Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

DFT Study of the Mechanisms of Transition-Metal-Catalyzed Reductive Coupling Reactions

Author(s): Yuling Wang and Qinghua Ren*

Volume 24, Issue 12, 2020

Page: [1367 - 1383] Pages: 17

DOI: 10.2174/1385272824999200608135840

Price: $65

Abstract

The mechanism studies of transition-metal-catalyzed reductive coupling reactions investigated using Density Functional Theory calculations in the recent ten years have been reviewed. This review introduces the computational mechanism studies of Ni-, Pd-, Cu- and some other metals (Rh, Ti and Zr)-catalyzed reductive coupling reactions and presents the methodology used in these computational mechanism studies. The mechanisms of the transition- metal-catalyzed reductive coupling reactions normally include three main steps: oxidative addition; transmetalation; and reductive elimination or four main steps: the first oxidative addition; reduction; the second oxidative addition; and reductive elimination. The ratelimiting step is most likely the final reductive elimination step in the whole mechanism. Currently, the B3LYP method used in DFT calculations is the most popular choice in the structural geometry optimizations and the M06 method is often used to carry out single-point calculations to refine the energy values. We hope that this review will stimulate more and more experimental and computational combinations and the computational chemistry will significantly contribute to the development of future organic synthesis reactions.

Keywords: DFT, transition-metal-catalyzed, mechanism, reductive coupling, computational method, electrophiles.

Graphical Abstract

[1]
de Meijere, A.; Bräse, S.; Oestreich, M. Metal Catalyzed Cross-Coupling Reactions and More; Wiley, 2013.
[2]
Torborg, C.; Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal., 2009, 351(18), 3027-3043.
[http://dx.doi.org/10.1002/adsc.200900587]
[3]
Rudolph, A.; Lautens, M. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. Engl., 2009, 48(15), 2656-2670.
[http://dx.doi.org/10.1002/anie.200803611] [PMID: 19173365]
[4]
Banno, T.; Hayakawa, Y.; Umeno, M. Some applications of the Grignard cross-coupling reaction in the industrial field. J. Organomet. Chem., 2002, 653(1), 288-291.
[http://dx.doi.org/10.1016/S0022-328X(02)01165-8]
[5]
Jana, R.; Pathak, T.P.; Sigman, M.S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev., 2011, 111(3), 1417-1492.
[http://dx.doi.org/10.1021/cr100327p] [PMID: 21319862]
[6]
Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev., 2002, 102(5), 1359-1470.
[http://dx.doi.org/10.1021/cr000664r] [PMID: 11996540]
[7]
Blangetti, M.; Rosso, H.; Prandi, C.; Deagostino, A.; Venturello, P. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments. Molecules, 2013, 18(1), 1188-1213.
[http://dx.doi.org/10.3390/molecules18011188] [PMID: 23344208]
[8]
Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc. Chem. Commun., 1979, (19), 866-867.
[http://dx.doi.org/10.1039/c39790000866]
[9]
King, A.O.; Okukado, N.; Negishi, E-i. Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J. Chem. Soc. Chem. Commun., 1977, 1977(19), 683-684.
[http://dx.doi.org/10.1039/c39770000683]
[10]
Negishi, E. Palladium-or nickel-catalyzed cross coupling. A new selective method for carbon-carbon bond formation. Acc. Chem. Res., 1982, 15(11), 340-348.
[http://dx.doi.org/10.1021/ar00083a001]
[11]
Zhou, J.S.; Fu, G.C. Cross-couplings of unactivated secondary alkyl halides: room-temperature nickel-catalyzed Negishi reactions of alkyl bromides and iodides. J. Am. Chem. Soc., 2003, 125(48), 14726-14727.
[http://dx.doi.org/10.1021/ja0389366] [PMID: 14640646]
[12]
Milstein, D.; Stille, J.K. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J. Am. Chem. Soc., 1978, 100(11), 3636-3638.
[http://dx.doi.org/10.1021/ja00479a077]
[13]
Xue, D.; Li, J.; Liu, Y-X.; Han, W-Y.; Zhang, Z-T.; Wang, C.; Xiao, J. Room-temperature Stille coupling of tetraarylstannanes via palladium-catalyzed C–H activation. Synlett, 2012, 23(13), 1941-1946.
[http://dx.doi.org/10.1055/s-0032-1316581]
[14]
Yabe, Y.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Palladium on charcoal-catalyzed ligand-free Stille coupling. Tetrahedron, 2010, 66(45), 8654-8660.
[http://dx.doi.org/10.1016/j.tet.2010.09.027]
[15]
Tamao, K.; Sumitani, K.; Kumada, M. Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J. Am. Chem. Soc., 1972, 94(12), 4374-4376.
[http://dx.doi.org/10.1021/ja00767a075]
[16]
Wu, J-C.; Gong, L-B.; Xia, Y.; Song, R-J.; Xie, Y-X.; Li, J-H. Nickel-catalyzed Kumada reaction of tosylalkanes with Grignard reagents to produce alkenes and modified arylketones. Angew. Chem. Int. Ed. Engl., 2012, 51(39), 9909-9913.
[http://dx.doi.org/10.1002/anie.201205969] [PMID: 22945894]
[17]
Xi, Z.; Liu, B.; Chen, W. Room-temperature Kumada cross-coupling of unactivated aryl chlorides catalyzed by N-heterocylic carbene-based nickel(II) complexes. J. Org. Chem., 2008, 73(10), 3954-3957.
[http://dx.doi.org/10.1021/jo800197u] [PMID: 18412386]
[18]
Yang, L-M.; Huang, L-F.; Luh, T-Y. Kumada-Corriu reactions of alkyl halides with alkynyl nucleophiles. Org. Lett., 2004, 6(9), 1461-1463.
[http://dx.doi.org/10.1021/ol049686g] [PMID: 15101767]
[19]
Owston, N.A.; Fu, G.C. Asymmetric alkyl-alkyl cross-couplings of unacti-vated secondary alkyl electrophiles: stereoconvergent Suzuki reactions of racemic acylated halohydrins. J. Am. Chem. Soc., 2010, 132(34), 11908-11909.
[http://dx.doi.org/10.1021/ja105924f] [PMID: 20701271]
[20]
Vechorkin, O.; Proust, V.; Hu, X. Functional group tolerant Kumada-Corriu-Tamao coupling of nonactivated alkyl halides with aryl and heteroaryl nucleophiles: catalysis by a nickel pincer complex permits the coupling of functionalized Grignard reagents. J. Am. Chem. Soc., 2009, 131(28), 9756-9766.
[http://dx.doi.org/10.1021/ja9027378] [PMID: 19552426]
[21]
Heck, R.F.; Nolley, J.P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem., 1972, 37(14), 2320-2322.
[http://dx.doi.org/10.1021/jo00979a024]
[22]
Cabri, W.; Candiani, I. Recent developments and new perspectives in the Heck reaction. Acc. Chem. Res., 1995, 28(1), 2-7.
[http://dx.doi.org/10.1021/ar00049a001]
[23]
Braga, A.L.; Lüdtke, D.S.; Vargas, F.c.; Donato, R.K.; Silveira, C.C.; Stefani, H.A.; Zeni, G. Sonogashira cross-coupling reaction of organotellurium dichlorides with terminal alkynes. Tetrahedron Lett., 2003, 44(9), 1779-1781.
[http://dx.doi.org/10.1016/S0040-4039(03)00098-4]
[24]
Fabrizi, G.; Goggiamani, A.; Sferrazza, A.; Cacchi, S. Sonogashira cross-coupling of arenediazonium salts. Angew. Chem. Int. Ed. Engl., 2010, 49(24), 4067-4070.
[http://dx.doi.org/10.1002/anie.201000472] [PMID: 20422665]
[25]
Sonogashira, K. Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem., 2002, 653(1), 46-49.
[http://dx.doi.org/10.1016/S0022-328X(02)01158-0]
[26]
Shriver, D.F.; Drezdzon, M.A. The Manipulation of Air-Sensitive Compounds; John Wiley & Sons, 1986.
[27]
Knappke, C.E.; Grupe, S.; Gärtner, D.; Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A. Reductive cross-coupling reactions between two electrophiles. Chemistry, 2014, 20(23), 6828-6842.
[http://dx.doi.org/10.1002/chem.201402302] [PMID: 24825799]
[28]
Chen, H.; Jia, X.; Yu, Y.; Qian, Q.; Gong, H. Nickel-catalyzed reductive allylation of tertiary alkyl halides with allylic carbonates. Angew. Chem. Int. Ed. Engl., 2017, 56(42), 13103-13106.
[http://dx.doi.org/10.1002/anie.201705521] [PMID: 28834053]
[29]
Cheung, C.W.; Zhurkin, F.E.; Hu, X. Z-Selective olefin synthesis via iron-catalyzed reductive coupling of alkyl halides with terminal arylalkynes. J. Am. Chem. Soc., 2015, 137(15), 4932-4935.
[http://dx.doi.org/10.1021/jacs.5b01784] [PMID: 25831473]
[30]
Pal, S.; Chowdhury, S.; Rozwadowski, E.; Auffrant, A.; Gosmini, C. Cobalt-Catalyzed reductive cross-coupling between benzyl chlorides and aryl halides. Adv. Synth. Catal., 2016, 358(15), 2431-2435.
[http://dx.doi.org/10.1002/adsc.201600378]
[31]
Gligorich, K.M.; Cummings, S.A.; Sigman, M.S. Palladium-catalyzed reductive coupling of styrenes and organostannanes under aerobic conditions. J. Am. Chem. Soc., 2007, 129(46), 14193-14195.
[http://dx.doi.org/10.1021/ja076746f] [PMID: 17963397]
[32]
DeLuca, R.J.; Sigman, M.S. Anti-Markovnikov hydroalkylation of allylic amine derivatives via a palladium-catalyzed reductive cross-coupling reaction. J. Am. Chem. Soc., 2011, 133(30), 11454-11457.
[http://dx.doi.org/10.1021/ja204080s] [PMID: 21728336]
[33]
Tsang, A.S.K.; Sanhueza, I.A.; Schoenebeck, F. Combining experimental and computational studies to understand and predict reactivities of relevance to homogeneous catalysis. Chemistry, 2014, 20(50), 16432-16441.
[http://dx.doi.org/10.1002/chem.201404725] [PMID: 25345971]
[34]
Ren, Q.; Guan, S.; Shen, X.; Fang, J. Density functional theory study of the mechanisms of iron-catalyzed aminohydroxylation reactions. Organometallics, 2014, 33(6), 1423-1430.
[http://dx.doi.org/10.1021/om401141r]
[35]
Ren, Q.; Shen, X.; Wan, J.; Fang, J. Density functional theory study of the mechanisms of iron-catalyzed intramolecular C–H amination [1,2]-shift Tandem reactions of aryl azides. Organometallics, 2015, 34(6), 1129-1136.
[http://dx.doi.org/10.1021/acs.organomet.5b00087]
[36]
McGuinness, D.S.; Saendig, N.; Yates, B.F.; Cavell, K.J. Kinetic and density functional studies on alkyl-carbene elimination from Pd(II) heterocylic carbene complexes: a new type of reductive elimination with clear implications for catalysis. J. Am. Chem. Soc., 2001, 123(17), 4029-4040.
[http://dx.doi.org/10.1021/ja003861g] [PMID: 11457154]
[37]
Yandulov, D.V.; Tran, N.T. Aryl-fluoride reductive elimination from Pd(II): feasibility assessment from theory and experiment. J. Am. Chem. Soc., 2007, 129(5), 1342-1358.
[http://dx.doi.org/10.1021/ja066930l] [PMID: 17263419]
[38]
Campos, J.; Moreno, L.O.; Conejero, S.; Peloso, R.; Serrano, J.L.; Maya, C.; Carmona, E. Reactivity of cationic agostic and carbene structures derived from platinum(II) metallacycles. Chemistry, 2015, 21(24), 8883-8896.
[http://dx.doi.org/10.1002/chem.201500756] [PMID: 25959723]
[39]
Goossen, L.J.; Koley, D.; Hermann, H.L.; Thiel, W. The palladium-catalyzed cross-coupling reaction of carboxylic anhydrides with arylboronic acids: a DFT study. J. Am. Chem. Soc., 2005, 127(31), 11102-11114.
[http://dx.doi.org/10.1021/ja052435y] [PMID: 16076218]
[40]
Graham, D.C.; Bruce, M.I.; Metha, G.F.; Bowie, J.H.; Buntine, M.A. Regioselective control of the nickel-mediated coupling of acetylene and carbon dioxide – A DFT study. J. Organomet. Chem., 2008, 693(16), 2703-2710.
[http://dx.doi.org/10.1016/j.jorganchem.2008.05.015]
[41]
Yuan, R.; Lin, Z. Mechanism for the carboxylative coupling reaction of a terminal alkyne, CO2, and an allylic chloride catalyzed by the Cu(I) Complex: a DFT study. ACS Catal., 2014, 4(12), 4466-4473.
[http://dx.doi.org/10.1021/cs5011184]
[42]
Ren, Q.; Guan, S.; Jiang, F.; Fang, J. Density functional theory study of the mechanisms of iron-catalyzed cross-coupling reactions of alkyl grignard reagents. J. Phys. Chem. A, 2013, 117(4), 756-764.
[http://dx.doi.org/10.1021/jp3045498] [PMID: 23301983]
[43]
Ren, Q-H.; Shen, X-Y. Reaction mechanism for the iron-catalyzed biaryl cross-coupling of aryl Grignard reagents. Wuli Huaxue Xuebao, 2015, 31(5), 852-858.
[http://dx.doi.org/10.3866/PKU.WHXB201503026]
[44]
Ren, Q.; Wu, N.; Cai, Y.; Fang, J. DFT study of the mechanisms of iron-catalyzed regioselective synthesis of α-aryl carboxylic acids from styrene derivatives and CO2. Organometallics, 2016, 35(23), 3932-3938.
[http://dx.doi.org/10.1021/acs.organomet.6b00681]
[45]
Ren, Q.; An, S.; Huang, Z.; Wu, N.; Shen, X. Halogen atom transfer mechanism of iron-catalyzed direct arylation to form biaryl using Density Functional Theory calculations. J. Organomet. Chem., 2017, 844, 8-15.
[http://dx.doi.org/10.1016/j.jorganchem.2017.05.035]
[46]
Ren, Q.; An, S.; Wang, Y.; Tong, W. Density functional theory study of the mechanisms of iron-catalyzed regioselective anti-Markovnikov addition of C-H bonds in aromatic ketones to alkenes. Appl. Organomet. Chem., 2019, 33(11) e5183
[http://dx.doi.org/10.1002/aoc.5183]
[47]
Albrett, A.M.; Boyd, P.D.W.; Clark, G.R.; Gonzalez, E.; Ghosh, A.; Brothers, P.J. Reductive coupling and protonation leading to diboron corroles with a B-H-B bridge. Dalton Trans., 2010, 39(17), 4032-4034.
[http://dx.doi.org/10.1039/c002885c] [PMID: 20390165]
[48]
Cao, J.; Wang, G.; Gao, L.; Cheng, X.; Li, S. Organocatalytic reductive coupling of aldehydes with 1,1-diarylethylenes using an in situ generated pyridine-boryl radical. Chem. Sci. (Camb.), 2018, 9(15), 3664-3671.
[http://dx.doi.org/10.1039/C7SC05225A] [PMID: 29780496]
[49]
Chen, D.; Xu, G.; Zhou, Q.; Chung, L.W.; Tang, W. Practical and asymmetric reductive coupling of isoquinolines templated by chiral diborons. J. Am. Chem. Soc., 2017, 139(29), 9767-9770.
[http://dx.doi.org/10.1021/jacs.7b04256] [PMID: 28700227]
[50]
Wang, Y.; Kostenko, A.; Hadlington, T.J.; Luecke, M.P.; Yao, S.; Driess, M. Silicon-mediated selective homo- and heterocoupling of carbon monoxide. J. Am. Chem. Soc., 2019, 141(1), 626-634.
[http://dx.doi.org/10.1021/jacs.8b11899] [PMID: 30516372]
[51]
Zhou, Q.H.; Tang, W.J.; Chung, L.W. Mechanistic insights into asymmetric reductive coupling of isoquinolines by a chiral diboron with DFT calculations. J. Organomet. Chem., 2018, 864, 97-104.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.001]
[52]
Plaza, M.; Aguilar, M.C.P.; Valdés, C. Stereoselective Csp3 -Csp2 bond-forming reactions by transition-metal-free reductive coupling of cyclic tosylhydrazones with boronic acids. Chemistry, 2016, 22(18), 6253-6257.
[http://dx.doi.org/10.1002/chem.201600837] [PMID: 26918955]
[53]
Kaaz, M.; Bender, J.; Förster, D.; Frey, W.; Nieger, M.; Gudat, D. Phosphines with N-heterocyclic boranyl substituents. Dalton Trans., 2014, 43(2), 680-689.
[http://dx.doi.org/10.1039/C3DT52441H] [PMID: 24142130]
[54]
Weiss, A.; Hodgson, M.C.; Boyd, P.D.W.; Siebert, W.; Brothers, P.J. Diboryl and diboranyl porphyrin complexes: synthesis, structural motifs, and redox chemistry: diborenyl porphyrin or diboranyl isophlorin? Chemistry, 2007, 13(21), 5982-5993.
[http://dx.doi.org/10.1002/chem.200700046] [PMID: 17570718]
[55]
Pogodin, S.; Agranat, I. Biphenalenylidene: the forgotten bistricyclic aromatic ene. A theoretical study. J. Am. Chem. Soc., 2003, 125(42), 12829-12835.
[http://dx.doi.org/10.1021/ja035968k] [PMID: 14558831]
[56]
Pogodin, S.; Agranat, I. Overcrowding motifs in large PAHs. An ab initio study. J. Org. Chem., 2002, 67(1), 265-270.
[http://dx.doi.org/10.1021/jo0107251] [PMID: 11777470]
[57]
Gu, J.; Wang, X.; Xue, W.; Gong, H. Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations. Org. Chem. Front., 2015, 2(10), 1411-1421.
[http://dx.doi.org/10.1039/C5QO00224A]
[58]
McCarren, P.R.; Liu, P.; Cheong, P.H-Y.; Jamison, T.F.; Houk, K.N. Mechanism and transition-state structures for nickel-catalyzed reductive alkyne-aldehyde coupling reactions. J. Am. Chem. Soc., 2009, 131(19), 6654-6655.
[http://dx.doi.org/10.1021/ja900701g] [PMID: 19397371]
[59]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[60]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[61]
Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[62]
Stephens, P.J.; Devlin, F.; Chabalowski, C.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 1994, 98(45), 11623-11627.
[http://dx.doi.org/10.1021/j100096a001]
[63]
Wadt, W.R.; Hay, P.J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys., 1985, 82(1), 284-298.
[http://dx.doi.org/10.1063/1.448800]
[64]
Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys., 1985, 82(1), 270-283.
[http://dx.doi.org/10.1063/1.448799]
[65]
Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys., 1985, 82(1), 299-310.
[http://dx.doi.org/10.1063/1.448975]
[66]
Petersson, a.; Bennett, A.; Tensfeldt, T. G.; Al‐Laham, M. A.; Shirley, W. A.; Mantzaris, J., A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. J. Chem. Phys., 1988, 89(4), 2193-2218.
[http://dx.doi.org/10.1063/1.455064]
[67]
Petersson, G.; Al‐Laham, M.A. A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. J. Chem. Phys., 1991, 94(9), 6081-6090.
[http://dx.doi.org/10.1063/1.460447]
[68]
Liu, P.; Houk, K.N. Theoretical studies of regioselectivity of Ni- and Rh-catalyzed C-C bond forming reactions with unsymmetrical alkynes. Inorg. Chim. Acta, 2011, 369(1), 2-14.
[http://dx.doi.org/10.1016/j.ica.2010.12.042]
[69]
Liu, T.; Bi, S.W. Impact of ligand and silane on the regioselectivity in catalytic aldehyde-alkyne reductive couplings: a theoretical study. Organometallics, 2016, 35(8), 1114-1124.
[http://dx.doi.org/10.1021/acs.organomet.6b00127]
[70]
Dickson, R.M.; Becke, A.D. Basis‐set‐free local density‐functional calculations of geometries of polyatomic molecules. J. Chem. Phys., 1993, 99(5), 3898-3905.
[http://dx.doi.org/10.1063/1.466134]
[71]
Stephens, P.; Devlin, F.; Chabalowski, C.; Frisch, M. Si (111) bond dissociation energy is a local prop. J. Phys. Chem., 1994, 98(11), 623.
[72]
Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120(1-3), 215-241.
[http://dx.doi.org/10.1007/s00214-007-0310-x]
[73]
Zhao, Y.; Truhlar, D.G. Density functionals with broad applicability in chemistry. Acc. Chem. Res., 2008, 41(2), 157-167.
[http://dx.doi.org/10.1021/ar700111a] [PMID: 18186612]
[74]
Kulkarni, A.D.; Truhlar, D.G. Performance of density functional theory and Møller–Plesset second-order perturbation theory for structural parameters in complexes of Ru. J. Chem. Theory Comput., 2011, 7(7), 2325-2332.
[http://dx.doi.org/10.1021/ct200188n] [PMID: 26606500]
[75]
Zhao, Y.; Truhlar, D.G. Benchmark energetic data in a model system for Grubbs II metathesis catalysis and their use for the development, assessment, and validation of electronic structure methods. J. Chem. Theory Comput., 2009, 5(2), 324-333.
[http://dx.doi.org/10.1021/ct800386d] [PMID: 26610108]
[76]
Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett., 1996, 255(4-6), 327-335.
[http://dx.doi.org/10.1016/0009-2614(96)00349-1]
[77]
Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comput. Chem., 1998, 19(4), 404-417.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199803)19:4<404:AID-JCC3>3.0.CO;2-W]
[78]
Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta, 1990, 77(2), 123-141.
[http://dx.doi.org/10.1007/BF01114537]
[79]
Roy, L.E.; Hay, P.J.; Martin, R.L. Revised basis sets for the LANL effective core potentials. J. Chem. Theory Comput., 2008, 4(7), 1029-1031.
[http://dx.doi.org/10.1021/ct8000409] [PMID: 26636355]
[80]
Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys., 1980, 72(1), 650-654.
[http://dx.doi.org/10.1063/1.438955]
[81]
McLean, A.; Chandler, G. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. J. Chem. Phys., 1980, 72(10), 5639-5648.
[http://dx.doi.org/10.1063/1.438980]
[82]
Jackson, E.P.; Malik, H.A.; Sormunen, G.J.; Baxter, R.D.; Liu, P.; Wang, H.; Shareef, A-R.; Montgomery, J. Mechanistic basis for regioselection and regiodivergence in nickel-catalyzed reductive couplings. Acc. Chem. Res., 2015, 48(6), 1736-1745.
[http://dx.doi.org/10.1021/acs.accounts.5b00096] [PMID: 25965694]
[83]
Jiang, F.; Ren, Q.H. Theoretical investigation of the mechanisms of the biphenyl formation in Ni-catalyzed reductive cross-coupling system. J. Organomet. Chem., 2014, 757, 72-78.
[http://dx.doi.org/10.1016/j.jorganchem.2013.12.047]
[84]
Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem., 2003, 24(6), 669-681.
[http://dx.doi.org/10.1002/jcc.10189] [PMID: 12666158]
[85]
Jiang, F.; Ren, Q. Reaction mechanism for the Ni-catalyzed reductive cross-coupling of aryl halides. Wuli Huaxue Xuebao, 2014, 30(5), 821-828.
[http://dx.doi.org/10.3866/PKU.WHXB201403241]
[86]
Ren, Q.H.; Jiang, F.; Gong, H.G. DFT study of the single electron transfer mechanisms in Ni-Catalyzed reductive cross-coupling of aryl bromide and alkyl bromide. J. Organomet. Chem., 2014, 770, 130-135.
[http://dx.doi.org/10.1016/j.jorganchem.2014.08.015]
[87]
Wang, X.; Ma, G.; Peng, Y.; Pitsch, C.E.; Moll, B.J.; Ly, T.D.; Wang, X.; Gong, H. Ni-Catalyzed reductive coupling of electron-rich aryl iodides with tertiary alkyl halides. J. Am. Chem. Soc., 2018, 140(43), 14490-14497.
[http://dx.doi.org/10.1021/jacs.8b09473] [PMID: 30296073]
[88]
Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J. Phys. Chem. B, 2009, 113(14), 4538-4543.
[http://dx.doi.org/10.1021/jp809094y] [PMID: 19253989]
[89]
Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, 113(18), 6378-6396.
[http://dx.doi.org/10.1021/jp810292n] [PMID: 19366259]
[90]
Yue, H.; Zhu, C.; Shen, L.; Geng, Q.; Hock, K.J.; Yuan, T.; Cavallo, L.; Rueping, M. Nickel-catalyzed C-N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling. Chem. Sci. (Camb.), 2019, 10(16), 4430-4435.
[http://dx.doi.org/10.1039/C9SC00783K] [PMID: 31057770]
[91]
Chai, J-D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys., 2008, 128(8) 084106
[http://dx.doi.org/10.1063/1.2834918] [PMID: 18315032]
[92]
Chai, J-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys., 2008, 10(44), 6615-6620.
[http://dx.doi.org/10.1039/b810189b] [PMID: 18989472]
[93]
Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys., 1992, 97(4), 2571-2577.
[http://dx.doi.org/10.1063/1.463096]
[94]
Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys., 1994, 100(8), 5829-5835.
[http://dx.doi.org/10.1063/1.467146]
[95]
Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys., 2005, 7(18), 3297-3305.
[http://dx.doi.org/10.1039/b508541a] [PMID: 16240044]
[96]
Ferretti, E.; Dechert, S.; Demeshko, S.; Holthausen, M.C.; Meyer, F. Reductive nitric oxide coupling at a dinickel core: isolation of a key cis-hyponitrite intermediate en route to N2O formation. Angew. Chem. Int. Ed. Engl., 2019, 58(6), 1705-1709.
[http://dx.doi.org/10.1002/anie.201811925] [PMID: 30516873]
[97]
Couzijn, E.P.A.; Zocher, E.; Bach, A.; Chen, P. Gas-phase energetics of reductive elimination from a palladium(II) N-heterocyclic carbene complex. Chemistry, 2010, 16(18), 5408-5415.
[http://dx.doi.org/10.1002/chem.200902929] [PMID: 20373306]
[98]
Lynch, B.J.; Fast, P.L.; Harris, M.; Truhlar, D.G. Adiabatic connection for kinetics. J. Phys. Chem. A, 2000, 104(21), 4811-4815.
[http://dx.doi.org/10.1021/jp000497z]
[99]
Dolg, M. Effective core potentials. In: Modern Methods and Algorithms of Quantum Chemistry; Grotendorst, J., Ed.; John von Neumann Institute for Computing: Julich, 2000; Vol. 3, pp. 507-540.
[100]
Dunning, T.H.; Hay, P.J. Modern theoretical chemistry; Plenum Press: New York, 1976.
[101]
Martin, J.M.; Sundermann, A. Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: the atoms Ga–Kr and In–Xe. J. Chem. Phys., 2001, 114(8), 3408-3420.
[http://dx.doi.org/10.1063/1.1337864]
[102]
Prieto, L.M.M.; Ávila, E.; Palma, P.; Álvarez, E.; Cámpora, J. β-Hydrogen elimination reactions of nickel and palladium methoxides stabilised by PCP Pincer ligands. Chemistry, 2015, 21(27), 9833-9849.
[http://dx.doi.org/10.1002/chem.201500652] [PMID: 26017282]
[103]
Ehlers, W.; Btihme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K.F.; Stegmann, R.; Veldkamp, A.; Frenking, G. A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc-Cu, Y-Ag and La-Au. Chem. Phys. Lett., 1993, 208, 111-114.
[http://dx.doi.org/10.1016/0009-2614(93)80086-5]
[104]
Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev., 2005, 105(8), 2999-3093.
[http://dx.doi.org/10.1021/cr9904009] [PMID: 16092826]
[105]
Wang, K.; Lu, Y.; Hu, F.D.; Yang, J.H.; Zhang, Y.; Wang, Z.X.; Wang, J.B. Palladium-catalyzed reductive cross-coupling reaction of aryl chromium(0) Fischer carbene complexes with aryl iodides. Organometallics, 2018, 37(1), 1-10.
[http://dx.doi.org/10.1021/acs.organomet.7b00657]
[106]
McPherson, K.E.; Croatt, M.P.; Morehead, A.T.; Sargent, A.L. DFT Mechanistic investigation of an enantioselective Tsuji-Trost allylation reaction. Organometallics, 2018, 37(21), 3791-3802.
[http://dx.doi.org/10.1021/acs.organomet.8b00507]
[107]
Canty, A.J.; Ariafard, A.; Sanford, M.S.; Yates, B.F. Mechanism of Pd-catalyzed Ar–Ar bond formation involving ligand-directed C–H arylation and diaryliodonium oxidants: computational studies of orthopalladation at binuclear Pd(II) centers, oxidation to form binuclear palladium(III) species, and Ar•••Ar reductive coupling. Organometallics, 2013, 32(2), 544-555.
[http://dx.doi.org/10.1021/om301013w]
[108]
Zhao, Y.; Truhlar, D.G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys., 2006, 125(19) 194101
[http://dx.doi.org/10.1063/1.2370993] [PMID: 17129083]
[109]
Zhao, Y.; Truhlar, D.G. Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A, 2006, 110(49), 13126-13130.
[http://dx.doi.org/10.1021/jp066479k] [PMID: 17149824]
[110]
Weigend, F.; Furche, F.; Ahlrichs, R. Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. J. Chem. Phys., 2003, 119(24), 12753-12762.
[http://dx.doi.org/10.1063/1.1627293]
[111]
Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A, 1998, 102(11), 1995-2001.
[http://dx.doi.org/10.1021/jp9716997]
[112]
Li, C.; Shin, K.; Liu, R.Y.; Buchwald, S.L. Engaging aldehydes in CuH-catalyzed reductive coupling reactions: stereoselective allylation with unactivated 1,3-diene pronucleophiles. Angew. Chem. Int. Ed. Engl., 2019, 58(47), 17074-17080.
[http://dx.doi.org/10.1002/anie.201911008] [PMID: 31552701]
[113]
Dolg, M.; Stoll, H.; Preuss, H. Energy‐adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys., 1989, 90(3), 1730-1734.
[http://dx.doi.org/10.1063/1.456066]
[114]
Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy‐adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys., 1987, 86(2), 866-872.
[http://dx.doi.org/10.1063/1.452288]
[115]
Qi, X.; Bai, R.; Zhu, L.; Jin, R.; Lei, A.; Lan, Y. Mechanism of synergistic Cu(II)/Cu(I)-mediated alkyne coupling: dinuclear 1,2-reductive elimination after minimum energy crossing point. J. Org. Chem., 2016, 81(4), 1654-1660.
[http://dx.doi.org/10.1021/acs.joc.5b02797] [PMID: 26807657]
[116]
Peverati, R.; Truhlar, D.G. M11-L: A local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. J. Phys. Chem. Lett., 2012, 3(1), 117-124.
[http://dx.doi.org/10.1021/jz201525m]
[117]
Peverati, R.; Truhlar, D.G. Performance of the M11 and M11-L density functionals for calculations of electronic excitation energies by adiabatic time-dependent density functional theory. Phys. Chem. Chem. Phys., 2012, 14(32), 11363-11370.
[http://dx.doi.org/10.1039/c2cp41295k] [PMID: 22801459]
[118]
Zhao, Y.; Ng, H.T.; Peverati, R.; Truhlar, D.G. Benchmark database for ylidic bond dissociation energies and its use for assessments of electronic structure methods. J. Chem. Theory Comput., 2012, 8(8), 2824-2834.
[http://dx.doi.org/10.1021/ct300457c] [PMID: 26592123]
[119]
Lan, J.; Liao, T.; Zhang, T.; Chung, L.W. Reaction mechanism of Cu(I)-mediated reductive CO2 coupling for the selective formation of oxalate: cooperative CO2 reduction to give mixed-valence Cu2(CO2•-) and nucleophilic-like attack. Inorg. Chem., 2017, 56(12), 6809-6819.
[http://dx.doi.org/10.1021/acs.inorgchem.6b03080] [PMID: 28558249]
[120]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15) 154104
[http://dx.doi.org/10.1063/1.3382344] [PMID: 20423165]
[121]
Grimme, S.; Hansen, A.; Brandenburg, J.G.; Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev., 2016, 116(9), 5105-5154.
[http://dx.doi.org/10.1021/acs.chemrev.5b00533] [PMID: 27077966]
[122]
Zhao, H.; Dang, L.; Marder, T.B.; Lin, Z. DFT studies on the mechanism of the diboration of aldehydes catalyzed by copper(I) boryl complexes. J. Am. Chem. Soc., 2008, 130(16), 5586-5594.
[http://dx.doi.org/10.1021/ja710659y] [PMID: 18373345]
[123]
Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3), 200-206.
[http://dx.doi.org/10.1016/0009-2614(89)87234-3]
[124]
Wachters, A.J.H. Gaussian basis set for molecular wavefunctions containing third‐row atoms. J. Chem. Phys., 1970, 52(3), 1033-1036.
[http://dx.doi.org/10.1063/1.1673095]
[125]
Hay, P.J. Gaussian basis sets for molecular calculations. The representation of 3 d orbitals in transition‐metal atoms. J. Chem. Phys., 1977, 66(10), 4377-4384.
[http://dx.doi.org/10.1063/1.433731]
[126]
Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys., 1981, 55(1), 117-129.
[http://dx.doi.org/10.1016/0301-0104(81)85090-2]
[127]
Chen, S.S.; Su, Y.; Han, K.L.; Li, X.W. Mechanistic studies on C-C reductive coupling of five-coordinate Rh(III) complexes. Org. Chem. Front., 2015, 2(7), 783-791.
[http://dx.doi.org/10.1039/C5QO00049A]
[128]
Williams, V.M.; Kong, J.R.; Ko, B.J.; Mantri, Y.; Brodbelt, J.S.; Baik, M.H.; Krische, M.J. ESI-MS, DFT, and synthetic studies on the H2-mediated coupling of acetylene: insertion of C=X bonds into rhodacyclopentadienes and Brønsted acid cocatalyzed hydrogenolysis of organorhodium intermediates. J. Am. Chem. Soc., 2009, 131(44), 16054-16062.
[http://dx.doi.org/10.1021/ja906225n] [PMID: 19845357]
[129]
Dunning, T.H., Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 1989, 90(2), 1007-1023.
[http://dx.doi.org/10.1063/1.456153]
[130]
Paparo, A.; Silvia, J.S.; Kefalidis, C.E.; Spaniol, T.P.; Maron, L.; Okuda, J.; Cummins, C.C. A dimetalloxycarbene bonding mode and reductive coupling mechanism for oxalate formation from CO2. Angew. Chem. Int. Ed. Engl., 2015, 54(31), 9115-9119.
[http://dx.doi.org/10.1002/anie.201502532] [PMID: 26110967]
[131]
Castro, L.; Labouille, S.; Kindra, D.R.; Ziller, J.W.; Nief, F.; Evans, W.J.; Maron, L. Insights into the mechanism of reaction of [(C5Me5)2Sm(II)(thf)2] with CO2 and COS by DFT studies. Chemistry, 2012, 18(25), 7886-7895.
[http://dx.doi.org/10.1002/chem.201103192] [PMID: 22573516]
[132]
Schmidt, A-C.; Heinemann, F.W.; Kefalidis, C.E.; Maron, L.; Roesky, P.W.; Meyer, K. Activation of SO2 and CO2 by trivalent uranium leading to sulfite/dithionite and carbonate/oxalate complexes. Chemistry, 2014, 20(42), 13501-13506.
[http://dx.doi.org/10.1002/chem.201404400] [PMID: 25146340]
[133]
Duong, H.A.; Tekavec, T.N.; Arif, A.M.; Louie, J. Reversible carboxylation of N-heterocyclic carbenes. Chem. Commun. (Camb.), 2004, (1), 112-113.
[http://dx.doi.org/10.1039/b311350g] [PMID: 14737357]
[134]
Streuff, J.; Himmel, D.; Younas, S.L. Understanding titanium-catalysed radical-radical reactions: a DFT study unravels the complex kinetics of ketone-nitrile couplings. Dalton Trans., 2018, 47(14), 5072-5082.
[http://dx.doi.org/10.1039/C8DT00643A] [PMID: 29561012]
[135]
Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 2003, 91(14) 146401
[http://dx.doi.org/10.1103/PhysRevLett.91.146401] [PMID: 14611541]
[136]
Klamt, A.; Schurmann, G. Efficient use of the resolution of the identity approximation in time-dependent density functional calculations with hybrid functionals. J. Chem. Soc. Perkin Trans, 1993, 2, 799-805.
[http://dx.doi.org/10.1039/P29930000799]
[137]
Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys., 2006, 8(9), 1057-1065.
[http://dx.doi.org/10.1039/b515623h] [PMID: 16633586]
[138]
Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor. Chem. Acc., 2007, 117(4), 587-597.
[http://dx.doi.org/10.1007/s00214-007-0250-5]
[139]
Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J.C. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A, 1998, 102(26), 5074-5085.
[http://dx.doi.org/10.1021/jp980017s]
[140]
Klamt, A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem., 1995, 99(7), 2224-2235.
[http://dx.doi.org/10.1021/j100007a062]
[141]
Eckert, F.; Klamt, A. Fast solvent screening via quantum chemistry: COSMO‐RS approach. AIChE J., 2002, 48(2), 369-385.
[http://dx.doi.org/10.1002/aic.690480220]
[142]
Merz, L.S.; Wadepohl, H.; Clot, E.; Gade, L.H. Dehydrogenative coupling of 4-substituted pyridines mediated by a zirconium(II) synthon: reaction pathways and dead ends. Chem. Sci. (Camb.), 2018, 9(23), 5223-5232.
[http://dx.doi.org/10.1039/C8SC01025K] [PMID: 29997877]
[143]
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7), 1456-1465.
[http://dx.doi.org/10.1002/jcc.21759] [PMID: 21370243]
[144]
Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys., 1999, 110(13), 6158-6170.
[http://dx.doi.org/10.1063/1.478522]
[145]
Peterson, K.A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys., 2003, 119(21), 11113-11123.
[http://dx.doi.org/10.1063/1.1622924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy