Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Loading of Propranolol Hydrochloride on MCF and Sustained Release

Author(s): Xiao-Dong Li* and Qing-Zhou Zhai

Volume 13, Issue 1, 2021

Published on: 08 June, 2020

Page: [109 - 118] Pages: 10

DOI: 10.2174/1876402912999200608141217

Price: $65

Abstract

Aims: Adsorption conditions of propranolol hydrochloride onto MCF are optimized. Properties of this adsorption system are studied. The sustained release properties of propranolol hydrochloride in the loading system are also researched.

Background: In today's society, demand for drugs is getting higher and higher. With the development of nanotechnology, it is easier to immobilize drugs on nanomaterials, which can easily transport drugs in the human body. It can control drug release, reduce side effects, improve drug efficacy, and develop drug orientation.

Objective: The purpose of this study was to load propranolol hydrochloride, a drug for the treatment of heart disease and hypertension on the MCF nano-mesoporous material to prepare a sustainedrelease preparation and investigate the release law of propranolol hydrochloride in simulated human body fluid.

Methods: Nanometer mesoporous MCF (mesocellular foams) silica material was prepared in acidic medium using triblock copolymer poly(ethylene glycol)-block-poly(propyl glycol)-block-poly(ethylene glycol) as template and tetraethoxysilane as silica source. Propranolol hydrochloride drug was incorporated into the MCF mesoporous material by the impregnation method to prepare MCF-propranol hydrochloride host-guest composite material. The loading amount of drug was calculated by spectrophotometry and difference subtraction method.

Results: The loading amount of drug calculated by spectrophotometry and difference subtraction method was 385.5 mg·g-1 (propranolol hydrochloride/MCF). The adsorption process of propranolol hydrochloride in MCF belongs to the quasi-second-order kinetic process. Adsorption process ΔH0 = -19.11 kJ·mol-1, is an exothermic process, ΔG0 < 0, the adsorption process is a spontaneous process. The effective release time of drug lasted up to 32 h and the maximum cumulative released amount was 99.4 % through the experiment of drug sustained release in the simulated body fluid. In the simulated gastric juice, the release time of drug reached 6 h, and the maximum cumulative released amount was 56.6 %. When drug release time arrived at 10 h in the simulated intestinal fluid, the maximum cumulative released amount was 71.3 %.

Conclusion: The influence of the release rate of propranolol hydrochloride molecules from MCF mesopores was demonstrated, since it results in a very slow drug delivery from the nanocomposite system. Thus, it is concluded that the prepared MCF is an efficient drug sustained-released carrier.

Keywords: Propranolol hydrochloride, nanometer mesoporous MCF, sustained release, simulated body fluid, simulated gastric juice, simulated intestinal fluid.

Graphical Abstract

[1]
Pedraza, D.; Diez, J.; Izquierda-Barba, I.; Colilla, M.; Vallet-Regi, M. Amine-functionalized mesoprous silica nanoparticles: a new nanoantibiotic for bone infection treatment. Biomed. Glasses, 2018, 4(1), 1-12.
[http://dx.doi.org/10.1515/bglass-2018-0001]
[2]
Guo, X.; Cheng, Y.; Zhao, X.; Luo, Y.; Chen, J.; Yuan, W.E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J. Nanobiotech., 2018, 16(1), 74-84.
[http://dx.doi.org/10.1186/s12951-018-0398-2 ]
[3]
He, J.; Chen, J.; Lin, S.; Niu, D.; Hao, J.; Jia, X.; Li, N.; Gu, J.; Li, Y.; Shi, J. Synthesis of a pillar[5]arene-based polyrotaxane for enhancing the drug loading capacity of PCL-based supramolecular amphiphile as an excellent drug delivery platform. Biomacromolecules, 2018, 19(7), 2923-2930.
[http://dx.doi.org/10.1021/acs.biomac.8b00488 ]
[4]
Pan, L.M.; Shi, J.L. Chemical design of nuclear-targeting mesoporous silica nanoparticles for intra-nuclear drug delivery. Chin. J. Chem., 2018, 36, 481-486.
[http://dx.doi.org/10.1002/cjoc.201800032]
[5]
Chen, J.; Liu, J.; Hu, Y.; Tian, Z.; Zhu, Y. Metal-organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release. Sci. Technol. Adv. Mater., 2019, 20(1), 1043-1054.
[http://dx.doi.org/10.1080/14686996.2019.1682467 ]
[6]
Li, Z.; Zhang, Y.; Feng, N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin. Drug Deliv., 2019, 16(3), 219-237.
[http://dx.doi.org/10.1080/17425247.2019.1575806 ]
[7]
Paris, J.L.; Colilla, M. Izquierdo-BarbaI.; Manzano, M.; Vallet-Regí, M. Tuning mesoporous silica dissolution in physiological environments: A review. J. Mater. Sci., 2017, 52, 8761-8771.
[http://dx.doi.org/10.1007/s10853-017-0787-1]
[8]
Hartman, M. Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater., 2005, 17(18), 4577-4593.
[http://dx.doi.org/10.1021/cm0485658]
[9]
Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev., 1997, 97(6), 2373-2420.
[http://dx.doi.org/10.1021/cr960406n ]
[10]
Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieve synthesized by a liquied-crystal template mechanism. Nature, 1992, 359, 710-712.
[http://dx.doi.org/10.1038/359710a0]
[11]
Cai, Q.; Luo, Z.S.; Pang, W.Q.; Fan, Y.W.; Chen, X.H.; Cui, F.Z. Dilute solution routes to various controllable morphologies of MCM-41 silica with basic medium. Chem. Mater., 2001, 13(2), 258-263.
[http://dx.doi.org/10.1021/cm990661z]
[12]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548 ]
[13]
Liu, Y.; Xu, Q.; Feng, X.; Zhu, J.J.; Hou, W. Immobilization of hemoglobin on SBA-15 applied to the electrocatalytic reduction of H2O2. Anal. Bioanal. Chem., 2007, 387(4), 1553-1559.
[http://dx.doi.org/10.1007/s00216-006-1064-3 ]
[14]
Manyar, H.G.; Gianotti, E.; Sakamoto, Y.; Terasaki, O.; Coluccia, S.; Tumbiolo, S. Active biocatalysts based on pepsin immobilized in mesoporous SBA-15. J. Phys. Chem. C, 2008, 112(46), 18110-18116.
[http://dx.doi.org/10.1021/jp802420t]
[15]
Schmidt-Winkel, P.; Lukens, W.W.; Zhao, D.Y.; Yang, P.D.; Chmelka, B.F.; Stucky, G.D. Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc., 1999, 121(1), 254-255.
[http://dx.doi.org/10.1021/ja983218i]
[16]
Schmidt-Winkel, P.; Glinka, C.J.; Stucky, G.D. Microemulsion templates for mesoporous silica. Langmuir, 2000, 16(2), 356-361.
[http://dx.doi.org/10.1021/la9906774]
[17]
Angelos, S.; Liong, M.; Choi, E.; Zink, J.I. Mesoporous silicate materials as substrates for molecular machines and drug delivery. Chem. Eng. J., 2008, 137(1), 4-13.
[http://dx.doi.org/10.1016/j.cej.2007.07.074]
[18]
Menaa, B.; Menaa, F.; Aiolfi-Guimaraes, C.; Sharts, O. Silica-based nanoporous sol-gel glasses: from bioencapsulation to protein folding studies. Int. J. Nanotechnol., 2010, 7(1), 1-45.
[http://dx.doi.org/10.1504/IJNT.2010.029546]
[19]
Vallet-Regi, M.; Ramila, A.; Del Real, R.P.; Perez-Pariente, J. A new property of MCM-41: drug delivery system. Chem. Mater., 2001, 13(2), 308-311.
[http://dx.doi.org/10.1021/cm0011559]
[20]
Juere, E.; Kleitz, F. On the nanopore confinement of therapeutic drugs into mesoporous silica materials and its implications. Micropor Mesopor Mater., 2018, 270, 109-119.
[http://dx.doi.org/10.1016/j.micromeso.2018.04.031]
[21]
Xu, Y.Q.; Zhou, G.W.; Li, J.Y.; Bai, G.W. Progress in ordered mesoporous materials as controlled drug release carriers. Chem. Ind. Eng. Prog., 2010, 29(4), 677-682.
[22]
Wang, S.B. Ordered mesoporous materials for drug delivery. Micropor Mesopor Mater., 2009, 117(1-2), 1-9.
[http://dx.doi.org/10.1016/j.micromeso.2008.07.002]
[23]
He, Q.; Shi, J.L. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem., 2011, 21, 5845-5855.
[http://dx.doi.org/10.1039/c0jm03851b]
[24]
Munoz, B.; Ramila, A.; Perez-Parient, J.; Diaz, I.; Vallet-Regi, M. MCM-41 organic modification as drug delivery rate regulator. Chem. Mater., 2003, 15(2), 500-503.
[http://dx.doi.org/10.1021/cm021217q]
[25]
Horcajada, P.; Ramila, A.; Perez-Parient, J.; Vallet-Regi, M. Influence of pore size of MCM-41 matrices on drug delivery rate. Micropor Mesopor Mater., 2004, 68(1-3), 105-109.
[http://dx.doi.org/10.1016/j.micromeso.2003.12.012]
[26]
Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res., 1990, 24(6), 721-734.
[http://dx.doi.org/10.1002/jbm.820240607 ]
[27]
Sultan, S.M. Kinetic determination of propranolol in drug formulations. Analyst (Lond.), 1988, 113(1), 149-152.
[http://dx.doi.org/10.1039/an9881300149 ]
[28]
Lagergren, S. About theory of so-called adsorption of soluble substances. K. Sven. Vetensk. Akad. Handl., 1988, 24, 1-39.
[29]
Ho, Y.S.; Mckay, G. Pseudo-second order model for sorption processes. Process Biochem., 1999, 34(5), 451-465.
[http://dx.doi.org/10.1016/S0032-9592(98)00112-5]
[30]
Ho, Y.S.; Mckay, G. A comparison of chemisorption kinetics models applied to pollutant removal on various sorbent. Process Saf. Environ. Prot., 1998, 76(4), 332-340.
[http://dx.doi.org/10.1205/095758298529696]
[31]
Celekli, A.; Tanriverdi, B.; Bozkurt, H. Predictive modeling of removal of lanaset red G on chara contraria: kinetic, equilibrium, and thermodynamic studies. Chem. Eng. J., 2011, 169(1-3), 166-172.
[http://dx.doi.org/10.1016/j.cej.2011.02.077]
[32]
Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 1918, 40(9), 1361-1403.
[http://dx.doi.org/10.1021/ja02242a004]
[33]
Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem., 1906, 57, 385-470.
[34]
Naushad, M.; Khan, M.A.; Alothman, Z.A.; Khan, M.R.; Kumar, M. Adsorption of methylene blue on chemicallymodified pine nut shells in single and binary systems: isotherms, kinetics, and thermodynamic studies. Desalin. Water Treat., 2016, 57(34), 15848-15861.
[http://dx.doi.org/10.1080/19443994.2015.1074121]
[35]
Doadrio, J.C.; Sousa, E.M.B.; Izquierdo-Barba, I.; Doadrio, A.L.; Perez-Pariente, J.; Vallet-Regi, M. Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J. Mater. Chem., 2006, 16(3), 462-466.
[http://dx.doi.org/10.1039/B510101H]
[36]
Vallet-Regi, M.; Doadrio, J.C.; Doadrio, A.L.; Izquierdo-Barba, I.; Perez-Pariente, J. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ion., 2004, 172(1-4), 435-439.
[http://dx.doi.org/10.1016/j.ssi.2004.04.036]
[37]
Doadrio, A.L.; Sousa, E.M.B.; Doadrio, J.C.; Pérez Pariente, J.; Izquierdo-Barba, I.; Vallet-Regí, M. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J. Control. Release, 2004, 97(1), 125-132.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.005 ]
[38]
Higuchi, T. Mechanisms of sustained-action medication: theo-retical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 1963, 52(12), 1145-1149.
[http://dx.doi.org/10.1002/jps.2600521210 ]
[39]
Yang, L.; Fassihi, R. Zero-order release kinetics from a self-correcting floatable asymmetric configuration drug delivery system. J. Pharm. Sci., 1996, 85(2), 170-173.
[http://dx.doi.org/10.1021/js950250r ]
[40]
Kim, H.J.; Ahn, J.E.; Haam, S.J.; Shul, Y.G.; Song, S.Y.; Tatsumi, T. Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting. J. Mater. Chem., 2006, 16(9), 1617-1621.
[http://dx.doi.org/10.1039/b514433g]
[41]
Fassihi, R.A.; Ritschel, W.A. Multiple-layer, direct-compression, controlled-release system: in vitro and in vivo evaluation. J. Pharm. Sci., 1993, 82(7), 750-754. http://dx.doi.org/10.1002/jps.2600820715 [42] Song, S.M.; Wang, Z.L.; Li, W.B. Physical Chemistry; Higher Education Publish. House: Beijing, 1993, pp. 219-231..
[42]
Song, S.M.; Wang, Z.L.; Li, W.B. Physical Chemistry; Higher Education Publish. House: Beijing, 1993, pp. 219-231..

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy