Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Acute Rejection Following Kidney Transplantation: State-of-the-Art and Future Perspectives

Author(s): Emilio Rodrigo*, Marcio F. Chedid, David San Segundo, Juan C.R. San Millán and Marcos López-Hoyos

Volume 26, Issue 28, 2020

Page: [3468 - 3496] Pages: 29

DOI: 10.2174/1381612826666200610184433

Price: $65

Abstract

Although acute renal graft rejection rate has declined in the last years, and because an adequate therapy can improve graft outcome, its therapy remains as one of the most significant challenges for pharmacists and physicians taking care of transplant patients. Due to the lack of evidence highlighted by the available metaanalyses, we performed a narrative review focused on the basic mechanisms and current and future therapies of acute rejection in kidney transplantation.

According to Kidney Disease/Improving Global Outcomes (KDIGO) guidelines, both clinical and subclinical acute rejection episodes should be treated. Usually, high dose steroids and basal immunosuppression optimization are the first line of therapy in treating acute cellular rejection. Rabbit antithymocytic polyclonal globulins are used as rescue therapy for recurrent or steroid-resistant cellular rejection episodes. Current standard-of-care (SOC) therapy for acute antibody-mediated rejection (AbMR) is the combination of plasma exchange with intravenous immunoglobulin (IVIG). Since a significant rate of AbMR does not respond to SOC, different studies have analyzed the role of new drugs such as Rituximab, Bortezomib, Eculizumab and C1 inhibitors. Lack of randomized controlled trials and heterogenicity among performed studies limit obtaining definite conclusions. Data about new direct and indirect B cell and plasma cell depleting agents, proximal and terminal complement blockers, IL-6/IL-6R pathway inhibitors and antibody removal agents, among other promising drugs, are reviewed.

Keywords: Acute cellular rejection, antibody mediated rejection, graft outcome, graft survival, intravenous immunoglobulin, plasmapheresis, rATG.

[1]
Cecka JM, Terasaki PI. Early rejection episodes Clinical Transplants. Los Angeles: UCLA Tissue Typing Laboratory 1989; p. 425.
[2]
Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant 2011; 11(3): 450-62.
[http://dx.doi.org/10.1111/j.1600-6143.2010.03283.x] [PMID: 20973913]
[3]
Hart A, Smith JM, Skeans MA, et al. OPTN/SRTR 2016 Annual data report: Kidney. Am J Transplant 2018; 18(Suppl. 1): 18-113.
[http://dx.doi.org/10.1111/ajt.14557] [PMID: 29292608]
[4]
Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 2009; 9(Suppl. 3): S1-S155.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02834.x]
[5]
Tesi RJ, Elkhammas EA, Henry ML, Davies EA, Salazar A, Ferguson RM. Acute rejection episodes: best predictor of long-term primary cadaveric renal transplant survival. Transplant Proc 1993; 25(1 Pt 2): 901-2.
[PMID: 8442261]
[6]
El Ters M, Grande JP, Keddis MT, et al. Kidney allograft survival after acute rejection, the value of follow-up biopsies. Am J Transplant 2013; 13(9): 2334-41.
[http://dx.doi.org/10.1111/ajt.12370] [PMID: 23865852]
[7]
Orandi BJ, Chow EH, Hsu A, et al. Quantifying renal allograft loss following early antibody-mediated rejection. Am J Transplant 2015; 15(2): 489-98.
[http://dx.doi.org/10.1111/ajt.12982] [PMID: 25611786]
[8]
Meier-Kriesche HU, Schold JD, Kaplan B. Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am J Transplant 2004; 4(8): 1289-95.
[http://dx.doi.org/10.1111/j.1600-6143.2004.00515.x] [PMID: 15268730]
[9]
Vereerstraeten P, Abramowicz D, de Pauw L, Kinnaert P. Absence of deleterious effect on long-term kidney graft survival of rejection episodes with complete functional recovery. Transplantation 1997; 63(12): 1739-43.
[http://dx.doi.org/10.1097/00007890-199706270-00006] [PMID: 9210497]
[10]
Shishido S, Asanuma H, Nakai H, et al. The impact of repeated subclinical acute rejection on the progression of chronic allograft nephropathy. J Am Soc Nephrol 2003; 14(4): 1046-52.
[http://dx.doi.org/10.1097/01.ASN.0000056189.02819.32] [PMID: 12660340]
[11]
Rodrigo E, Segundo DS, Fernández-Fresnedo G, et al. Within-patient variability in tacrolimus blood levels predicts kidney Graft loss and donor-specific antibody development. Transplantation 2016; 100(11): 2479-85.
[http://dx.doi.org/10.1097/TP.0000000000001040] [PMID: 26703349]
[12]
Casadei DH, del C Rial M, Opelz G, et al. A randomized and prospective study comparing treatment with high-dose intravenous immunoglobulin with monoclonal antibodies for rescue of kidney grafts with steroid-resistant rejection. Transplantation 2001; 71(1): 53-8.
[http://dx.doi.org/10.1097/00007890-200101150-00009] [PMID: 11211195]
[13]
Crespo M, Pascual M, Tolkoff-Rubin N, et al. Acute humoral rejection in renal allograft recipients: I. Incidence, serology and clinical characteristics. Transplantation 2001; 71(5): 652-8.
[http://dx.doi.org/10.1097/00007890-200103150-00013] [PMID: 11292296]
[14]
Racusen LC, Halloran PF, Solez K. Banff 2003 meeting report: new diagnostic insights and standards. Am J Transplant 2004; 4(10): 1562-6.
[http://dx.doi.org/10.1111/j.1600-6143.2004.00585.x] [PMID: 15367210]
[15]
Djamali A, Kaufman DB, Ellis TM, Zhong W, Matas A, Samaniego M. Diagnosis and management of antibody-mediated rejection: current status and novel approaches. Am J Transplant 2014; 14(2): 255-71.
[http://dx.doi.org/10.1111/ajt.12589] [PMID: 24401076]
[16]
Rodríguez Castellanos FE, Domínguez Quintana F, Soto Abraham V, Mancilla Urrea E. Classification of acute rejection episodes in kidney transplantation: a proposal based on factor analysis. Iran J Kidney Dis 2018; 12(2): 123-31.
[PMID: 29507276]
[17]
Nickeleit V, Andreoni K. The classification and treatment of antibody-mediated renal allograft injury: where do we stand? Kidney Int 2007; 71(1): 7-11.
[http://dx.doi.org/10.1038/sj.ki.5002003] [PMID: 17167504]
[18]
Sellarés J, de Freitas DG, Mengel M, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody mediated rejection and nonadherence. Am J Transplant 2012; 12(2): 388-99.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03840.x] [PMID: 22081892]
[19]
Loupy A, Suberbielle-Boissel C, Hill GS, et al. Outcome of subclinical antibody-mediated rejection in kidney transplant recipients with preformed donor-specific antibodies. Am J Transplant 2009; 9(11): 2561-70.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02813.x] [PMID: 19775320]
[20]
Mengel M, Bogers J, Bosmans JL, et al. ESPRIT group. Incidence of C4d stain in protocol biopsies from renal allografts: results from a multicenter trial. Am J Transplant 2005; 5(5): 1050-6.
[http://dx.doi.org/10.1111/j.1600-6143.2005.00788.x] [PMID: 15816885]
[21]
Colvin RB, Smith RN. Antibody-mediated organ-allograft rejection. Nat Rev Immunol 2005; 5(10): 807-17.
[http://dx.doi.org/10.1038/nri1702] [PMID: 16175181]
[22]
Haas M, Rahman MH, Racusen LC, et al. C4d and C3d staining in biopsies of ABO- and HLA-incompatible renal allografts: correlation with histologic findings. Am J Transplant 2006; 6(8): 1829-40.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01356.x] [PMID: 16889542]
[23]
Gloor JM, Sethi S, Stegall MD, et al. Transplant glomerulopathy: subclinical incidence and association with alloantibody. Am J Transplant 2007; 7(9): 2124-32.
[http://dx.doi.org/10.1111/j.1600-6143.2007.01895.x] [PMID: 17608832]
[24]
Montgomery RA, Loupy A, Segev DL. Antibody-mediated rejection: New approaches in prevention and management. Am J Transplant 2018; 18(Suppl. 3): 3-17.
[http://dx.doi.org/10.1111/ajt.14584] [PMID: 29292861]
[25]
Roberts DM, Jiang SH, Chadban SJ. The treatment of acute antibody-mediated rejection in kidney transplant recipients-a systematic review. Transplantation 2012; 94(8): 775-83.
[http://dx.doi.org/10.1097/TP.0b013e31825d1587] [PMID: 23032865]
[26]
Wan SS, Ying TD, Wyburn K, Roberts DM, Wyld M, Chadban SJ. The treatment of antibody-mediated rejection in kidney transplantation: an updated systematic review and meta-analysis. Transplantation 2018; 102(4): 557-68.
[http://dx.doi.org/10.1097/TP.0000000000002049] [PMID: 29315141]
[27]
Hychko G, Mirhosseini A, Parhizgar A, Ghahramani N. A Systematic review and meta-analysis of rituximab in antibody-mediated renal allograft rejection. Int J Organ Transplant Med 2011; 2(2): 51-6.
[PMID: 25013595]
[28]
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol 2016; 16(6): 341-52.
[http://dx.doi.org/10.1038/nri.2016.42] [PMID: 27231050]
[29]
Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol 2008; 8(4): 279-89.
[http://dx.doi.org/10.1038/nri2215] [PMID: 18340345]
[30]
Wyburn KR, Jose MD, Wu H, Atkins RC, Chadban SJ. The role of macrophages in allograft rejection. Transplantation 2005; 80(12): 1641-7.
[http://dx.doi.org/10.1097/01.tp.0000173903.26886.20] [PMID: 16378052]
[31]
Siedlecki A, Irish W, Brennan DC. Delayed graft function in the kidney transplant. Am J Transplant 2011; 11(11): 2279-96.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03754.x] [PMID: 21929642]
[32]
Zachary AA, Leffell MS. HLA Mismatching strategies for solid organ transplantation - a balancing act. Front Immunol 2016; 7: 575.
[http://dx.doi.org/10.3389/fimmu.2016.00575] [PMID: 28003816]
[33]
Ali JM, Bolton EM, Bradley JA, Pettigrew GJ. Allorecognition pathways in transplant rejection and tolerance. Transplantation 2013; 96(8): 681-8.
[http://dx.doi.org/10.1097/TP.0b013e31829853ce] [PMID: 23715047]
[34]
Stegall MD, Diwan T, Raghavaiah S, et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant 2011; 11(11): 2405-13.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03757.x] [PMID: 21942930]
[35]
Bamoulid J, Staeck O, Halleck F, et al. Advances in pharmacotherapy to treat kidney transplant rejection. Expert Opin Pharmacother 2015; 16(11): 1627-48.
[http://dx.doi.org/10.1517/14656566.2015.1056734] [PMID: 26159444]
[36]
Leblanc J, Subrt P, Paré M, et al. Practice patterns in the treatment and monitoring of acute t cell-mediated kidney graft rejection in Canada. Can J Kidney Health Dis 2018; 5, 2054358117753616
[http://dx.doi.org/10.1177/2054358117753616] [PMID: 29479453]
[37]
Gray D, Shepherd H, Daar A, Oliver DO, Morris PJ. Oral versus intravenous high-dose steroid treatment of renal allograft rejection. The big shot or not? Lancet 1978; 1(8056): 117-8.
[http://dx.doi.org/10.1016/S0140-6736(78)90417-8] [PMID: 87551]
[38]
Lamarche C, Côté JM, Sénécal L, Cardinal H. Efficacy of acute cellular rejection treatment according to Banff score in kidney transplant recipients: a systematic review. Transplant Direct 2016; 2(12) e115
[http://dx.doi.org/10.1097/TXD.0000000000000626] [PMID: 27990480]
[39]
Webster AC, Wu S, Tallapragada K, Park MY, Chapman JR, Carr SJ. Polyclonal and monoclonal antibodies for treating acute rejection episodes in kidney transplant recipients. Cochrane Database Syst Rev 2017; 7(7) CD004756
[http://dx.doi.org/10.1002/14651858.CD004756.pub4] [PMID: 28731207]
[40]
Meier-Kriesche HU, Arndorfer JA, Kaplan B. Association of antibody induction with short- and long-term cause-specific mortality in renal transplant recipients. J Am Soc Nephrol 2002; 13(3): 769-72.
[PMID: 11856783]
[41]
Bock HA. Steroid-resistant kidney transplant rejection: diagnosis and treatment. J Am Soc Nephrol 2001; 12(Suppl. 17): S48-52.
[PMID: 11251032]
[42]
Yeung MY, Gabardi S, Sayegh MH. Use of polyclonal/monoclonal antibody therapies in transplantation. Expert Opin Biol Ther 2017; 17(3): 339-52.
[http://dx.doi.org/10.1080/14712598.2017.1283400] [PMID: 28092486]
[43]
Bamoulid J, Staeck O, Crépin T, et al. Anti-thymocyte globulins in kidney transplantation: focus on current indications and long-term immunological side effects. Nephrol Dial Transplant 2017; 32(10): 1601-8.
[PMID: 27798202]
[44]
Bamoulid J, Crépin T, Courivaud C, Rebibou JM, Saas P, Ducloux D. Antithymocyte globulins in renal transplantation-from lymphocyte depletion to lymphocyte activation: The doubled-edged sword. Transplant Rev (Orlando) 2017; 31(3): 180-7.
[http://dx.doi.org/10.1016/j.trre.2017.02.004] [PMID: 28456447]
[45]
Thiyagarajan UM, Ponnuswamy A, Bagul A. Thymoglobulin and its use in renal transplantation: a review. Am J Nephrol 2013; 37(6): 586-601.
[http://dx.doi.org/10.1159/000351643] [PMID: 23774740]
[46]
van den Hoogen MW, Hoitsma AJ, Hilbrands LB. Anti-T-cell antibodies for the treatment of acute rejection after renal transplantation. Expert Opin Biol Ther 2012; 12(8): 1031-42.
[http://dx.doi.org/10.1517/14712598.2012.689278] [PMID: 22583145]
[47]
Popow I, Leitner J, Majdic O, et al. Assessment of batch to batch variation in polyclonal antithymocyte globulin preparations. Transplantation 2012; 93(1): 32-40.
[http://dx.doi.org/10.1097/TP.0b013e31823bb664] [PMID: 22186936]
[48]
Lopez M, Clarkson MR, Albin M, Sayegh MH, Najafian N. A novel mechanism of action for anti-thymocyte globulin: induction of CD4+CD25+Foxp3+ regulatory T cells. J Am Soc Nephrol 2006; 17(10): 2844-53.
[http://dx.doi.org/10.1681/ASN.2006050422] [PMID: 16914538]
[49]
Shiheido H, Chen C, Hikida M, Watanabe T, Shimizu J. Modulation of the human T cell response by a novel non-mitogenic anti-CD3 antibody. PLoS One 2014; 9(4) e94324
[http://dx.doi.org/10.1371/journal.pone.0094324] [PMID: 24710513]
[50]
Csapo Z, Benavides-Viveros C, Podder H, Pollard V, Kahan BD. Campath-1H as rescue therapy for the treatment of acute rejection in kidney transplant patients. Transplant Proc 2005; 37(5): 2032-6.
[http://dx.doi.org/10.1016/j.transproceed.2005.03.042] [PMID: 15964331]
[51]
Basu A, Ramkumar M, Tan HP, et al. Reversal of acute cellular rejection after renal transplantation with Campath-1H. Transplant Proc 2005; 37(2): 923-6.
[http://dx.doi.org/10.1016/j.transproceed.2004.12.019] [PMID: 15848576]
[52]
Friend PJ, Rebello P, Oliveira D, et al. Successful treatment of renal allograft rejection with a humanized antilymphocyte monoclonal antibody. Transplant Proc 1995; 27(1): 869-70.
[PMID: 7879212]
[53]
Clatworthy MR, Friend PJ, Calne RY, et al. Alemtuzumab (CAMPATH-1H) for the treatment of acute rejection in kidney transplant recipients: long-term follow-up. Transplantation 2009; 87(7): 1092-5.
[http://dx.doi.org/10.1097/TP.0b013e31819d3353] [PMID: 19352132]
[54]
Kainz A, Korbély R, Soleiman A, Mayer B, Oberbauer R. Antithymocyte globulin use for treatment of biopsy confirmed acute rejection is associated with prolonged renal allograft survival. Transpl Int 2010; 23(1): 64-70.
[http://dx.doi.org/10.1111/j.1432-2277.2009.00950.x] [PMID: 19719467]
[55]
Gaber AO, First MR, Tesi RJ, et al. Results of the double-blind, randomized, multicenter, phase III clinical trial of Thymoglobulin versus Atgam in the treatment of acute graft rejection episodes after renal transplantation. Transplantation 1998; 66(1): 29-37.
[http://dx.doi.org/10.1097/00007890-199807150-00005] [PMID: 9679818]
[56]
Gaber LW, Moore LW, Gaber AO, Tesi RJ, Meyer J, Schroeder TJ. Correlation of histology to clinical rejection reversal: a thymoglobulin multicenter trial report. Kidney Int 1999; 55(6): 2415-22.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00494.x] [PMID: 10354290]
[57]
Hardinger KL, Rhee S, Buchanan P, et al. A prospective, randomized, double-blinded comparison of thymoglobulin versus Atgam for induction immunosuppressive therapy: 10-year results. Transplantation 2008; 86(7): 947-52.
[http://dx.doi.org/10.1097/TP.0b013e318187bc67] [PMID: 18852661]
[58]
Chen GD, Lai XQ, Ko DS, et al. Comparison of efficacy and safety between rabbit anti-thymocyte globulin and anti-T lymphocyte globulin in kidney transplantation from donation after cardiac death: a retrospective cohort study. Nephrology (Carlton) 2015; 20(8): 539-43.
[http://dx.doi.org/10.1111/nep.12469] [PMID: 25808082]
[59]
Hertig A, Zuckermann A. Rabbit antithymocyte globulin induction and risk of post-transplant lymphoproliferative disease in adult and pediatric solid organ transplantation: An update. Transpl Immunol 2015; 32(3): 179-87.
[http://dx.doi.org/10.1016/j.trim.2015.04.003] [PMID: 25936966]
[60]
Clesca P, Dirlando M, Park SI, et al. Thymoglobulin and rate of infectious complications after transplantation. Transplant Proc 2007; 39(2): 463-4.
[http://dx.doi.org/10.1016/j.transproceed.2007.01.024] [PMID: 17362760]
[61]
Ducloux D, Courivaud C, Bamoulid J, et al. Prolonged CD4 T cell lymphopenia increases morbidity and mortality after renal transplantation. J Am Soc Nephrol 2010; 21(5): 868-75.
[http://dx.doi.org/10.1681/ASN.2009090976] [PMID: 20203160]
[62]
Ducloux D, Courivaud C, Bamoulid J, et al. Polyclonal antithymocyte globulin and cardiovascular disease in kidney transplant recipients. J Am Soc Nephrol 2014; 25(6): 1349-56.
[http://dx.doi.org/10.1681/ASN.2013060663] [PMID: 24511120]
[63]
Couvrat-Desvergnes G, Salama A, Le Berre L, et al. Rabbit antithymocyte globulin-induced serum sickness disease and human kidney graft survival. J Clin Invest 2015; 125(12): 4655-65.
[http://dx.doi.org/10.1172/JCI82267] [PMID: 26551683]
[64]
Flechner SM, Mulgoankar S, Melton LB, et al. First-in-human study of the safety and efficacy of TOL101 induction to prevent kidney transplant rejection. Am J Transplant 2014; 14(6): 1346-55.
[http://dx.doi.org/10.1111/ajt.12698] [PMID: 24751150]
[65]
Mycophenolate Mofetil Acute Renal Rejection Study Group. Mycophenolate mofetil for the treatment of a first acute renal allograft rejection: three-year follow-up. Transplantation 2001; 71(8): 1091-7.
[http://dx.doi.org/10.1097/00007890-200104270-00014] [PMID: 11374408]
[66]
Kahu J, Lõhmus A, Ilmoja M, Kirsimägi U, Timberg G, Peetsalu A. Successful rescue therapy with mycophenolate mofetil in kidney transplantation improves the long-term graft survival. Medicina (Kaunas) 2007; 43(12): 953-8.
[http://dx.doi.org/10.3390/medicina43120124] [PMID: 18182839]
[67]
Tomlanovich SJ. Mycophenolate Mofetil Renal Refractory Rejection Study Group. Rescue therapy with mycophenolate mofetil. Transplant Proc 1996; 28(6)(Suppl. 1): 34-6.
[PMID: 8962412]
[68]
Jordan ML, Naraghi R, Shapiro R, et al. Tacrolimus rescue therapy for renal allograft rejection--five-year experience. Transplantation 1997; 63(2): 223-8.
[http://dx.doi.org/10.1097/00007890-199701270-00008] [PMID: 9020321]
[69]
Budde K, Smettan S, Fritsche L, Waiser J, Neumayer HH. Five year outcome of tacrolimus rescue therapy in late rejection after renal transplantation. Transplant Proc 2002; 34(5): 1594-6.
[http://dx.doi.org/10.1016/S0041-1345(02)03036-1] [PMID: 12176499]
[70]
Moreso F, Ibernon M, Gomà M, et al. Subclinical rejection associated with chronic allograft nephropathy in protocol biopsies as a risk factor for late graft loss. Am J Transplant 2006; 6(4): 747-52.
[http://dx.doi.org/10.1111/j.1600-6143.2005.01230.x] [PMID: 16539631]
[71]
Rush D, Nickerson P, Gough J, et al. Beneficial effects of treatment of early subclinical rejection: a randomized study. J Am Soc Nephrol 1998; 9(11): 2129-34.
[PMID: 9808101]
[72]
Rush D, Arlen D, Boucher A, et al. Lack of benefit of early protocol biopsies in renal transplant patients receiving TAC and MMF: a randomized study. Am J Transplant 2007; 7(11): 2538-45.
[http://dx.doi.org/10.1111/j.1600-6143.2007.01979.x] [PMID: 17908280]
[73]
Kurtkoti J, Sakhuja V, Sud K, et al. The utility of 1- and 3-month protocol biopsies on renal allograft function: a randomized controlled study. Am J Transplant 2008; 8(2): 317-23.
[http://dx.doi.org/10.1111/j.1600-6143.2007.02049.x] [PMID: 18093273]
[74]
Pascual M, Saidman S, Tolkoff-Rubin N, et al. Plasma exchange and tacrolimus-mycophenolate rescue for acute humoral rejection in kidney transplantation. Transplantation 1998; 66(11): 1460-4.
[http://dx.doi.org/10.1097/00007890-199812150-00008] [PMID: 9869086]
[75]
Shehata N, Palda VA, Meyer RM, et al. The use of immunoglobulin therapy for patients undergoing solid organ transplantation: an evidence-based practice guideline. Transfus Med Rev 2010; 24(Suppl. 1): S7-S27.
[http://dx.doi.org/10.1016/j.tmrv.2009.09.010] [PMID: 19962580]
[76]
Soulillou JP, Guyot C, Guimbretiere J, et al. Plasma exchange in early kidney graft rejection associated with anti-donor antibodies. Nephron 1983; 35(3): 158-62.
[http://dx.doi.org/10.1159/000183067] [PMID: 6355877]
[77]
Jordan SC, Quartel AW, Czer LS, et al. Posttransplant therapy using high-dose human immunoglobulin (intravenous gammaglobulin) to control acute humoral rejection in renal and cardiac allograft recipients and potential mechanism of action. Transplantation 1998; 66(6): 800-5.
[http://dx.doi.org/10.1097/00007890-199809270-00017] [PMID: 9771846]
[78]
Montgomery RA, Zachary AA, Racusen LC, et al. Plasmapheresis and intravenous immune globulin provides effective rescue therapy for refractory humoral rejection and allows kidneys to be successfully transplanted into cross-match-positive recipients. Transplantation 2000; 70(6): 887-95.
[http://dx.doi.org/10.1097/00007890-200009270-00006] [PMID: 11014642]
[79]
Archdeacon P, Chan M, Neuland C, et al. Summary of FDA antibody-mediated rejection workshop. Am J Transplant 2011; 11(5): 896-906.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03525.x] [PMID: 21521465]
[80]
Dau PC. Immunologic rebound. J Clin Apher 1995; 10(4): 210-7.
[http://dx.doi.org/10.1002/jca.2920100410] [PMID: 8770715]
[81]
Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 2013; 13(3): 176-89.
[http://dx.doi.org/10.1038/nri3401] [PMID: 23411799]
[82]
Tyan DB, Li VA, Czer L, Trento A, Jordan SC. Intravenous immunoglobulin suppression of HLA alloantibody in highly sensitized transplant candidates and transplantation with a histoincompatible organ. Transplantation 1994; 57(4): 553-62.
[http://dx.doi.org/10.1097/00007890-199402270-00014] [PMID: 8116041]
[83]
Glotz D, Haymann JP, Niaudet P, Lang P, Druet P, Bariety J. Successful kidney transplantation of immunized patients after desensitization with normal human polyclonal immunoglobulins. Transplant Proc 1995; 27(1): 1038-9.
[PMID: 7878793]
[84]
Jordan SC, Tyan D, Stablein D, et al. Evaluation of intravenous immunoglobulin as an agent to lower allosensitization and improve transplantation in highly sensitized adult patients with end-stage renal disease: report of the NIH IG02 trial. J Am Soc Nephrol 2004; 15(12): 3256-62.
[http://dx.doi.org/10.1097/01.ASN.0000145878.92906.9F] [PMID: 15579530]
[85]
Vo AA, Lukovsky M, Toyoda M, et al. Rituximab and intravenous immune globulin for desensitization during renal transplantation. N Engl J Med 2008; 359(3): 242-51.
[http://dx.doi.org/10.1056/NEJMoa0707894] [PMID: 18635429]
[86]
Zachary AA, Montgomery RA, Ratner LE, et al. Specific and durable elimination of antibody to donor HLA antigens in renal-transplant patients. Transplantation 2003; 76(10): 1519-25.
[http://dx.doi.org/10.1097/01.TP.0000090868.88895.E0] [PMID: 14657698]
[87]
Vasilescu ER, Ho EK, Colovai AI, et al. Alloantibodies and the outcome of cadaver kidney allografts. Hum Immunol 2006; 67(8): 597-604.
[http://dx.doi.org/10.1016/j.humimm.2006.04.012] [PMID: 16916655]
[88]
Jordan SC, Vo AA, Toyoda M, Tyan D, Nast CC. Post-transplant therapy with high-dose intravenous gammaglobulin: Applications to treatment of antibody-mediated rejection. Pediatr Transplant 2005; 9(2): 155-61.
[http://dx.doi.org/10.1111/j.1399-3046.2005.00256.x] [PMID: 15787786]
[89]
Lehrich RW, Rocha PN, Reinsmoen N, et al. Intravenous immunoglobulin and plasmapheresis in acute humoral rejection: experience in renal allograft transplantation. Hum Immunol 2005; 66(4): 350-8.
[http://dx.doi.org/10.1016/j.humimm.2005.01.028] [PMID: 15866697]
[90]
White NB, Greenstein SM, Cantafio AW, et al. Successful rescue therapy with plasmapheresis and intravenous immunoglobulin for acute humoral renal transplant rejection. Transplantation 2004; 78(5): 772-4.
[http://dx.doi.org/10.1097/01.TP.0000128194.55934.48] [PMID: 15371687]
[91]
Rocha PN, Butterly DW, Greenberg A, et al. Beneficial effect of plasmapheresis and intravenous immunoglobulin on renal allograft survival of patients with acute humoral rejection. Transplantation 2003; 75(9): 1490-5.
[http://dx.doi.org/10.1097/01.TP.0000060252.57111.AC] [PMID: 12792502]
[92]
Lefaucheur C, Nochy D, Andrade J, et al. Comparison of combination Plasmapheresis/IVIg/anti-CD20 versus high-dose IVIg in the treatment of antibody-mediated rejection. Am J Transplant 2009; 9(5): 1099-107.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02591.x] [PMID: 19422335]
[93]
Burton SA, Amir N, Asbury A, Lange A, Hardinger KL. Treatment of antibody-mediated rejection in renal transplant patients: a clinical practice survey. Clin Transplant 2015; 29(2): 118-23.
[http://dx.doi.org/10.1111/ctr.12491] [PMID: 25430052]
[94]
Böhmig GA, Wahrmann M, Regele H, et al. Immunoadsorption in severe C4d-positive acute kidney allograft rejection: a randomized controlled trial. Am J Transplant 2007; 7(1): 117-21.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01613.x] [PMID: 17109725]
[95]
Sandal S, Zand MS. Rational clinical trial design for antibody mediated renal allograft injury. Front Biosci 2015; 20: 743-62.
[http://dx.doi.org/10.2741/4334] [PMID: 25553476]
[96]
Lachmann N, Duerr M, Schönemann C, Pruß A, Budde K, Waiser J. Treatment of antibody-mediated renal allograft rejection: improving step by step. J Immunol Res 2017; 2017, 6872046
[http://dx.doi.org/10.1155/2017/6872046] [PMID: 28255562]
[97]
Schinstock C, Stegall MD. Acute antibody-mediated rejection in renal transplantation: Current Clinical Management. Curr Transplant Rep 2014; 1(2): 78-85.
[http://dx.doi.org/10.1007/s40472-014-0012-y] [PMID: 27656351]
[98]
Zand MS, Vo T, Huggins J, et al. Polyclonal rabbit antithymocyte globulin triggers B-cell and plasma cell apoptosis by multiple pathways. Transplantation 2005; 79(11): 1507-15.
[http://dx.doi.org/10.1097/01.TP.0000164159.20075.16] [PMID: 15940039]
[99]
Clatworthy MR. Targeting B cells and antibody in transplantation. Am J Transplant 2011; 11(7): 1359-67.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03554.x] [PMID: 21668625]
[100]
Bächler K, Amico P, Hönger G, et al. Efficacy of induction therapy with ATG and intravenous immunoglobulins in patients with low-level donor-specific HLA-antibodies. Am J Transplant 2010; 10(5): 1254-62.
[http://dx.doi.org/10.1111/j.1600-6143.2010.03093.x] [PMID: 20353473]
[101]
Shah A, Nadasdy T, Arend L, et al. Treatment of C4d-positive acute humoral rejection with plasmapheresis and rabbit polyclonal antithymocyte globulin. Transplantation 2004; 77(9): 1399-405.
[http://dx.doi.org/10.1097/01.TP.0000122187.76518.BC] [PMID: 15167598]
[102]
Nickeleit V, Zeiler M, Gudat F, Thiel G, Mihatsch MJ. Detection of the complement degradation product C4d in renal allografts: diagnostic and therapeutic implications. J Am Soc Nephrol 2002; 13(1): 242-51.
[PMID: 11752044]
[103]
Vo AA, Cam V, Toyoda M, et al. Safety and adverse events profiles of intravenous gammaglobulin products used for immunomodulation: a single-center experience. Clin J Am Soc Nephrol 2006; 1(4): 844-52.
[http://dx.doi.org/10.2215/CJN.01701105] [PMID: 17699296]
[104]
Loupy A, Vernerey D, Tinel C, et al. Subclinical rejection phenotypes at 1 year post-transplant and outcome of kidney allografts. J Am Soc Nephrol 2015; 26(7): 1721-31.
[http://dx.doi.org/10.1681/ASN.2014040399] [PMID: 25556173]
[105]
Stegall MD, Dean PG, Gloor J. Mechanisms of alloantibody production in sensitized renal allograft recipients. Am J Transplant 2009; 9(5): 998-1005.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02612.x] [PMID: 19422329]
[106]
Macklin PS, Morris PJ, Knight SR. A systematic review of the use of rituximab for the treatment of antibody-mediated renal transplant rejection. Transplant Rev (Orlando) 2017; 31(2): 87-95.
[http://dx.doi.org/10.1016/j.trre.2017.01.002] [PMID: 28187998]
[107]
Marinaki S, Skalioti C, Boletis JN. B cell depletion: rituximab in glomerular disease and transplantation. Nephron Extra 2013; 3(1): 125-30.
[http://dx.doi.org/10.1159/000356050] [PMID: 24550930]
[108]
Aranda JM Jr, Scornik JC, Normann SJ, et al. Anti-CD20 monoclonal antibody (rituximab) therapy for acute cardiac humoral rejection: a case report. Transplantation 2002; 73(6): 907-10.
[http://dx.doi.org/10.1097/00007890-200203270-00013] [PMID: 11923690]
[109]
Becker YT, Becker BN, Pirsch JD, Sollinger HW. Rituximab as treatment for refractory kidney transplant rejection. Am J Transplant 2004; 4(6): 996-1001.
[http://dx.doi.org/10.1111/j.1600-6143.2004.00454.x] [PMID: 15147435]
[110]
Schiffer L, Schiffer M, Merkel S, et al. Rationale and design of the RIACT-study: a multi-center placebo controlled double blind study to test the efficacy of RItuximab in Acute Cellular tubulointerstitial rejection with B-cell infiltrates in renal Transplant patients: study protocol for a randomized controlled trial. Trials 2012; 13: 199.
[http://dx.doi.org/10.1186/1745-6215-13-199] [PMID: 23101480]
[111]
Zarkhin V, Li L, Kambham N, Sigdel T, Salvatierra O, Sarwal MM. A randomized, prospective trial of rituximab for acute rejection in pediatric renal transplantation. Am J Transplant 2008; 8(12): 2607-17.
[http://dx.doi.org/10.1111/j.1600-6143.2008.02411.x] [PMID: 18808404]
[112]
van de Veerdonk FL, Lauwerys B, Marijnissen RJ, et al. The anti-CD20 antibody rituximab reduces the Th17 cell response. Arthritis Rheum 2011; 63(6): 1507-16.
[http://dx.doi.org/10.1002/art.30314] [PMID: 21400475]
[113]
Chung BH, Oh HJ, Piao SG, et al. Clinical significance of the ratio between FOXP3 positive regulatory T cell and interleukin-17 secreting cell in renal allograft biopsies with acute T-cell-mediated rejection. Immunology 2012; 136(3): 344-51.
[http://dx.doi.org/10.1111/j.1365-2567.2012.03588.x] [PMID: 22444300]
[114]
Vo AA, Peng A, Toyoda M, et al. Use of intravenous immune globulin and rituximab for desensitization of highly HLA-sensitized patients awaiting kidney transplantation. Transplantation 2010; 89(9): 1095-102.
[http://dx.doi.org/10.1097/TP.0b013e3181d21e7f] [PMID: 20110854]
[115]
Vo AA, Choi J, Cisneros K, et al. Benefits of rituximab combined with intravenous immunoglobulin for desensitization in kidney transplant recipients. Transplantation 2014; 98(3): 312-9.
[http://dx.doi.org/10.1097/TP.0000000000000064] [PMID: 24770617]
[116]
Kohei N, Hirai T, Omoto K, Ishida H, Tanabe K. Chronic antibody mediated rejection is reduced by targeting B-cell immunity during an introductory period. Am J Transplant 2012; 12(2): 469-76.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03830.x] [PMID: 22054413]
[117]
Jackson AM, Kraus ES, Orandi BJ, Segev DL, Montgomery RA, Zachary AA. A closer look at rituximab induction on HLA antibody rebound following HLA-incompatible kidney transplantation. Kidney Int 2015; 87(2): 409-16.
[http://dx.doi.org/10.1038/ki.2014.261] [PMID: 25054778]
[118]
Budde K, Dürr M. Any progress in the treatment of antibody-mediated rejection? J Am Soc Nephrol 2018; 29(2): 350-2.
[http://dx.doi.org/10.1681/ASN.2017121296] [PMID: 29371423]
[119]
Viglietti D, Loupy A, Aubert O, et al. Dynamic prognostic score to predict kidney allograft survival in patients with antibody-mediated rejection. J Am Soc Nephrol 2018; 29(2): 606-19.
[http://dx.doi.org/10.1681/ASN.2017070749] [PMID: 29255058]
[120]
Sautenet B, Blancho G, Büchler M, et al. One-year results of the effects of rituximab on acute antibody-mediated rejection in renal transplantation: RITUX ERAH, a multicenter double-blind randomized placebo-controlled trial. Transplantation 2016; 100(2): 391-9.
[http://dx.doi.org/10.1097/TP.0000000000000958] [PMID: 26555944]
[121]
Bailly E, Blancho G, Ville S, et al. Five-year outcomes after randomized treatment by rituximab in early acute antibody-mediated rejection in renal transplantation: long term outcomes of the RITUX ERAH study. Am J Transplant 2017; 17(suppl 3).
[122]
Piñeiro G, Rovira J, De Sousa-Amorim E, et al. Treatment of active chronic antibody-mediated rejection with rituximab, ivig and plasma exchange Am J Transplant 2017; 17(suppl 3)
[123]
Immenschuh S, Zilian E, Dämmrich ME, et al. Indicators of treatment responsiveness to rituximab and plasmapheresis in antibody mediated rejection after kidney transplantation. Transplantation 2015; 99(1): 56-62.
[http://dx.doi.org/10.1097/TP.0000000000000244] [PMID: 25121474]
[124]
Toyoda M, Thomas D, Ahn G, et al. JC polyomavirus viremia and progressive multifocal leukoencephalopathy in human leukocyte antigen-sensitized kidney transplant recipients desensitized with intravenous immunoglobulin and rituximab. Transpl Infect Dis 2015; 17(6): 838-47.
[http://dx.doi.org/10.1111/tid.12465] [PMID: 26437369]
[125]
Shelton E, Yong M, Cohney S. Late onset Pneumocystis pneumonia in patients receiving rituximab for humoral renal transplant rejection. Nephrology (Carlton) 2009; 14(7): 696-9.
[http://dx.doi.org/10.1111/j.1440-1797.2009.01168.x] [PMID: 19796030]
[126]
Kumar D, Gourishankar S, Mueller T, et al. Pneumocystis jirovecii pneumonia after rituximab therapy for antibody-mediated rejection in a renal transplant recipient. Transpl Infect Dis 2009; 11(2): 167-70.
[http://dx.doi.org/10.1111/j.1399-3062.2008.00345.x] [PMID: 18803617]
[127]
Cai J, Qing X, Tan J, Terasaki PI. Humoral theory of transplantation: some hot topics. Br Med Bull 2013; 105: 139-55.
[http://dx.doi.org/10.1093/bmb/lds037] [PMID: 23396319]
[128]
Singh V, Gupta D, Almasan A. Development of novel anti-Cd20 monoclonal antibodies and modulation in Cd20 levels on cell surface: looking to improve immunotherapy response. J Cancer Sci Ther 2015; 7(11): 347-58.
[http://dx.doi.org/10.4172/1948-5956.1000373] [PMID: 27413424]
[129]
OʼLeary JG, Samaniego M, Barrio MC, et al. The influence of immunosuppressive agents on the risk of de novo donor-specific hla antibody production in solid organ transplant recipients. Transplantation 2016; 100(1): 39-53.
[http://dx.doi.org/10.1097/TP.0000000000000869] [PMID: 26680372]
[130]
Mancianti N, Monaci G, Rollo F, et al. First case report of using Ofatumumab in kidney transplantation AB0 incompatible. G Ital Nefrol 2017; 34: 34.
[PMID: 29207227]
[131]
Bernard J, Bruel A, Allain-Launay E, Dantal J, Roussey G. Ofatumumab in post-transplantation recurrence of a pediatric steroid-resistant idiopathic nephrotic syndrome. Pediatr Transplant 2018; 22(4) e13175
[http://dx.doi.org/10.1111/petr.13175] [PMID: 29569812]
[132]
Mössner E, Brünker P, Moser S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 2010; 115(22): 4393-402.
[http://dx.doi.org/10.1182/blood-2009-06-225979] [PMID: 20194898]
[133]
Reddy V, Klein C, Isenberg DA, et al. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology (Oxford) 2017; 56(7): 1227-37.
[http://dx.doi.org/10.1093/rheumatology/kex067] [PMID: 28407142]
[134]
Redfield R, Jordan S, Schindler T, et al. Emerging safety and tolerability of Obinutuzumab, a type 2 anti-CD20 monoclonal antibody for the desensitization of renal transplant candidates Am J Transplant 2017; 17(suppl 3).
[135]
Choi J, Vo A, Huang E, et al. Experience with Obinutuzumab (type II Anti-CD20) in kidney transplant patients with donor specific Antibody (DSA+) antibody mediated rejection Am J Transplant 2017; 17(suppl 3).
[136]
DiLillo DJ, Griffiths R, Seshan SV, et al. B lymphocytes differentially influence acute and chronic allograft rejection in mice. J Immunol 2011; 186(4): 2643-54.
[http://dx.doi.org/10.4049/jimmunol.1002983] [PMID: 21248259]
[137]
Kwun J, Page E, Hong JJ, et al. Neutralizing BAFF/APRIL with atacicept prevents early DSA formation and AMR development in T cell depletion induced nonhuman primate AMR model. Am J Transplant 2015; 15(3): 815-22.
[http://dx.doi.org/10.1111/ajt.13045] [PMID: 25675879]
[138]
Sango C, Merino D, San Segundo D, et al. B-cell-activating factor levels are associated with antibody-mediated histological damage in kidney transplantation. Transplant Proc 2016; 48(9): 2910-2.
[http://dx.doi.org/10.1016/j.transproceed.2016.09.019] [PMID: 27932105]
[139]
Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann Rheum Dis 2003; 62(2): 168-71.
[http://dx.doi.org/10.1136/ard.62.2.168] [PMID: 12525388]
[140]
Snanoudj R, Candon S, Roelen DL, et al. Peripheral B-cell phenotype and BAFF levels are associated with HLA immunization in patients awaiting kidney transplantation. Transplantation 2014; 97(9): 917-24.
[http://dx.doi.org/10.1097/01.TP.0000438211.34842.5e] [PMID: 24827764]
[141]
Schrezenmeier E, Jayne D, Dörner T, Targeting B, Targeting B. Cells and Plasma Cells in Glomerular Diseases: Translational Perspectives. J Am Soc Nephrol 2018; 29(3): 741-58.
[http://dx.doi.org/10.1681/ASN.2017040367] [PMID: 29326157]
[142]
Banham GD, Flint SM, Torpey N, et al. Belimumab in kidney transplantation: an experimental medicine, randomised, placebo-controlled phase 2 trial. Lancet 2018; 391(10140): 2619-30. Epub ahead of print
[http://dx.doi.org/10.1016/S0140-6736(18)30984-X] [PMID: 29910042]
[143]
Leca N, Muczynski K. Belimumab (Anti-BAFF/BLyS) Effective in a case of resistant antibody mediated rejection Am J Transplant 2013; 13(suppl 5).
[144]
Merrill JT, Wallace DJ, Wax S, et al. ADDRESS II Investigators. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol 2018; 70(2): 266-76.
[http://dx.doi.org/10.1002/art.40360] [PMID: 29073347]
[145]
Genovese MC, Lee E, Satterwhite J, et al. A phase 2 dose-ranging study of subcutaneous tabalumab for the treatment of patients with active rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis 2013; 72(9): 1453-60.
[http://dx.doi.org/10.1136/annrheumdis-2012-202864] [PMID: 23599435]
[146]
Mujtaba MA, Komocsar WJ, Nantz E, et al. Effect of treatment with tabalumab, a b cell-activating factor inhibitor, on highly sensitized patients with end-stage renal disease awaiting transplantation. Am J Transplant 2016; 16(4): 1266-75.
[http://dx.doi.org/10.1111/ajt.13557] [PMID: 26780484]
[147]
Scheinberg MA, Hislop CM, Martin RS. Blisibimod for treatment of systemic lupus erythematosus: with trials you become wiser. Expert Opin Biol Ther 2016; 16(5): 723-33.
[http://dx.doi.org/10.1517/14712598.2016.1169270] [PMID: 27051973]
[148]
Walsh RC, Alloway RR, Girnita AL, Woodle ES. Proteasome inhibitor-based therapy for antibody-mediated rejection. Kidney Int 2012; 81(11): 1067-74.
[http://dx.doi.org/10.1038/ki.2011.502] [PMID: 22336990]
[149]
Perry DK, Burns JM, Pollinger HS, et al. Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production. Am J Transplant 2009; 9(1): 201-9.
[http://dx.doi.org/10.1111/j.1600-6143.2008.02461.x] [PMID: 18976291]
[150]
Mohty M, Brissot E, Savani BN, Gaugler B. Effects of bortezomib on the immune system: a focus on immune regulation. Biol Blood Marrow Transplant 2013; 19(10): 1416-20.
[http://dx.doi.org/10.1016/j.bbmt.2013.05.011] [PMID: 23707853]
[151]
Neubert K, Meister S, Moser K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 2008; 14(7): 748-55.
[http://dx.doi.org/10.1038/nm1763] [PMID: 18542049]
[152]
Bontscho J, Schreiber A, Manz RA, Schneider W, Luft FC, Kettritz R. Myeloperoxidase-specific plasma cell depletion by bortezomib protects from anti-neutrophil cytoplasmic autoantibodies-induced glomerulonephritis. J Am Soc Nephrol 2011; 22(2): 336-48.
[http://dx.doi.org/10.1681/ASN.2010010034] [PMID: 21233415]
[153]
Requiao-Moura LR, de Sandes-Freitas TV, Marcelo-Gomes G, Rangel EB. Bortezomib in kidney transplant: Current use and perspectives. Curr Drug Metab 2017; 18(12): 1136-46.
[http://dx.doi.org/10.2174/1389200218666171121100716] [PMID: 29165070]
[154]
Mulder A, Heidt S, Vergunst M, Roelen DL, Claas FH. Proteasome inhibition profoundly affects activated human B cells. Transplantation 2013; 95(11): 1331-7.
[http://dx.doi.org/10.1097/TP.0b013e3182911739] [PMID: 23624544]
[155]
Kwun J, Burghuber C, Manook M, et al. Humoral compensation after bortezomib treatment of allosensitized recipients. J Am Soc Nephrol 2017; 28(7): 1991-6.
[http://dx.doi.org/10.1681/ASN.2016070727] [PMID: 28232617]
[156]
Diwan TS, Raghavaiah S, Burns JM, Kremers WK, Gloor JM, Stegall MD. The impact of proteasome inhibition on alloantibody-producing plasma cells in vivo. Transplantation 2011; 91(5): 536-41.
[http://dx.doi.org/10.1097/TP.0b013e3182081333] [PMID: 21283064]
[157]
Raghavan R, Jeroudi A, Achkar K, et al. Bortezomib in kidney transplant desensitization: a case report. Clin Transpl 2009; 339-42.
[PMID: 20524295]
[158]
Kute VB, Vanikar AV, Trivedi HL, et al. Desensitization protocol for highly sensitized renal transplant patients: a single-center experience. Saudi J Kidney Dis Transpl 2011; 22(4): 662-9.
[PMID: 21743208]
[159]
Wong NL, O’Connell P, Chapman JR, et al. Bortezomib in ABO-incompatible kidney transplant desensitization: a case report. Nephrology (Carlton) 2015; 20(Suppl. 1): 22-4.
[http://dx.doi.org/10.1111/nep.12424] [PMID: 25807854]
[160]
Ide K, Tanaka Y, Sasaki Y, et al. A phased desensitization protocol with rituximab and bortezomib for highly sensitized kidney transplant candidates. Transplant Direct 2015; 1(5) e17
[http://dx.doi.org/10.1097/TXD.0000000000000526] [PMID: 27500219]
[161]
Wahrmann M, Haidinger M, Drach J, et al. Proteasome inhibition for recipient desensitization? A report of two sensitized kidney transplant candidates subjected to bortezomib treatment. Clin Transpl 2009; 415-20.
[PMID: 20524307]
[162]
Guthoff M, Schmid-Horch B, Weisel KC, Häring HU, Königsrainer A, Heyne N. Proteasome inhibition by bortezomib: effect on HLA-antibody levels and specificity in sensitized patients awaiting renal allograft transplantation. Transpl Immunol 2012; 26(4): 171-5.
[http://dx.doi.org/10.1016/j.trim.2012.01.002] [PMID: 22326708]
[163]
Sberro-Soussan R, Zuber J, Suberbielle-Boissel C, et al. Bortezomib as the sole post-renal transplantation desensitization agent does not decrease donor-specific anti-HLA antibodies. Am J Transplant 2010; 10(3): 681-6.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02968.x] [PMID: 20121729]
[164]
Aubert O, Suberbielle C, Gauthe R, Francois H, Obada EN, Durrbach A. Effect of a proteasome inhibitor plus steroids on HLA antibodies in sensitized patients awaiting a renal transplant. Transplantation 2014; 97(9): 946-52.
[http://dx.doi.org/10.1097/01.TP.0000438207.42465.40] [PMID: 24759674]
[165]
Woodle ES, Shields AR, Ejaz NS, et al. Prospective iterative trial of proteasome inhibitor-based desensitization. Am J Transplant 2015; 15(1): 101-18.
[http://dx.doi.org/10.1111/ajt.13050] [PMID: 25534446]
[166]
Jeong JC, Jambaldorj E, Kwon HY, et al. Desensitization using bortezomib and high-dose immunoglobulin increases rate of deceased donor kidney transplantation. Medicine (Baltimore) 2016; 95(5) e2635
[http://dx.doi.org/10.1097/MD.0000000000002635] [PMID: 26844479]
[167]
Everly MJ, Everly JJ, Terasaki PI. Role of proteasome inhibition in sensitized transplant candidates. Chin Med J (Engl) 2011; 124(5): 771-4.
[PMID: 21518574]
[168]
Moreno Gonzales MA, Gandhi MJ, Schinstock CA, et al. 32 Doses of bortezomib for desensitization is not well tolerated and is associated with only modest reductions in anti-HLA antibody. Transplantation 2017; 101(6): 1222-7.
[http://dx.doi.org/10.1097/TP.0000000000001330] [PMID: 27379560]
[169]
Kannabhiran D, Everly MJ, Walker-McDermott JK, et al. Changes in IgG subclasses of donor specific anti-HLA antibodies following bortezomib-based therapy for antibody mediated rejection. Clin Transpl 2012; 229-35.
[PMID: 23721027]
[170]
Philogene MC, Sikorski P, Montgomery RA, Leffell MS, Zachary AA. Differential effect of bortezomib on HLA class I and class II antibody. Transplantation 2014; 98(6): 660-5.
[http://dx.doi.org/10.1097/TP.0000000000000132] [PMID: 24798311]
[171]
Trivedi HL, Terasaki PI, Feroz A, et al. Abrogation of anti-HLA antibodies via proteasome inhibition. Transplantation 2009; 87(10): 1555-61.
[http://dx.doi.org/10.1097/TP.0b013e3181a4b91b] [PMID: 19461494]
[172]
Everly MJ, Everly JJ, Susskind B, et al. Proteasome inhibition reduces donor-specific antibody levels. Transplant Proc 2009; 41(1): 105-7.
[http://dx.doi.org/10.1016/j.transproceed.2008.10.073] [PMID: 19249489]
[173]
Hardinger KL, Murillo D. The influence of bortezomib on donor specific antibody reduction in patients with antibody mediated rejection. Clin Transpl 2011; 401-8.
[PMID: 22755438]
[174]
Cicora F, Paz M, Mos F, Roberti J. Use of bortezomib to treat anti-HLA antibodies in renal transplant patients: a single-center experience. Transpl Immunol 2013; 29(1-4): 7-10.
[http://dx.doi.org/10.1016/j.trim.2013.08.003] [PMID: 23994721]
[175]
Lee J, Kim BS, Park Y, et al. The effect of bortezomib on antibody mediated rejection after kidney transplantation. Yonsei Med J 2015; 56(6): 1638-42.
[http://dx.doi.org/10.3349/ymj.2015.56.6.1638] [PMID: 26446648]
[176]
Leyva S, Marino-Vázquez LA, Reyes-Loaeza JA, et al. Bortezomib for antibody mediated rejection treatment: experience at the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán in Mexico City. Clin Transpl 2009; 369-76.
[PMID: 20524300]
[177]
Hamawi K, Heilman RL, Mazur MJ, et al. Use of bortezomib for treatment of antibody medicated rejection in kidney transplant recipients--case report. Clin Transpl 2009; 407-14.
[PMID: 20524306]
[178]
Hardinger KL, Alford K, Murillo D. Bortezomib for acute humoral rejection in two repeat transplant recipients. Clin Transpl 2009; 479-83.
[PMID: 20524319]
[179]
Djamali A, Muth BL, Torrealba J, et al. Bortezomib as a rescue therapy for hyperacute and multi-drug resistant mixed acute rejection after kidney transplantation. Clin Transpl 2009; 485-90.
[PMID: 20524320]
[180]
Lachmann N, Schütz M, Budde K, Schönemann C, Waiser J. Antihumoral rejection therapy by proteasome inhibitor bortezomib: a case series. Clin Transpl 2009; 351-8.
[PMID: 20527073]
[181]
Hardinger KL, Alford K, Murillo D. Bortezomib as rescue therapy for antibody mediated rejection: a single-center experience. Clin Transpl 2010; 429-36.
[PMID: 21696060]
[182]
Walsh RC, Everly JJ, Brailey P, et al. Proteasome inhibitor-based primary therapy for antibody-mediated renal allograft rejection. Transplantation 2010; 89(3): 277-84.
[http://dx.doi.org/10.1097/TP.0b013e3181c6ff8d] [PMID: 20145517]
[183]
Sureshkumar KK, Hussain SM, Marcus RJ, et al. Proteasome inhibition with bortezomib: an effective therapy for severe antibody mediated rejection after renal transplantation. Clin Nephrol 2012; 77(3): 246-53.
[http://dx.doi.org/10.5414/CN107156] [PMID: 22377258]
[184]
Tzvetanov I, Spaggiari M, Joseph J, et al. The use of bortezomib as a rescue treatment for acute antibody-mediated rejection: report of three cases and review of literature. Transplant Proc 2012; 44(10): 2971-5.
[http://dx.doi.org/10.1016/j.transproceed.2012.02.037] [PMID: 23195008]
[185]
Westphal S, Hansson S, Stelin G, Holgersson J, Mjörnstedt L, Friman S. Successful treatment of severe ABO antibody-mediated rejection using bortezomib: a case report. Transplant Proc 2013; 45(3): 1213-5.
[http://dx.doi.org/10.1016/j.transproceed.2012.10.013] [PMID: 23622662]
[186]
Everly MJ, Everly JJ, Susskind B, et al. Bortezomib provides effective therapy for antibody- and cell-mediated acute rejection. Transplantation 2008; 86(12): 1754-61.
[http://dx.doi.org/10.1097/TP.0b013e318190af83] [PMID: 19104417]
[187]
Young J, Vannier A, Bumgardner G, et al. Rapid depletion of circulating dsa and treatment of acute antibody-mediated rejection with the combination of CTLA-4ig/belatacept and bortezomib in mouse and man Am J Transplant 2017; 17(suppl 3).
[188]
Leino A, Lichvar A, Abu-Jawdeh B, et al. Randomized controlled trial of mixed acute rejection therapy in renal allografts: 3 year follow up. Am J Transplant 2016; 16(Suppl. 3): 601.
[189]
Waiser J, Budde K, Schütz M, et al. Comparison between bortezomib and rituximab in the treatment of antibody-mediated renal allograft rejection. Nephrol Dial Transplant 2012; 27(3): 1246-51.
[http://dx.doi.org/10.1093/ndt/gfr465] [PMID: 21852274]
[190]
Lubetzky ML, Walker JK, Matignon M, et al. Evolving therapies for antibody mediated rejection: is bortezomib better than rituximab? J Am Soc Nephrol 2011; 22: 824A-35.
[191]
Macaluso J, Killackey M, Paramesh A, et al. Comparative study of bortezomib therapy for antibody-mediated rejection. Am J Transplant 2011; 11(Suppl. 2): 160.
[192]
Touzot M, Couvrat-Desvergnes G, Castagnet S, et al. Differential modulation of donor-specific antibodies after B-cell depleting therapies to cure chronic antibody mediated rejection. Transplantation 2015; 99(1): 63-8.
[http://dx.doi.org/10.1097/TP.0000000000000285] [PMID: 25029384]
[193]
Flechner SM, Fatica R, Askar M, et al. The role of proteasome inhibition with bortezomib in the treatment of antibody-mediated rejection after kidney-only or kidney-combined organ transplantation. Transplantation 2010; 90(12): 1486-92.
[http://dx.doi.org/10.1097/TP.0b013e3181fdd9b0] [PMID: 21042239]
[194]
Sadaka B, Alloway RR, Shields AR, Schmidt NM, Woodle ES. Proteasome inhibition for antibody-mediated allograft rejection. Semin Hematol 2012; 49(3): 263-9.
[http://dx.doi.org/10.1053/j.seminhematol.2012.04.008] [PMID: 22726550]
[195]
Sadaka B, Ejaz NS, Shields AR, et al. A Banff component scoring based histologic assessment of bortezomib-based antibody mediated rejection therapy. Transplantation 2015; 99(8): 1691-9.
[http://dx.doi.org/10.1097/TP.0000000000000694] [PMID: 25803498]
[196]
Eskandary F, Regele H, Baumann L, et al. A randomized trial of bortezomib in late antibody-mediated kidney transplant rejection. J Am Soc Nephrol 2018; 29(2): 591-605.
[http://dx.doi.org/10.1681/ASN.2017070818] [PMID: 29242250]
[197]
Marfo K, Lu A, Ling M, Akalin E. Desensitization protocols and their outcome. Clin J Am Soc Nephrol 2011; 6(4): 922-36.
[http://dx.doi.org/10.2215/CJN.08140910] [PMID: 21441131]
[198]
Hardinger KL, Brennan DC. Novel immunosuppressive agents in kidney transplantation. World J Transplant 2013; 3(4): 68-77.
[http://dx.doi.org/10.5500/wjt.v3.i4.68] [PMID: 24392311]
[199]
Schmidt N, Alloway RR, Walsh RC, et al. Prospective evaluation of the toxicity profile of proteasome inhibitor-based therapy in renal transplant candidates and recipients. Transplantation 2012; 94(4): 352-61.
[http://dx.doi.org/10.1097/TP.0b013e318257acf6] [PMID: 22836132]
[200]
Ejaz NS, Shields AR, Alloway RR, et al. Randomized controlled pilot study of B cell-targeted induction therapy in HLA sensitized kidney transplant recipients. Am J Transplant 2013; 13(12): 3142-54.
[http://dx.doi.org/10.1111/ajt.12493] [PMID: 24266968]
[201]
Yong K, Gonzalez-McQuire S, Szabo Z, Schoen P, Hajek R. The start of a new wave: Developments in proteasome inhibition in multiple myeloma. Eur J Haematol 2018. Epub ahead of print
[http://dx.doi.org/10.1111/ejh.13071] [PMID: 29603798]
[202]
Ezekian B, Kwun J, Manook M, et al. Dual targeting with carfilzomib and tocilizumab abrogates antibody-mediated rejection and prolongs survival in a highly sensitized rhesus model of kidney transplantation. Am J Transplant 2017; 17(suppl 3)
[203]
Tremblay S, Shields A, Alloway R, et al. A prospective carfilzomib-based desensitization trial: Phase 1 results. Am J Transplant 2016; 16(suppl 3)
[204]
Wanchoo R, Abudayyeh A, Doshi M, et al. Renal toxicities of novel agents used for treatment of multiple myeloma. Clin J Am Soc Nephrol 2017; 12(1): 176-89.
[http://dx.doi.org/10.2215/CJN.06100616] [PMID: 27654928]
[205]
Reese SR, Wilson NA, Huang G, Redfield RR III, Zhong W, Djamali A. Calcineurin inhibitor minimization with ixazomib, an investigational proteasome inhibitor, for the prevention of antibody mediated rejection in a preclinical model. Transplantation 2015; 99(9): 1785-95.
[http://dx.doi.org/10.1097/TP.0000000000000736] [PMID: 25919767]
[206]
Li J, Basler M, Alvarez G, Brunner T, Kirk CJ, Groettrup M. Immunoproteasome inhibition prevents chronic antibody-mediated allograft rejection in renal transplantation. Kidney Int 2018; 93(3): 670-80.
[http://dx.doi.org/10.1016/j.kint.2017.09.023] [PMID: 29229189]
[207]
Assaker J, Murakami N, Eskandari S, et al. Designing novel selective immunoproteasome inhibitors reveals a critical role of the immunoproteasome in protecting antibody secreting B Cells from apoptosis Am J Transplant 2017; 17(suppl 3)
[208]
Ichikawa HT, Conley T, Muchamuel T, et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum 2012; 64(2): 493-503.
[http://dx.doi.org/10.1002/art.33333] [PMID: 21905015]
[209]
Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Stefanidis I. A comparative analysis between proteasome and immunoproteasome inhibition in cellular and humoral alloimmunity. Int Immunopharmacol 2017; 50: 48-54.
[http://dx.doi.org/10.1016/j.intimp.2017.06.009] [PMID: 28628770]
[210]
Han F, Ding C, Zhao Y, Tian P. Significant difference between proteasome and immunoproteasome inhibition in acute kidney injury. Am J Transplant 2017; 17(suppl 3)
[211]
Hiepe F, Radbruch A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat Rev Nephrol 2016; 12(4): 232-40.
[http://dx.doi.org/10.1038/nrneph.2016.20] [PMID: 26923204]
[212]
Wang A, Guilpain P, Chong BF, et al. Dysregulated expression of CXCR4/CXCL12 in subsets of patients with systemic lupus erythematosus. Arthritis Rheum 2010; 62(11): 3436-46.
[http://dx.doi.org/10.1002/art.27685] [PMID: 20722038]
[213]
Woodle E, Tremblay S, Castro-Rojas C, et al. In Vivo Administration of plerixafor and bortezomib results in bone marrow plasma cell mobilization and death while inducing biphasic plasma cell apoptosis in peripheral blood. Am J Transplant 2017; 17(suppl 3).
[214]
Mella A, Messina M, Lavacca A, Biancone L. Complement cascade and kidney transplantation: The rediscovery of an ancient enemy. World J Transplant 2014; 4(3): 168-75.
[http://dx.doi.org/10.5500/wjt.v4.i3.168] [PMID: 25346889]
[215]
Tatapudi VS, Montgomery RA. Pharmacologic complement inhibition in clinical transplantation. Curr Transplant Rep 2017; 4(2): 91-100.
[http://dx.doi.org/10.1007/s40472-017-0148-7] [PMID: 29214126]
[216]
Murata K, Baldwin WM III. Mechanisms of complement activation, C4d deposition, and their contribution to the pathogenesis of antibody-mediated rejection. Transplant Rev (Orlando) 2009; 23(3): 139-50.
[http://dx.doi.org/10.1016/j.trre.2009.02.005] [PMID: 19362461]
[217]
Stites E, Le Quintrec M, Thurman JM. The complement system and antibody-mediated transplant rejection. J Immunol 2015; 195(12): 5525-31.
[http://dx.doi.org/10.4049/jimmunol.1501686] [PMID: 26637661]
[218]
Terasaki PI. Humoral theory of transplantation. Am J Transplant 2003; 3(6): 665-73.
[http://dx.doi.org/10.1034/j.1600-6143.2003.00135.x] [PMID: 12780557]
[219]
Feucht HE, Felber E, Gokel MJ, et al. Vascular deposition of complement-split products in kidney allografts with cell-mediated rejection. Clin Exp Immunol 1991; 86(3): 464-70.
[http://dx.doi.org/10.1111/j.1365-2249.1991.tb02954.x] [PMID: 1747954]
[220]
Feucht HE, Schneeberger H, Hillebrand G, et al. Capillary deposition of C4d complement fragment and early renal graft loss. Kidney Int 1993; 43(6): 1333-8.
[http://dx.doi.org/10.1038/ki.1993.187] [PMID: 8315947]
[221]
Halloran PF, Schlaut J, Solez K, Srinivasa NS. The significance of the anti-class I response. II. Clinical and pathologic features of renal transplants with anti-class I-like antibody. Transplantation 1992; 53(3): 550-5.
[http://dx.doi.org/10.1097/00007890-199203000-00011] [PMID: 1549846]
[222]
Racusen LC, Colvin RB, Solez K, et al. Antibody-mediated rejection criteria - an addition to the Banff 97 classification of renal allograft rejection. Am J Transplant 2003; 3(6): 708-14.
[http://dx.doi.org/10.1034/j.1600-6143.2003.00072.x] [PMID: 12780562]
[223]
Haas M, Sis B, Racusen LC, et al. Banff meeting report writing committee. Banff 2013 meeting report: inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am J Transplant 2014; 14(2): 272-83.
[http://dx.doi.org/10.1111/ajt.12590] [PMID: 24472190]
[224]
Legendre C, Sberro-Soussan R, Zuber J, Frémeaux-Bacchi V. The role of complement inhibition in kidney transplantation. Br Med Bull 2017; 124(1): 5-17.
[http://dx.doi.org/10.1093/bmb/ldx037] [PMID: 29069327]
[225]
Locke JE, Magro CM, Singer AL, et al. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am J Transplant 2009; 9(1): 231-5.
[http://dx.doi.org/10.1111/j.1600-6143.2008.02451.x] [PMID: 18976298]
[226]
González-Roncero F, Suñer M, Bernal G, et al. Eculizumab treatment of acute antibody-mediated rejection in renal transplantation: case reports. Transplant Proc 2012; 44(9): 2690-4.
[http://dx.doi.org/10.1016/j.transproceed.2012.09.038] [PMID: 23146495]
[227]
Noone D, Al-Matrafi J, Tinckam K, et al. Antibody mediated rejection associated with complement factor h-related protein 3/1 deficiency successfully treated with eculizumab. Am J Transplant 2012; 12(9): 2546-53.
[http://dx.doi.org/10.1111/j.1600-6143.2012.04124.x] [PMID: 22681773]
[228]
Stewart ZA, Collins TE, Schlueter AJ, et al. Case report: Eculizumab rescue of severe accelerated antibody-mediated rejection after ABO-incompatible kidney transplant. Transplant Proc 2012; 44(10): 3033-6.
[http://dx.doi.org/10.1016/j.transproceed.2012.03.053] [PMID: 23195021]
[229]
Kocak B, Arpali E, Demiralp E, et al. Eculizumab for salvage treatment of refractory antibody-mediated rejection in kidney transplant patients: case reports. Transplant Proc 2013; 45(3): 1022-5.
[http://dx.doi.org/10.1016/j.transproceed.2013.02.062] [PMID: 23622614]
[230]
Ghirardo G, Benetti E, Poli F, et al. Plasmapheresis-resistant acute humoral rejection successfully treated with anti-C5 antibody. Pediatr Transplant 2014; 18(1): E1-5.
[http://dx.doi.org/10.1111/petr.12187] [PMID: 24266980]
[231]
Chehade H, Rotman S, Matter M, Girardin E, Aubert V, Pascual M. Eculizumab to treat antibody-mediated rejection in a 7-year-old kidney transplant recipient. Pediatrics 2015; 135(2): e551-5.
[http://dx.doi.org/10.1542/peds.2014-2275] [PMID: 25624380]
[232]
Yamamoto T, Watarai Y, Futamura K, et al. Efficacy of eculizumab therapy for atypical hemolytic uremic syndrome recurrence and antibody-mediated rejection progress after renal transplantation with preformed donor-specific antibodies. Case Report Transplant Proc 2017; 49(1): 159-62.
[http://dx.doi.org/10.1016/j.transproceed.2016.10.013] [PMID: 28104125]
[233]
Biglarnia AR, Nilsson B, Nilsson T, et al. Prompt reversal of a severe complement activation by eculizumab in a patient undergoing intentional ABO-incompatible pancreas and kidney transplantation. Transpl Int 2011; 24(8): e61-6.
[http://dx.doi.org/10.1111/j.1432-2277.2011.01290.x] [PMID: 21696455]
[234]
Tran D, Boucher A, Collette S, Payette A, Royal V, Senécal L. Eculizumab for the treatment of severe antibody-mediated rejection: a case report and review of the literature. Case Rep Transplant 2016; 2016, 9874261
[http://dx.doi.org/10.1155/2016/9874261] [PMID: 27478676]
[235]
Khan SA, Al-Riyami D, Al-Mula Abed YW, Mohammed S, Al-Riyami M, Al-Lawati NM. Successful salvage treatment of resistant acute antibody-mediated kidney transplant rejection with eculizumab. Sultan Qaboos Univ Med J 2016; 16(3): e371-4.
[http://dx.doi.org/10.18295/squmj.2016.16.03.020] [PMID: 27606122]
[236]
Burbach M, Suberbielle C, Brochériou I, et al. Report of the inefficacy of eculizumab in two cases of severe antibody-mediated rejection of renal grafts. Transplantation 2014; 98(10): 1056-9.
[http://dx.doi.org/10.1097/TP.0000000000000184] [PMID: 24839895]
[237]
Orandi BJ, Zachary AA, Dagher NN, et al. Eculizumab and splenectomy as salvage therapy for severe antibody-mediated rejection after HLA-incompatible kidney transplantation. Transplantation 2014; 98(8): 857-63.
[http://dx.doi.org/10.1097/TP.0000000000000298] [PMID: 25121475]
[238]
Bentall A, Tyan DB, Sequeira F, et al. Antibody-mediated rejection despite inhibition of terminal complement. Transpl Int 2014; 27(12): 1235-43.
[http://dx.doi.org/10.1111/tri.12396] [PMID: 24990476]
[239]
Cornell LD, Schinstock CA, Gandhi MJ, Kremers WK, Stegall MD. Positive crossmatch kidney transplant recipients treated with eculizumab: outcomes beyond 1 year. Am J Transplant 2015; 15(5): 1293-302.
[http://dx.doi.org/10.1111/ajt.13168] [PMID: 25731800]
[240]
Kulkarni S, Kirkiles-Smith NC, Deng YH, et al. Eculizumab therapy for chronic antibody-mediated injury in kidney transplant recipients: a pilot randomized controlled trial. Am J Transplant 2017; 17(3): 682-91.
[http://dx.doi.org/10.1111/ajt.14001] [PMID: 27501352]
[241]
Wehling C, Amon O, Bommer M, et al. Monitoring of complement activation biomarkers and eculizumab in complement-mediated renal disorders. Clin Exp Immunol 2017; 187(2): 304-15.
[http://dx.doi.org/10.1111/cei.12890] [PMID: 27784126]
[242]
Peffault de Latour R, Fremeaux-Bacchi V, Porcher R, et al. Assessing complement blockade in patients with paroxysmal nocturnal hemoglobinuria receiving eculizumab. Blood 2015; 125(5): 775-83.
[http://dx.doi.org/10.1182/blood-2014-03-560540] [PMID: 25477495]
[243]
Grenda R, Durlik M. Eculizumab in renal transplantation: A 2017 update. Ann Transplant 2017; 22: 550-4.
[http://dx.doi.org/10.12659/AOT.905917] [PMID: 28894081]
[244]
Nishimura J, Yamamoto M, Hayashi S, et al. Genetic variants in C5 and poor response to eculizumab. N Engl J Med 2014; 370(7): 632-9.
[http://dx.doi.org/10.1056/NEJMoa1311084] [PMID: 24521109]
[245]
Lefaucheur C, Viglietti D, Hidalgo LG, et al. Complement activating anti-HLA antibodies in kidney transplantation: allograft gene expression profiling and response to treatment. J Am Soc Nephrol 2018; 29(2): 620-35.
[http://dx.doi.org/10.1681/ASN.2017050589] [PMID: 29042454]
[246]
Eskandary F, Wahrmann M, Mühlbacher J, Böhmig GA. Complement inhibition as potential new therapy for antibody-mediated rejection. Transpl Int 2016; 29(4): 392-402.
[http://dx.doi.org/10.1111/tri.12706] [PMID: 26474721]
[247]
Pratt JR, Hibbs MJ, Laver AJ, Smith RA, Sacks SH. Effects of complement inhibition with soluble complement receptor-1 on vascular injury and inflammation during renal allograft rejection in the rat. Am J Pathol 1996; 149(6): 2055-66.
[PMID: 8952538]
[248]
Valenzuela NM, Thomas KA, Mulder A, Parry GC, Panicker S, Reed EF. Complement-mediated enhancement of monocyte adhesion to endothelial cells by HLA antibodies, and blockade by a specific inhibitor of the classical complement cascade, TNT003. Transplantation 2017; 101(7): 1559-72.
[http://dx.doi.org/10.1097/TP.0000000000001486] [PMID: 28640789]
[249]
Thurman JM, Le Quintrec M. Targeting the complement cascade: novel treatments coming down the pike. Kidney Int 2016; 90(4): 746-52.
[http://dx.doi.org/10.1016/j.kint.2016.04.018] [PMID: 27325183]
[250]
Reddy YN, Siedlecki AM, Francis JM. Breaking down the complement system: a review and update on novel therapies. Curr Opin Nephrol Hypertens 2017; 26(2): 123-8.
[PMID: 27977428]
[251]
Tillou X, Poirier N, Le Bas-Bernardet S, et al. Recombinant human C1-inhibitor prevents acute antibody-mediated rejection in alloimmunized baboons. Kidney Int 2010; 78(2): 152-9.
[http://dx.doi.org/10.1038/ki.2010.75] [PMID: 20336054]
[252]
Vo AA, Zeevi A, Choi J, et al. A phase I/II placebo-controlled trial of C1-inhibitor for prevention of antibody-mediated rejection in HLA sensitized patients. Transplantation 2015; 99(2): 299-308.
[http://dx.doi.org/10.1097/TP.0000000000000592] [PMID: 25606785]
[253]
Viglietti D, Gosset C, Loupy A, et al. C1 Inhibitor in acute antibody-mediated rejection nonresponsive to conventional therapy in kidney transplant recipients: a pilot study. Am J Transplant 2016; 16(5): 1596-603.
[http://dx.doi.org/10.1111/ajt.13663] [PMID: 26693703]
[254]
Montgomery RA, Orandi BJ, Racusen L, et al. Plasma-derived c1 esterase inhibitor for acute antibody-mediated rejection following kidney transplantation: results of a randomized double-blind placebo-controlled pilot study. Am J Transplant 2016; 16(12): 3468-78.
[http://dx.doi.org/10.1111/ajt.13871] [PMID: 27184779]
[255]
Jayne DRW, Bruchfeld AN, Harper L, et al. CLEAR Study Group. Randomized trial of C5a receptor inhibitor avacopan in anca associated vasculitis. J Am Soc Nephrol 2017; 28(9): 2756-67.
[http://dx.doi.org/10.1681/ASN.2016111179] [PMID: 28400446]
[256]
Kassimatis T, Qasem A, Douiri A, et al. A double-blind randomised controlled investigation into the efficacy of Mirococept (APT070) for preventing ischaemia reperfusion injury in the kidney allograft (EMPIRIKAL): study protocol for a randomised controlled trial. Trials 2017; 18(1): 255.
[http://dx.doi.org/10.1186/s13063-017-1972-x] [PMID: 28587616]
[257]
Wahrmann M, Mühlbacher J, Marinova L, et al. Effect of the anti-C1s humanized antibody TNT009 and its parental mouse variant TNT003 on HLA antibody-induced complement activation-a preclinical in vitro study. Am J Transplant 2017; 17(9): 2300-11.
[http://dx.doi.org/10.1111/ajt.14256] [PMID: 28251805]
[258]
Mühlbacher J, Jilma B, Wahrmann M, et al. Blockade of HLA antibody-triggered classical complement activation in sera from subjects dosed with the anti-C1s monoclonal antibody Tnt009-results from a randomized first-in-human phase 1 trial. Transplantation 2017; 101(10): 2410-8.
[http://dx.doi.org/10.1097/TP.0000000000001804] [PMID: 28926521]
[259]
Eskandary F, Jilma B, Mühlbacher J, et al. Anti-C1s monoclonal antibody BIVV009 in late antibody-mediated kidney allograft rejection-results from a first-in-patient phase 1 trial. Am J Transplant 2018; 18(4): 916-26.
[http://dx.doi.org/10.1111/ajt.14528] [PMID: 28980446]
[260]
Jordan SC, Choi J, Kim I, et al. Interleukin-6, A cytokine critical to mediation of inflammation, autoimmunity and allograft rejection: therapeutic implications of IL-6 receptor blockade. Transplantation 2017; 101(1): 32-44.
[http://dx.doi.org/10.1097/TP.0000000000001452] [PMID: 27547870]
[261]
Vo AA, Choi J, Kim I, et al. A phase I/II trial of the interleukin-6 receptor-specific humanized monoclonal (tocilizumab) + intravenous immunoglobulin in difficult to desensitize patients. Transplantation 2015; 99(11): 2356-63.
[http://dx.doi.org/10.1097/TP.0000000000000741] [PMID: 26018350]
[262]
Shetty A, Hanson R, Korsten P, et al. Tocilizumab in the treatment of rheumatoid arthritis and beyond. Drug Des Devel Ther 2014; 8: 349-64.
[PMID: 24729685]
[263]
Illei GG, Shirota Y, Yarboro CH, et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open label phase I dosage-escalation study. Arthritis Rheum 2010; 62(2): 542-52.
[http://dx.doi.org/10.1002/art.27221] [PMID: 20112381]
[264]
Wu G, Chai N, Kim I, Klein AS, Jordan SC. Monoclonal anti-interleukin-6 receptor antibody attenuates donor-specific antibody responses in a mouse model of allosensitization. Transpl Immunol 2013; 28(2-3): 138-43.
[http://dx.doi.org/10.1016/j.trim.2013.03.003] [PMID: 23562586]
[265]
Kim I, Wu G, Chai NN, Klein AS, Jordan S. Anti-interleukin 6 receptor antibodies attenuate antibody recall responses in a mouse model of allosensitization. Transplantation 2014; 98(12): 1262-70.
[http://dx.doi.org/10.1097/TP.0000000000000437] [PMID: 25286051]
[266]
Choi J, Aubert O, Vo A, et al. Assessment of tocilizumab (anti interleukin-6 receptor monoclonal) as a potential treatment for chronic antibody-mediated rejection and transplant glomerulopathy in HLA-sensitized renal allograft recipients. Am J Transplant 2017; 17(9): 2381-9.
[http://dx.doi.org/10.1111/ajt.14228] [PMID: 28199785]
[267]
Choi J, Aubert O, Louie S, et al. Extended experience using tocilizumab (anti-IL6R, TCZ) for the treatment of Chronic Antibody Mediated Rejection (CABMR) Am J Transplant 2017; 17(suppl 3).
[268]
Puliyanda D, Kim I, Choi J, et al. Safety and efficacy of tocilizumab (anti-IL6R, TCZ) therapy in the treatment of Chronic Antibody Mediated Rejection (cABMR) in pediatric renal transplant recipients. Am J Transplant 2017; 17(suppl 3).
[269]
Patel S, Mohan S, Fernandez H, et al. Tocilizumab stabilizes renal function in kidney transplant recipients with chronic Active Antibody Mediated Rejection (CAAMR) Am J Transplant 2017; 17(suppl 3).
[270]
Venkatachalam K, Reem D, Andrew M, et al. Efficacy and safety of tocilizumab in treatment of acute antibody mediated rejection. Am J Transplant 2017; 17(suppl 3).
[271]
Nandakumar KS, Holmdahl R. Therapeutic cleavage of IgG: new avenues for treating inflammation. Trends Immunol 2008; 29(4): 173-8.
[http://dx.doi.org/10.1016/j.it.2008.01.007] [PMID: 18328782]
[272]
von Pawel-Rammingen U, Johansson BP, Björck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 2002; 21(7): 1607-15.
[http://dx.doi.org/10.1093/emboj/21.7.1607] [PMID: 11927545]
[273]
Nandakumar KS, Johansson BP, Björck L, Holmdahl R. Blocking of experimental arthritis by cleavage of IgG antibodies in vivo. Arthritis Rheum 2007; 56(10): 3253-60.
[http://dx.doi.org/10.1002/art.22930] [PMID: 17907170]
[274]
Yang R, Otten MA, Hellmark T, et al. Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes. Nephrol Dial Transplant 2010; 25(8): 2479-86.
[http://dx.doi.org/10.1093/ndt/gfq115] [PMID: 20219834]
[275]
Winstedt L, Järnum S, Nordahl EA, et al. Complete removal of extracellular igg antibodies in a randomized dose-escalation phase I study with the bacterial enzyme ides--a novel therapeutic opportunity. PLoS One 2015; 10(7) e0132011
[http://dx.doi.org/10.1371/journal.pone.0132011] [PMID: 26177518]
[276]
Jordan SC, Lorant T, Choi J, et al. IgG endopeptidase in highly sensitized patients undergoing transplantation. N Engl J Med 2017; 377(5): 442-53.
[http://dx.doi.org/10.1056/NEJMoa1612567] [PMID: 28767349]
[277]
Lorant T, Bengtsson M, Eich T, et al. Safety, immunogenicity, pharmacokinetics, and efficacy of degradation of anti-HLA antibodies by IdeS (imlifidase) in chronic kidney disease patients. Am J Transplant 2018; 18(11): 2752-62.
[http://dx.doi.org/10.1111/ajt.14733] [PMID: 29561066]
[278]
Kuo TT, Baker K, Yoshida M, et al. Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol 2010; 30(6): 777-89.
[http://dx.doi.org/10.1007/s10875-010-9468-4] [PMID: 20886282]
[279]
Rath T, Kuo TT, Baker K, et al. The immunologic functions of the neonatal Fc receptor for IgG. J Clin Immunol 2013; 33(Suppl. 1): S9-S17.
[http://dx.doi.org/10.1007/s10875-012-9768-y] [PMID: 22948741]
[280]
Khedraki R, Baldwin WM III. Shortening the half-life of IgG as a strategy for decreasing alloantibodies. Transplantation 2018; 102(3): 342-4.
[http://dx.doi.org/10.1097/TP.0000000000002091] [PMID: 29461460]
[281]
Kiessling P, Lledo-Garcia R, Watanabe S, et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: A randomized phase 1 study. Sci Transl Med 2017; 9(414) eaan1208
[http://dx.doi.org/10.1126/scitranslmed.aan1208] [PMID: 29093180]
[282]
Kim J, Hayton WL, Robinson JM, Anderson CL. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol 2007; 122(2): 146-55.
[http://dx.doi.org/10.1016/j.clim.2006.09.001] [PMID: 17046328]
[283]
Vincenti F, Tedesco Silva H, Busque S, et al. Randomized phase 2b trial of tofacitinib (CP-690,550) in de novo kidney transplant patients: efficacy, renal function and safety at 1 year. Am J Transplant 2012; 12(9): 2446-56.
[http://dx.doi.org/10.1111/j.1600-6143.2012.04127.x] [PMID: 22682022]
[284]
Rovira J, Ramírez-Bajo MJ, Banon-Maneus E, et al. Tofacitinib halts progression of graft dysfunction in a rat model of mixed cellular and humoral rejection. Transplantation 2018; 102(7): 1075-84.
[http://dx.doi.org/10.1097/TP.0000000000002204] [PMID: 29620612]
[285]
Zhao D, Li S, Liao T, et al. Triptolide inhibits donor-specific antibody production and attenuates mixed antibody-mediated renal allograft injury. Am J Transplant 2018; 18(5): 1083-95.
[http://dx.doi.org/10.1111/ajt.14602] [PMID: 29178433]
[286]
Ramessur Chandran S, Tesch GH, Han Y, et al. Spleen tyrosine kinase contributes to acute renal allograft rejection in the rat. Int J Exp Pathol 2015; 96(1): 54-62.
[http://dx.doi.org/10.1111/iep.12110] [PMID: 25529862]
[287]
Ramessur Chandran S, Han Y, Tesch GH, et al. Inhibition of spleen tyrosine kinase reduces renal allograft injury in a rat model of acute antibody-mediated rejection in sensitized recipients. Transplantation 2017; 101(8): e240-8.
[http://dx.doi.org/10.1097/TP.0000000000001826] [PMID: 28594748]
[288]
Oura T, Yamashita K, Suzuki T, et al. Long-term hepatic allograft acceptance based on CD40 blockade by ASKP1240 in nonhuman primates. Am J Transplant 2012; 12(7): 1740-54.
[http://dx.doi.org/10.1111/j.1600-6143.2012.04014.x] [PMID: 22420525]
[289]
Harland R, Klintmalm G, Jensik S, et al. Efficacy and safety of bleselumab in kidney transplant recipients: a phase 2, randomized, open-label study. Am J Transplant 2017; 17(suppl 3).
[290]
Takahashi K, Saito K, Takahara S, et al. Japanese ABO-Incompatible Kidney Transplantation Committee. Excellent long-term outcome of ABO-incompatible living donor kidney transplantation in Japan. Am J Transplant 2004; 4(7): 1089-96.
[http://dx.doi.org/10.1111/j.1600-6143.2004.00464.x] [PMID: 15196066]
[291]
Squifflet JP, De Meyer M, Malaise J, Latinne D, Pirson Y, Alexandre GP. Lessons learned from ABO-incompatible living donor kidney transplantation: 20 years later. Exp Clin Transplant 2004; 2(1): 208-13.
[PMID: 15859930]
[292]
Gloor JM, Lager DJ, Fidler ME, et al. A Comparison of splenectomy versus intensive posttransplant antidonor blood group antibody monitoring without splenectomy in ABO-incompatible kidney transplantation. Transplantation 2005; 80(11): 1572-7.
[http://dx.doi.org/10.1097/01.tp.0000184622.69708.c1] [PMID: 16371928]
[293]
Tzvetanov I, Spaggiari M, Oberholzer J, et al. Cell population in spleens during antibody-mediated rejection: pathologic and clinical findings. Transplantation 2012; 94(3): 255-62.
[http://dx.doi.org/10.1097/TP.0b013e3182562881] [PMID: 22790386]
[294]
Kaplan B, Jie T, Diana R, et al. Histopathology and immunophenotype of the spleen during acute antibody-mediated rejection. Am J Transplant 2010; 10(5): 1316-20.
[http://dx.doi.org/10.1111/j.1600-6143.2010.03067.x] [PMID: 20346068]
[295]
Locke JE, Zachary AA, Haas M, et al. The utility of splenectomy as rescue treatment for severe acute antibody mediated rejection. Am J Transplant 2007; 7(4): 842-6.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01709.x] [PMID: 17391127]
[296]
Kaplan B, Gangemi A, Thielke J, Oberholzer J, Sankary H, Benedetti E. Successful rescue of refractory, severe antibody mediated rejection with splenectomy. Transplantation 2007; 83(1): 99-100.
[http://dx.doi.org/10.1097/01.tp.0000243739.31440.2b] [PMID: 17220802]
[297]
Tzvetanov I, Spaggiari M, Jeon H, et al. The role of splenectomy in the setting of refractory humoral rejection after kidney transplantation. Transplant Proc 2012; 44(5): 1254-8.
[http://dx.doi.org/10.1016/j.transproceed.2012.01.109] [PMID: 22663995]
[298]
Di Sabatino A, Carsetti R, Corazza GR. Post-splenectomy and hyposplenic states. Lancet 2011; 378(9785): 86-97.
[http://dx.doi.org/10.1016/S0140-6736(10)61493-6] [PMID: 21474172]
[299]
Orandi BJ, Lonze BE, Jackson A, et al. Splenic irradiation for the treatment of severe antibody-mediated rejection. Am J Transplant 2016; 16(10): 3041-5.
[http://dx.doi.org/10.1111/ajt.13882] [PMID: 27214874]
[300]
Tanriover B, Wright SE, Foster SV, et al. High-dose intravenous immunoglobulin and rituximab treatment for antibody-mediated rejection after kidney transplantation: a cost analysis. Transplant Proc 2008; 40(10): 3393-6.
[http://dx.doi.org/10.1016/j.transproceed.2008.08.131] [PMID: 19100397]
[301]
Muduma G, Odeyemi I, Smith-Palmer J, Pollock RF. Review of the clinical and economic burden of antibody-mediated rejection in renal transplant recipients. Adv Ther 2016; 33(3): 345-56.
[http://dx.doi.org/10.1007/s12325-016-0292-y] [PMID: 26905265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy