates, and calcitonin on “immobilisation osteoporosis” in rats. Eur J Clin Invest 1971; 1(5): 336-44.
[http://dx.doi.org/10.1111/j.1365-2362.1971.tb00640.x] [PMID: 5558779]
[13]
Van Acker HH, Anguille S, Willemen Y, Smits EL, Van Tendeloo VF. Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials. Pharmacol Ther 2016; 158(158): 24-40.
[http://dx.doi.org/10.1016/j.pharmthera.2015.11.008] [PMID: 26617219]
[14]
Tamura T, Shomori K, Nakabayashi M, Fujii N, Ryoke K, Ito H. Zoledronic acid, a third-generation bisphosphonate, inhibits cellular growth and induces apoptosis in oral carcinoma cell lines. Oncol Rep 2011; 25(4): 1139-43.
[http://dx.doi.org/10.3892/or.2011.1152] [PMID: 21249320]
[15]
Stresing V, Fournier PG, Bellahcène A, et al. Nitrogen-containing bisphosphonates can inhibit angiogenesis in vivo without the involvement of farnesyl pyrophosphate synthase. Bone 2011; 48(2): 259-66.
[http://dx.doi.org/10.1016/j.bone.2010.09.035] [PMID: 20920623]
[16]
Santini D, Schiavon G, Angeletti S, et al. Last generation of amino-bisphosphonates (N-BPs) and cancer angio-genesis: A new role for these drugs? Recent Patents Anticancer Drug Discov 2006; 1(3): 383-96.
[http://dx.doi.org/10.2174/157489206778776989] [PMID: 18221048]
[17]
Braza MS, Klein B. Anti-tumour immunotherapy with Vγ9Vδ2 T lymphocytes: from the bench to the bedside. Br J Haematol 2013; 160(2): 123-32.
[http://dx.doi.org/10.1111/bjh.12090] [PMID: 23061882]
[18]
Rogers TL, Holen I. Tumour macrophages as potential targets of bisphosphonates. J Transl Med 2011; 9(9): 177.
[http://dx.doi.org/10.1186/1479-5876-9-177] [PMID: 22005011]
[19]
Reszka AA, Halasy-Nagy JM, Masarachia PJ, Rodan GA. Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosispromoting kinase. J Biol Chem 1999; 274(49): 34967-73..
[http://dx.doi.org/10.1074/jbc.274.49.34967] [PMID: 10574973]
[20]
Russell RG, Rogers MJ. Bisphosphonates: from the laboratory to the clinic and back again. Bone 1999; 25(1): 97-106.
[http://dx.doi.org/10.1016/S8756-3282(99)00116-7] [PMID: 10423031]
[21]
Cattalini JP, Boccaccini AR, Lucangioli S, Mouriño V. Bisphosphonate-based strategies for bone tissue engineering and orthopedic implants. Tissue Eng Part B Rev 2012; 18(5): 323-40.
[http://dx.doi.org/10.1089/ten.teb.2011.0737] [PMID: 22440082]
[22]
Kennel KA, Drake MT. Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin Proc 2009; 84(7): 632-7.
[http://dx.doi.org/10.1016/S0025-6196(11)60752-0] [PMID: 19567717]
[23]
Ramanlal Chaudhari K, Kumar A, Megraj Khandelwal VK, et al. Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. J Control Release 2012; 158(3): 470-8.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.020] [PMID: 22146683]
[24]
van Rooijen N, van Kesteren-Hendrikx E. Clodronate liposomes: perspectives in research and therapeutics. J Liposome Res 2002; 12(1-2): 81-94.
[http://dx.doi.org/10.1081/LPR-120004780] [PMID: 12604042]
[25]
Anada T, Takeda Y, Honda Y, Sakurai K, Suzuki O. Synthesis of calcium phosphate-binding liposome for drug delivery. Bioorg Med Chem Lett 2009; 19(15): 4148-50.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.117] [PMID: 19523821]
[26]
Ye WL, Zhao YP, Li HQ, et al. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Sci Rep 2015; 5: 14614.
[http://dx.doi.org/10.1038/srep14614] [PMID: 26419507]
[27]
Farrell KB, Karpeisky A, Thamm DH, Zinnen S. Bisphosphonate conjugation for bone specific drug targeting. Bone Rep 2018; 9: 47-60.
[http://dx.doi.org/10.1016/j.bonr.2018.06.007] [PMID: 29992180]
[28]
Gutman D, Golomb G. Liposomal alendronate for the treatment of restenosis. J Control Release 2012; 161(2): 619-27.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.037] [PMID: 22178594]
[29]
Hodgins NO, Wang JT, Al-Jamal KT. Nano-technology based carriers for nitrogen-containing bisphosphonates delivery as sensitisers of γδ T cells for anticancer immunotherapy. Adv Drug Deliv Rev 2017; 114(114): 143-60.
[http://dx.doi.org/10.1016/j.addr.2017.07.003] [PMID: 28694026]
[30]
Zhu J, Huo Q, Xu M, et al. Bortezomib-catechol conjugated prodrug micelles: Combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 2018; 38.
[31]
Feng S, Wu ZX, Zhao Z, et al. Engineering of bone- and CD44-dual-targeting redox-sensitive liposomes for the treatment of orthotopic osteosarcoma. ACS Appl Mater Interfaces 2019; 11(7): 7357-68.
[http://dx.doi.org/10.1021/acsami.8b18820]
[32]
Cook GE, Bates BD, Tornetta P, et al. Assessment of fracture repair. J Orthop Trauma 2015; 29(Suppl. 12): S57-61.
[http://dx.doi.org/10.1097/BOT.0000000000000470] [PMID: 26584269]
[33]
Bell A, Templeman D, Weinlein JC. Nonunion of the femur and tibia: An update. Orthop Clin North Am 2016; 47(2): 365-75.
[http://dx.doi.org/10.1016/j.ocl.2015.09.010] [PMID: 26772945]
[34]
Yue B, Ng A, Tang H, Joseph S, Richardson M. Delayed healing of lower limb fractures with bisphosphonate therapy. Ann R Coll Surg Engl 2015; 97(5): 333-8.
[http://dx.doi.org/10.1308/003588415X14181254789321]
[35]
Allsopp BJ, Hunter-Smith DJ, Rozen WM. Vascularized versus nonvascularized bone grafts: What is the evidence? Clin Orthop Relat Res 2016; 474(5): 1319-27.
[http://dx.doi.org/10.1007/s11999-016-4769-4] [PMID: 26932740]
[36]
van Griensven M. Preclinical testing of drug delivery systems to bone. Adv Drug Deliv Rev 2015; 94: 151-64.
[http://dx.doi.org/10.1016/j.addr.2015.07.006] [PMID: 26212157]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy