Review Article

Mesenchymal Stem Cells: A New Generation of Therapeutic Agents as Vehicles in Gene Therapy

Author(s): Mahmoud Gharbavi, Ali Sharafi and Saeed Ghanbarzadeh*

Volume 20, Issue 4, 2020

Page: [269 - 284] Pages: 16

DOI: 10.2174/1566523220666200607190339

Price: $65

Abstract

In recent years, mesenchymal stem cells (MSCs) as a new tool for therapeutic gene delivery in clinics have attracted much attention. Their advantages cover longer lifespan, better isolation, and higher transfection efficiency and proliferation rate. MSCs are the preferred approach for cell-based therapies because of their in vitro self-renewal capacity, migrating especially to tumor tissues, as well as anti-inflammatory and immunomodulatory properties. Therefore, they have considerable efficiency in genetic engineering for future clinical applications in cancer gene therapy and other diseases. For improving therapeutic efficiency, targeted therapy of cancers can be achieved through the sustained release of therapeutic agents and functional gene expression induction to the intended tissues. The development of a new vector in gene therapy can improve the durability of a transgene expression. Also, the safety of the vector, if administered systemically, may resolve several problems, such as durability of expression and the host immune response. Currently, MSCs are prominent candidates as cell vehicles for both preclinical and clinical trials due to the secretion of therapeutic agents in several cancers. In the present study, we discuss the status of gene therapy in both viral and non-viral vectors along with their limitations. Throughout this study, the use of several nano-carriers for gene therapy is also investigated. Finally, we critically discuss the promising advantages of MSCs in targeted gene delivery, tumor inhibition and their utilization as the gene carriers in clinical situations.

Keywords: Gene therapy, mesenchymal stem cells, nano-carrier vectors, gene immunotherapies, bone marrow, cell therapy vehicles.

Graphical Abstract

[1]
Cihova M, Altanerova V, Altaner C. Stem cell based cancer gene therapy. Mol Pharm 2011; 8(5): 1480-7.
[http://dx.doi.org/10.1021/mp200151a] [PMID: 21755953]
[2]
Kim E-J, Kim N, Cho S-G. The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation. Exper Mol Med 2013; 45(1): e2.
[http://dx.doi.org/10.1038/emm.2013.2]
[3]
Leonardi E, Devescovi V, Perut F, Ciapetti G, Giunti A. Isolation, characterisation and osteogenic potential of human bone marrow stromal cells derived from the medullary cavity of the femur. Chir Organi Mov 2008; 92(2): 97-103.
[http://dx.doi.org/10.1007/s12306-008-0057-0] [PMID: 18791684]
[4]
Bieback K, Kern S, Klüter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004; 22(4): 625-34.
[http://dx.doi.org/10.1634/stemcells.22-4-625] [PMID: 15277708]
[5]
Izadpanah R, Trygg C, Patel B, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 2006; 99(5): 1285-97.
[http://dx.doi.org/10.1002/jcb.20904] [PMID: 16795045]
[6]
Zhang Y, Li C, Jiang X, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol 2004; 32(7): 657-64.
[http://dx.doi.org/10.1016/j.exphem.2004.04.001] [PMID: 15246162]
[7]
Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 2007; 16(6): 931-52.
[http://dx.doi.org/10.1089/scd.2007.0036] [PMID: 18047393]
[8]
Dianat-Moghadam H, Rokni M, Marofi F, Panahi Y, Yousefi M. Natural killer cell-based immunotherapy: From transplantation toward targeting cancer stem cells. J Cell Physiol 2018; 234(1): 259-73.
[http://dx.doi.org/10.1002/jcp.26878] [PMID: 30144312]
[9]
Corrigan-Curay J, Cohen-Haguenauer O, O’Reilly M, et al. Challenges in vector and trial design using retroviral vectors for long-term gene correction in hematopoietic stem cell gene therapy. Mol Ther 2012; 20(6): 1084-94.
[http://dx.doi.org/10.1038/mt.2012.93] [PMID: 22652996]
[10]
Dolati S, Ahmadi M, Aghebti-Maleki L, et al. Nanocurcumin is a potential novel therapy for multiple sclerosis by influencing inflammatory mediators. Pharmacol Rep 2018; 70(6): 1158-67.
[http://dx.doi.org/10.1016/j.pharep.2018.05.008] [PMID: 30340096]
[11]
Sanz L, Compte M, Guijarro-Muñoz I, Álvarez-Vallina L. Non-hematopoietic stem cells as factories for in vivo therapeutic protein production. Gene Ther 2012; 19(1): 1-7.
[http://dx.doi.org/10.1038/gt.2011.68] [PMID: 21562594]
[12]
Seow Y, Wood MJ. Biological gene delivery vehicles: beyond viral vectors. Mol Ther 2009; 17(5): 767-77.
[http://dx.doi.org/10.1038/mt.2009.41] [PMID: 19277019]
[13]
Cavarretta IT, Altanerova V, Matuskova M, Kucerova L, Culig Z, Altaner C. Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 2010; 18(1): 223-31.
[http://dx.doi.org/10.1038/mt.2009.237] [PMID: 19844197]
[14]
Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999; 286(5448): 2244-5.
[http://dx.doi.org/10.1126/science.286.5448.2244] [PMID: 10636774]
[15]
Yao H, Ng SS, Tucker WO, et al. The gene transfection efficiency of a folate-PEI600-cyclodextrin nanopolymer. Biomaterials 2009; 30(29): 5793-803.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.051] [PMID: 19615741]
[16]
Yang X, Walboomers XF, van den Dolder J, et al. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Eng Part A 2008; 14(1): 71-81.
[http://dx.doi.org/10.1089/ten.a.2007.0102] [PMID: 18333806]
[17]
Bisht S, Bhakta G, Mitra S, Maitra A. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int J Pharm 2005; 288(1): 157-68.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.035] [PMID: 15607268]
[18]
Ding W, Izumisawa T, Hattori Y, Qi X, Kitamoto D, Maitani Y. Non-ionic surfactant modified cationic liposomes mediated gene transfection in vitro and in the mouse lung. Biol Pharm Bull 2009; 32(2): 311-5.
[http://dx.doi.org/10.1248/bpb.32.311] [PMID: 19182397]
[19]
Mammen B, Ramakrishnan T, Sudhakar Vijayalakshmi U. Principles of gene therapy. Indian J Dent Res 2007; 18(4): 196-200.
[http://dx.doi.org/10.4103/0970-9290.35832] [PMID: 17938498]
[20]
Van Tendeloo VF, Van Broeckhoven C, Berneman ZN. Gene therapy: principles and applications to hematopoietic cells. Leukemia 2001; 15(4): 523-44.
[http://dx.doi.org/10.1038/sj.leu.2402085] [PMID: 11368355]
[21]
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4(5): 346-58.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[22]
Runcie K, Budman DR, John V, Seetharamu N. Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol Med 2018; 24(1): 50.
[http://dx.doi.org/10.1186/s10020-018-0051-4] [PMID: 30249178]
[23]
Naldini L. Gene therapy returns to centre stage. Nature 2015; 526(7573): 351-60.
[http://dx.doi.org/10.1038/nature15818] [PMID: 26469046]
[24]
Filareto A, Parker S, Darabi R, et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 2013; 4: 1549.
[http://dx.doi.org/10.1038/ncomms2550] [PMID: 23462992]
[25]
Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 2014; 15(11): 1009-16.
[http://dx.doi.org/10.1038/ni.3002] [PMID: 25329189]
[26]
Aboalola D, Han VK. Different effects of insulin-like growth Factor-1 and insulin-like growth Factor-2 on myogenic differentiation of human mesenchymal stem cells. Stem Cells International 2017.
[http://dx.doi.org/10.1155/2017/8286248]
[27]
Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med 2012; 18(2): 128-34.
[http://dx.doi.org/10.1016/j.molmed.2011.10.004] [PMID: 22118960]
[28]
Roebben G, Ramirez-Garcia S, Hackley VA, Roesslein M, Klaessig F, Kestens V, et al. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J Nanopart Res 2011; 13(7): 2675.
[http://dx.doi.org/10.1007/s11051-011-0423-y]
[29]
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823-39.
[http://dx.doi.org/10.1289/ehp.7339] [PMID: 16002369]
[30]
Ates M, Demir V, Arslan Z, Daniels J, Farah IO, Bogatu C. Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation, toxicity, and depuration in Artemia salina larvae. Environ Toxicol 2015; 30(1): 109-18.
[http://dx.doi.org/10.1002/tox.21917] [PMID: 24753078]
[31]
Kargozar S, Mozafari M. Nanotechnology and Nanomedicine: Start small, think big. Materials Today: Proceedings 2018; 5(7): 15492-500.
[32]
Fakruddin M, Hossain Z, Afroz H. Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnology 2012; 10(1): 31.
[http://dx.doi.org/10.1186/1477-3155-10-31] [PMID: 22817658]
[33]
Talelli M, Duro-Castaño A, Rodríguez-Escalona G, Vicent M. Smart polymer nanocarriers for drug delivery Smart polymers and their applications. Elsevier 2014; pp. 327-58.
[http://dx.doi.org/10.1533/9780857097026.2.327]
[34]
Shim G, Kim D, Le Q-V, Park GT, Kwon T, Oh Y-K. Nonviral delivery systems for cancer gene therapy: strategies and challenges. Curr Gene Ther 2018; 18(1): 3-20.
[http://dx.doi.org/10.2174/1566523218666180119121949] [PMID: 29357792]
[35]
Lin G, Zhang H, Huang L. Smart polymeric nanoparticles for cancer gene delivery. Mol Pharm 2015; 12(2): 314-21.
[http://dx.doi.org/10.1021/mp500656v] [PMID: 25531409]
[36]
Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 2006; 13(4): 283-7.
[http://dx.doi.org/10.1038/sj.gt.3302720] [PMID: 16462855]
[37]
Thomas M, Klibanov AM. Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol 2003; 62(1): 27-34.
[http://dx.doi.org/10.1007/s00253-003-1321-8] [PMID: 12719940]
[38]
Martins P, Rosa DR, Fernandes A, Baptista PV. Nanoparticle drug delivery systems: recent patents and applications in nanomedicine. Recent Pat Nanomed 2013; 3(2): 105-18.
[http://dx.doi.org/10.2174/1877912304666140304000133]
[39]
Mitchell J. Small molecule immunosensing using surface plasmon resonance. Sensors (Basel) 2010; 10(8): 7323-46.
[http://dx.doi.org/10.3390/s100807323] [PMID: 22163605]
[40]
Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 2012; 85(1010): 101-13.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[41]
Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today 2015; 20(9): 1143-51.
[http://dx.doi.org/10.1016/j.drudis.2015.05.009] [PMID: 26007605]
[42]
Conde J, Ambrosone A, Hernandez Y, Tian F, et al. 15 years on siRNA delivery: beyond the state-of-the-art on inorganic nanoparticles for RNAi therapeutics. Nano Today 2015; 10(4): 421-50.
[http://dx.doi.org/10.1016/j.nantod.2015.06.008]
[43]
Ding Y, Jiang Z, Saha K, et al. Gold nanoparticles for nucleic acid delivery. Mol Ther 2014; 22(6): 1075-83.
[http://dx.doi.org/10.1038/mt.2014.30] [PMID: 24599278]
[44]
Wong JKL, Mohseni R, Hamidieh AA, MacLaren RE, Habib N, Seifalian AM. Will nanotechnology bring new hope for gene delivery? Trends Biotechnol 2017; 35(5): 434-51.
[http://dx.doi.org/10.1016/j.tibtech.2016.12.009] [PMID: 28108036]
[45]
Liu X, He W, Fang Z, Kienzle A, Feng Q. Influence of silver nanoparticles on osteogenic differentiation of human mesenchymal stem cells. J Biomed Nanotechnol 2014; 10(7): 1277-85.
[http://dx.doi.org/10.1166/jbn.2014.1824] [PMID: 24804548]
[46]
Bogle K, Dhole S, Bhoraskar V. Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology 2006; 17(13): 3204.
[http://dx.doi.org/10.1088/0957-4484/17/13/021]
[47]
Tao Y, Ju E, Ren J, Qu X. Metallization of plasmid DNA for efficient gene delivery. Chem Commun (Camb) 2013; 49(84): 9791-3.
[http://dx.doi.org/10.1039/c3cc45834b] [PMID: 24026136]
[48]
Berdnikova DV, Ihmels H, Schönherr H, Steuber M, Wesner D. Photoinduced formation of stable Ag-nanoparticles from a ternary ligand-DNA-Ag(+) complex. Org Biomol Chem 2015; 13(12): 3766-70.
[http://dx.doi.org/10.1039/C5OB00295H] [PMID: 25690723]
[49]
Sarkar K, Banerjee SL, Kundu PP, Madras G, Chatterjee K. Biofunctionalized surface-modified silver nanoparticles for gene delivery. J Mater Chem B Mater Biol Med 2015; 3(26): 5266-76.
[http://dx.doi.org/10.1039/C5TB00614G] [PMID: 32262602]
[50]
Jose LM, Kuriakose S. Spectroscopic and thermal investigation of silver nanoparticle dispersed biopolymer matrix bovine serum albumin: a promising antimicrobial agent against the pathogenic bacterial strains. Macromol Res 2019; 27: 670-8.
[http://dx.doi.org/10.1007/s13233-019-7098-0]
[51]
Chandra A, Singh M. Amino acid coated silver nanoparticles: a green catalyst for methylene blue reduction. Int J Chem Mol Nuc Mat Metal Eng 2015; 10(1): 1-7.
[http://dx.doi.org/10.5281/zenodo.1110580]
[52]
Chandra A, Singh M. Biosynthesis of amino acid functionalized silver nanoparticles for potential catalytic and oxygen sensing applications. Inorg Chem Front 2018; 5(1): 233-57.
[http://dx.doi.org/10.1039/C7QI00569E]
[53]
McBain SC, Griesenbach U, Xenariou S, et al. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 2008; 19(40): 405102.
[http://dx.doi.org/10.1088/0957-4484/19/40/405102] [PMID: 21832609]
[54]
Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2014; 10(2): 321-32.
[http://dx.doi.org/10.4161/hv.26796] [PMID: 24128651]
[55]
Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 2011; 7(4): 460-4.
[http://dx.doi.org/10.1002/smll.201001522] [PMID: 21360803]
[56]
Chen Y, Tan C, Zhang H, Wang L. Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 2015; 44(9): 2681-701.
[http://dx.doi.org/10.1039/C4CS00300D] [PMID: 25519856]
[57]
Li K, Feng L, Shen J, et al. Patterned substrates of nano-graphene oxide mediating highly localized and efficient gene delivery. ACS Appl Mater Interfaces 2014; 6(8): 5900-7.
[http://dx.doi.org/10.1021/am5008134] [PMID: 24673573]
[58]
Kortshagen U. Nonthermal plasma synthesis of semiconductor nanocrystals. J Phys D Appl Phys 2009; 42(11): 113001.
[http://dx.doi.org/10.1088/0022-3727/42/11/113001]
[59]
Shao L, Gao Y, Yan F. Semiconductor quantum dots for biomedicial applications. Sensors (Basel) 2011; 11(12): 11736-51.
[http://dx.doi.org/10.3390/s111211736] [PMID: 22247690]
[60]
Shen L. Biocompatible polymer/quantum dots hybrid materials: current status and future developments. J Funct Biomater 2011; 2(4): 355-72.
[http://dx.doi.org/10.3390/jfb2040355] [PMID: 24956449]
[61]
Yuan X, Liu Z, Guo Z, Ji Y, Jin M, Wang X. Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res Lett 2014; 9(1): 108.
[http://dx.doi.org/10.1186/1556-276X-9-108] [PMID: 24597852]
[62]
Cheng X, Pu X, Jun P, Zhu X, Zhu D, Chen M. Rapid and quantitative detection of C-reactive protein using quantum dots and immunochromatographic test strips. Int J Nanomedicine 2014; 9: 5619-26.
[PMID: 25506215]
[63]
Dizaj SM, Jafari S, Khosroushahi AY. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett 2014; 9(1): 252.
[http://dx.doi.org/10.1186/1556-276X-9-252] [PMID: 24936161]
[64]
Shim G, Kim M-G, Park JY, Oh Y-K. Application of cationic liposomes for delivery of nucleic acids. Asian J Pharmace Sci 2013; 8(2): 72-80.
[http://dx.doi.org/10.1016/j.ajps.2013.07.009]
[65]
Elouahabi A, Ruysschaert J-M. Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 2005; 11(3): 336-47.
[http://dx.doi.org/10.1016/j.ymthe.2004.12.006] [PMID: 15727930]
[66]
Martin B, Sainlos M, Aissaoui A, et al. The design of cationic lipids for gene delivery. Curr Pharm Des 2005; 11(3): 375-94.
[http://dx.doi.org/10.2174/1381612053382133] [PMID: 15723632]
[67]
Karmali PP, Chaudhuri A. Cationic liposomes as non-viral carriers of gene medicines: resolved issues, open questions, and future promises. Med Res Rev 2007; 27(5): 696-722.
[http://dx.doi.org/10.1002/med.20090] [PMID: 17022036]
[68]
Mével M, Kamaly N, Carmona S, et al. DODAG; a versatile new cationic lipid that mediates efficient delivery of pDNA and siRNA. J Control Release 2010; 143(2): 222-32.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.001] [PMID: 19969034]
[69]
Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84(21): 7413-7.
[http://dx.doi.org/10.1073/pnas.84.21.7413] [PMID: 2823261]
[70]
Kawaura C, Noguchi A, Furuno T, Nakanishi M. Atomic force microscopy for studying gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. FEBS Lett 1998; 421(1): 69-72.
[http://dx.doi.org/10.1016/S0014-5793(97)01532-9] [PMID: 9462842]
[71]
Alshamsan A, Hamdy S, Samuel J, El-Kadi AO, Lavasanifar A, Uludağ H. The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials 2010; 31(6): 1420-8.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.003] [PMID: 19913908]
[72]
Felger I, Pinsker W. Histone gene transposition in the phylogeny of the Drosophila obscura group. J Zool Syst Evol Res 1987; 25(2): 127-40.
[http://dx.doi.org/10.1111/j.1439-0469.1987.tb00596.x]
[73]
Lin Q, Chen J, Zhang Z, Zheng G. Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine (Lond) 2014; 9(1): 105-20.
[http://dx.doi.org/10.2217/nnm.13.192] [PMID: 24354813]
[74]
Sonoke S, Ueda T, Fujiwara K, et al. Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res 2008; 68(21): 8843-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0127] [PMID: 18974128]
[75]
Zubko R, Frishman W. Stem cell therapy for the kidney? Am J Ther 2009; 16(3): 247-56.
[http://dx.doi.org/10.1097/MJT.0b013e3181800591] [PMID: 19092639]
[76]
Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 2006; 12(4): 459-65.
[http://dx.doi.org/10.1038/nm1391] [PMID: 16582917]
[77]
Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 2002; 99(4): 2199-204.
[http://dx.doi.org/10.1073/pnas.042678299] [PMID: 11854516]
[78]
Shirley D, Marsh D, Jordan G, McQuaid S, Li G. Systemic recruitment of osteoblastic cells in fracture healing. J Orthop Res 2005; 23(5): 1013-21.
[http://dx.doi.org/10.1016/j.orthres.2005.01.013] [PMID: 16140187]
[79]
Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 2005; 304(1): 81-90.
[http://dx.doi.org/10.1016/j.yexcr.2004.11.011] [PMID: 15707576]
[80]
Natsu K, Ochi M, Mochizuki Y, Hachisuka H, Yanada S, Yasunaga Y. Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers. Tissue Eng 2004; 10(7-8): 1093-112.
[http://dx.doi.org/10.1089/ten.2004.10.1093] [PMID: 15363167]
[81]
da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119(Pt 11): 2204-13.
[http://dx.doi.org/10.1242/jcs.02932] [PMID: 16684817]
[82]
Gonin P, Arandel L, Van Wittenberghe L, Marais T, Perez N, Danos O. Femoral intra‐arterial injection: a tool to deliver and assess recombinant AAV constructs in rodents whole hind limb. J Gene Med 2005; 7(6): 782-91.
[http://dx.doi.org/10.1002/jgm.716]
[83]
Fougerousse F, Bartoli M, Poupiot J, et al. Phenotypic correction of α-sarcoglycan deficiency by intra-arterial injection of a muscle-specific serotype 1 rAAV vector. Mol Ther 2007; 15(1): 53-61.
[http://dx.doi.org/10.1038/sj.mt.6300022]
[84]
Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179(3): 1855-63.
[http://dx.doi.org/10.4049/jimmunol.179.3.1855] [PMID: 17641052]
[85]
Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs (Print) 2001; 169(1): 12-20.
[http://dx.doi.org/10.1159/000047856] [PMID: 11340257]
[86]
Steck E, Fischer J, Lorenz H, Gotterbarm T, Jung M, Richter W. Mesenchymal stem cell differentiation in an experimental cartilage defect: restriction of hypertrophy to bone-close neocartilage. Stem Cells Dev 2009; 18(7): 969-78.
[http://dx.doi.org/10.1089/scd.2008.0213] [PMID: 19049404]
[87]
Spees JL, Olson SD, Ylostalo J, et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 2003; 100(5): 2397-402.
[http://dx.doi.org/10.1073/pnas.0437997100] [PMID: 12606728]
[88]
Krause D, Cantley LG. Bone marrow plasticity revisited: protection or differentiation in the kidney tubule? J Clin Invest 2005; 115(7): 1705-8.
[http://dx.doi.org/10.1172/JCI25540] [PMID: 16007248]
[89]
Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96(21): 1593-603.
[http://dx.doi.org/10.1093/jnci/djh299] [PMID: 15523088]
[90]
Hung S-C, Pochampally RR, Hsu S-C, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One 2007; 2(5): e416.
[http://dx.doi.org/10.1371/journal.pone.0000416] [PMID: 17476338]
[91]
Rosová I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 2008; 26(8): 2173-82.
[http://dx.doi.org/10.1634/stemcells.2007-1104] [PMID: 18511601]
[92]
Klopp AH, Spaeth EL, Dembinski JL, et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 2007; 67(24): 11687-95.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1406] [PMID: 18089798]
[93]
Aquino JB, Bolontrade MF, García MG, Podhajcer OL, Mazzolini G. Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther 2010; 17(6): 692-708.
[http://dx.doi.org/10.1038/gt.2010.10] [PMID: 20220785]
[94]
Kundu JK, Surh Y-J. Inflammation: gearing the journey to cancer. Mutat Res 2008; 659(1-2): 15-30.
[http://dx.doi.org/10.1016/j.mrrev.2008.03.002] [PMID: 18485806]
[95]
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454(7203): 436-.
[96]
Balkwill F, Ed. Chemokine biology in cancer Seminars in immunology. Elsevier 2003.
[97]
François S, Bensidhoum M, Mouiseddine M, et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 2006; 24(4): 1020-9.
[http://dx.doi.org/10.1634/stemcells.2005-0260] [PMID: 16339642]
[98]
Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries? Nat Med 2001; 7(4): 393-5.
[http://dx.doi.org/10.1038/86439] [PMID: 11283651]
[99]
Pillozzi S, Becchetti A. Ion channels in hematopoietic and mesenchymal stem cells. Stem Cells Int 2012; 2012: 217910.
[http://dx.doi.org/10.1155/2012/217910]
[100]
Placencio VR, Li X, Sherrill TP, Fritz G, Bhowmick NA. Bone marrow derived mesenchymal stem cells incorporate into the prostate during regrowth. PLoS One 2010; 5(9): e12920.
[http://dx.doi.org/10.1371/journal.pone.0012920] [PMID: 20886110]
[101]
Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int 2018; 2018: 3057624.
[http://dx.doi.org/10.1155/2018/3057624]
[102]
Screven R, Kenyon E, Myers MJ, et al. Immunophenotype and gene expression profile of mesenchymal stem cells derived from canine adipose tissue and bone marrow. Vet Immunol Immunopathol 2014; 161(1-2): 21-31.
[http://dx.doi.org/10.1016/j.vetimm.2014.06.002] [PMID: 25026887]
[103]
Joel MDM, Yuan J, Wang J, et al. MSC: immunoregulatory effects, roles on neutrophils and evolving clinical potentials. Am J Transl Res 2019; 11(6): 3890-904.
[PMID: 31312397]
[104]
Harn DA, McDonald J, Atochina O, Da’dara AA. Modulation of host immune responses by helminth glycans. Immunol Rev 2009; 230(1): 247-57.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00799.x] [PMID: 19594641]
[105]
Stagg J, Pommey S, Eliopoulos N, Galipeau J. Interferon-γ-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 2006; 107(6): 2570-7.
[http://dx.doi.org/10.1182/blood-2005-07-2793] [PMID: 16293599]
[106]
Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5(1): 54-63.
[http://dx.doi.org/10.1016/j.stem.2009.05.003] [PMID: 19570514]
[107]
Li Y, Zhang D, Xu L, et al. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol 2019; 16(12): 908-20.
[http://dx.doi.org/10.1038/s41423-019-0204-6] [PMID: 30778166]
[108]
Berglund AK, Fortier LA, Antczak DF, Schnabel LV. Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Res Ther 2017; 8(1): 288.
[http://dx.doi.org/10.1186/s13287-017-0742-8] [PMID: 29273086]
[109]
Burr SP, Dazzi F, Garden OA. Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance? Immunol Cell Biol 2013; 91(1): 12-8.
[http://dx.doi.org/10.1038/icb.2012.60] [PMID: 23146942]
[110]
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726-36.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[111]
Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99(10): 3838-43.
[http://dx.doi.org/10.1182/blood.V99.10.3838] [PMID: 11986244]
[112]
Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA 2007; 104(49): 19446-51.
[http://dx.doi.org/10.1073/pnas.0706832104] [PMID: 18042719]
[113]
Raghuvanshi S, Sharma P, Singh S, Van Kaer L, Das G. Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells. Proc Natl Acad Sci USA 2010; 107(50): 21653-8.
[http://dx.doi.org/10.1073/pnas.1007967107] [PMID: 21135221]
[114]
Dhingra S, Li P, Huang X-P, et al. Preserving prostaglandin E2 level prevents rejection of implanted allogeneic mesenchymal stem cells and restores postinfarction ventricular function. Circulation 2013; 12811: S69-78.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000324]
[115]
Boumaza I, Srinivasan S, Witt WT, et al. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun 2009; 32(1): 33-42.
[http://dx.doi.org/10.1016/j.jaut.2008.10.004] [PMID: 19062254]
[116]
Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β. J Immunol 2010; 184(10): 5885-94.
[http://dx.doi.org/10.4049/jimmunol.0903143] [PMID: 20382885]
[117]
Nemeth K, Keane-Myers A, Brown JM, et al. Bone marrow stromal cells use TGF-β to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA 2010; 107(12): 5652-7.
[http://dx.doi.org/10.1073/pnas.0910720107] [PMID: 20231466]
[118]
Choi Y-S, Jeong J-A, Lim D-S. Mesenchymal stem cell-mediated immature dendritic cells induce regulatory T cell-based immunosuppressive effect. Immunol Invest 2012; 41(2): 214-29.
[http://dx.doi.org/10.3109/08820139.2011.619022] [PMID: 22017637]
[119]
Wang S, Qu X, Zhao RC. Clinical applications of mesenchymal stem cells. J Hematol Oncol 2012; 5(1): 19.
[http://dx.doi.org/10.1186/1756-8722-5-19] [PMID: 22546280]
[120]
Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5(6): 485-9.
[http://dx.doi.org/10.1080/14653240310003611] [PMID: 14660044]
[121]
Stagg J. Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue Antigens 2007; 69(1): 1-9.
[http://dx.doi.org/10.1111/j.1399-0039.2006.00739.x] [PMID: 17212702]
[122]
Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111(3): 1327-33.
[http://dx.doi.org/10.1182/blood-2007-02-074997] [PMID: 17951526]
[123]
Hoogduijn MJ, Popp F, Verbeek R, et al. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol 2010; 10(12): 1496-500.
[http://dx.doi.org/10.1016/j.intimp.2010.06.019] [PMID: 20619384]
[124]
Marigo I, Dazzi F, Eds. The immunomodulatory properties of mesenchymal stem cells Seminars in immunopathology. Springer 2011.
[125]
Matar P, Alaniz L, Rozados V, et al. Immunotherapy for liver tumors: present status and future prospects. J Biomed Sci 2009; 16(1): 30.
[http://dx.doi.org/10.1186/1423-0127-16-30] [PMID: 19272130]
[126]
Morgan RA, Couture L, Elroy-Stein O, Ragheb J, Moss B, Anderson WF. Retroviral vectors containing putative internal ribosome entry sites: development of a polycistronic gene transfer system and applications to human gene therapy. Nucleic Acids Res 1992; 20(6): 1293-9.
[http://dx.doi.org/10.1093/nar/20.6.1293] [PMID: 1313966]
[127]
Johnson-Saliba M, Jans DA. Gene therapy: optimising DNA delivery to the nucleus. Curr Drug Targets 2001; 2(4): 371-99.
[http://dx.doi.org/10.2174/1389450013348245] [PMID: 11732638]
[128]
Verma IM, Naldini L, Kafri T, et al. Gene therapy: promises, problems and prospects genes and resistance to disease. Springer 2000; pp. 147-57.
[129]
Matthews KE, Keating A. Gene therapy with physical methods of gene transfer. Transfus Sci 1996; 17(1): 29-34.
[http://dx.doi.org/10.1016/0955-3886(95)00055-0] [PMID: 10163393]
[130]
Allay JA, Dennis JE, Haynesworth SE, et al. LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum Gene Ther 1997; 8(12): 1417-27.
[http://dx.doi.org/10.1089/hum.1997.8.12-1417] [PMID: 9287142]
[131]
Koç ON, Lazarus HM. Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant 2001; 27(3): 235-9.
[http://dx.doi.org/10.1038/sj.bmt.1702791] [PMID: 11277170]
[132]
Reubinoff BE, Pera MF, Fong C-Y, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000; 18(4): 399-404.
[http://dx.doi.org/10.1038/74447] [PMID: 10748519]
[133]
Bjerknes M, Cheng H. Multipotential stem cells in adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol 2002; 283(3): G767-77.
[http://dx.doi.org/10.1152/ajpgi.00415.2001] [PMID: 12181193]
[134]
Karahuseyinoglu S, Cinar O, Kilic E, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 2007; 25(2): 319-31.
[http://dx.doi.org/10.1634/stemcells.2006-0286] [PMID: 17053211]
[135]
Volarevic V, Al-Qahtani A, Arsenijevic N, Pajovic S, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity 2010; 43(4): 255-63.
[http://dx.doi.org/10.3109/08916930903305641] [PMID: 19845478]
[136]
Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009; 20(5-6): 419-27.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.002] [PMID: 19926330]
[137]
Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC. Paracrine mechanisms of mesenchymal stem cells in tissue repair Mesenchymal Stem Cells. Springer 2016; pp. 123-46.
[138]
Roybal JL, Santore MT, Flake AW, Eds. Stem cell and genetic therapies for the fetus seminars in fetal and neonatal medicine. Elsevier 2010.
[139]
Khakoo AY, Pati S, Anderson SA, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 2006; 203(5): 1235-47.
[http://dx.doi.org/10.1084/jem.20051921] [PMID: 16636132]
[140]
Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res 2002; 62(13): 3603-8.
[PMID: 12097260]
[141]
Nakamura T, Ueno T, Sakamoto M, et al. Suppression of transforming growth factor-β results in upregulation of transcription of regeneration factors after chronic liver injury. J Hepatol 2004; 41(6): 974-82.
[http://dx.doi.org/10.1016/j.jhep.2004.08.015] [PMID: 15582131]
[142]
Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65(8): 3307-18.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1874] [PMID: 15833864]
[143]
Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 2006; 5(3): 755-66.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0334] [PMID: 16546991]
[144]
Stoff-Khalili MA, Rivera AA, Mathis JM, et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 2007; 105(2): 157-67.
[http://dx.doi.org/10.1007/s10549-006-9449-8] [PMID: 17221158]
[145]
Zhou Z, Bolontrade MF, Reddy K, et al. Suppression of Ewing’s sarcoma tumor growth, tumor vessel formation, and vasculogenesis following anti vascular endothelial growth factor receptor-2 therapy. Clin Cancer Res 2007; 13(16): 4867-73.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0133] [PMID: 17699866]
[146]
Krämer I, Lipp HP. Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer. J Clin Pharm Ther 2007; 32(1): 1-14.
[http://dx.doi.org/10.1111/j.1365-2710.2007.00800.x] [PMID: 17286784]
[147]
Cairns R, Papandreou I, Denko N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 2006; 4(2): 61-70.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0002] [PMID: 16513837]
[148]
McDonald DM, Baluk P. Significance of blood vessel leakiness in cancer. Cancer Res 2002; 62(18): 5381-5.
[PMID: 12235011]
[149]
Smith J, Kontermann RE, Embleton J, Kumar S. Antibody phage display technologies with special reference to angiogenesis. FASEB J 2005; 19(3): 331-41.
[http://dx.doi.org/10.1096/fj.04-2863rev] [PMID: 15746176]
[150]
Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer 2001; 1(1): 46-54.
[http://dx.doi.org/10.1038/35094059] [PMID: 11900251]
[151]
Wang H, Cao F, De A, et al. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 2009; 27(7): 1548-58.
[http://dx.doi.org/10.1002/stem.81] [PMID: 19544460]
[152]
Balber AE. Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine. Stem Cells 2011; 29(4): 570-5.
[http://dx.doi.org/10.1002/stem.613] [PMID: 21308868]
[153]
Wu J, Li J, Zhang N, Zhang C. Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Res Cardiol 2011; 106(3): 317-24.
[http://dx.doi.org/10.1007/s00395-011-0168-x] [PMID: 21424917]
[154]
Tabatabai G, Wick W, Weller M. Stem cell-mediated gene therapies for malignant gliomas: a promising targeted therapeutic approach? Discov Med 2011; 11(61): 529-36.
[PMID: 21712019]
[155]
Matushansky I, Hernando E, Socci ND, et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 2007; 117(11): 3248-57.
[http://dx.doi.org/10.1172/JCI31377] [PMID: 17948129]
[156]
Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007; 11(5): 421-9.
[http://dx.doi.org/10.1016/j.ccr.2007.02.027] [PMID: 17482132]
[157]
Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011; 19(2): 257-72.
[http://dx.doi.org/10.1016/j.ccr.2011.01.020] [PMID: 21316604]
[158]
Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science 2004; 306(5701): 1568-71.
[http://dx.doi.org/10.1126/science.1099513] [PMID: 15567866]
[159]
Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008; 68(11): 4331-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0943] [PMID: 18519693]
[160]
Bernardo ME, Zaffaroni N, Novara F, et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 2007; 67(19): 9142-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4690] [PMID: 17909019]
[161]
Røsland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 2009; 69(13): 5331-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4630] [PMID: 19509230]
[162]
Okada T, Ozawa K. Vector-producing tumor-tracking multipotent mesenchymal stromal cells for suicide cancer gene therapy. Front Biosci 2008; 13: 1887-91.
[http://dx.doi.org/10.2741/2808] [PMID: 17981676]
[163]
Pereboeva L, Komarova S, Mikheeva G, Krasnykh V, Curiel DT. Approaches to utilize mesenchymal progenitor cells as cellular vehicles. Stem Cells 2003; 21(4): 389-404.
[http://dx.doi.org/10.1634/stemcells.21-4-389] [PMID: 12832693]
[164]
Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162): 557-63.
[http://dx.doi.org/10.1038/nature06188] [PMID: 17914389]
[165]
Coffelt SB, Marini FC, Watson K, et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 2009; 106(10): 3806-11.
[http://dx.doi.org/10.1073/pnas.0900244106] [PMID: 19234121]
[166]
Lu YR, Yuan Y, Wang XJ, et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther 2008; 7(2): 245-51.
[http://dx.doi.org/10.4161/cbt.7.2.5296] [PMID: 18059192]
[167]
Rhee K-J, Lee JI, Eom YW. Mesenchymal stem cell-mediated effects of tumor support or suppression. Int J Mol Sci 2015; 16(12): 30015-33.
[http://dx.doi.org/10.3390/ijms161226215] [PMID: 26694366]
[168]
Jain V, Berman AT. Radiation pneumonitis: old problem, new tricks. Cancers (Basel) 2018; 10(7): 222.
[http://dx.doi.org/10.3390/cancers10070222] [PMID: 29970850]
[169]
Yang C, Lei D, Ouyang W, et al. Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. BioMed Res Int 2014; 2014: 109389.
[http://dx.doi.org/10.1155/2014/109389]
[170]
Sun B, Roh K-H, Park J-R, et al. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 2009; 11(3): 289-98.
[http://dx.doi.org/10.1080/14653240902807026] [PMID: 19308770]
[171]
Qiao L, Xu Z, Zhao T, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008; 18(4): 500-7.
[http://dx.doi.org/10.1038/cr.2008.40] [PMID: 18364678]
[172]
Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009; 113(18): 4197-205.
[http://dx.doi.org/10.1182/blood-2008-09-176198] [PMID: 19036701]
[173]
Jiang X, Fitch S, Wang C, et al. Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery. Proc Natl Acad Sci USA 2016; 113(48): 13857-62.
[http://dx.doi.org/10.1073/pnas.1615396113] [PMID: 27849590]
[174]
Grisendi G, Spano C, D’souza N, et al. Mesenchymal progenitors expressing TRAIL induce apoptosis in sarcomas. Stem Cells 2015; 33(3): 859-69.
[http://dx.doi.org/10.1002/stem.1903] [PMID: 25420617]
[175]
Myers AC, Kajekar R, Undem BJ. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J Physiol Lung Cell Mol Physiol 2002; 282(4): L775-81.
[http://dx.doi.org/10.1152/ajplung.00353.2001] [PMID: 11880304]
[176]
Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14(4-6): 311-24.
[http://dx.doi.org/10.1159/000080341] [PMID: 15319535]
[177]
Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33(11): 1402-16.
[http://dx.doi.org/10.1016/j.exphem.2005.07.003] [PMID: 16263424]
[178]
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23(11): 549-55.
[http://dx.doi.org/10.1016/S1471-4906(02)02302-5] [PMID: 12401408]
[179]
Sica A, Saccani A, Mantovani A. Tumor-associated macrophages: a molecular perspective. Int Immunopharmacol 2002; 2(8): 1045-54.
[http://dx.doi.org/10.1016/S1567-5769(02)00064-4] [PMID: 12349942]
[180]
Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86(5): 1065-73.
[http://dx.doi.org/10.1189/jlb.0609385] [PMID: 19741157]
[181]
Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 2008; 222(1): 155-61.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00607.x] [PMID: 18364000]
[182]
Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 2008; 26(1): 99-107.
[http://dx.doi.org/10.1634/stemcells.2007-0563] [PMID: 17916800]
[183]
Betancourt AM. New cell-based therapy paradigm: induction of bone marrow-derived multipotent mesenchymal stromal cells into pro-inflammatory MSC1 and anti-inflammatory MSC2 phenotypes Mesenchymal Stem Cells-Basics and Clinical Application II. Springer 2012; pp. 163-97.
[184]
Waterman RS, Henkle SL, Betancourt AM. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One 2012; 7(9): e45590.
[http://dx.doi.org/10.1371/journal.pone.0045590] [PMID: 23029122]
[185]
González-Reyes S, Marín L, González L, et al. Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. BMC Cancer 2010; 10(1): 665.
[http://dx.doi.org/10.1186/1471-2407-10-665] [PMID: 21129170]
[186]
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262-78.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[187]
Wei S, Zou Q, Lai S, et al. Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators. Sci Rep 2016; 6: 19648.
[http://dx.doi.org/10.1038/srep19648] [PMID: 26782778]
[188]
Black JB, Adler AF, Wang H-G, et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 2016; 19(3): 406-14.
[http://dx.doi.org/10.1016/j.stem.2016.07.001] [PMID: 27524438]
[189]
Jusiak B, Cleto S, Perez-Piñera P, Lu TK. Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol 2016; 34(7): 535-47.
[http://dx.doi.org/10.1016/j.tibtech.2015.12.014] [PMID: 26809780]
[190]
Giménez CA, Ielpi M, Mutto A, Grosembacher L, Argibay P, Pereyra-Bonnet F. CRISPR-on system for the activation of the endogenous human INS gene. Gene Ther 2016; 23(6): 543-7.
[http://dx.doi.org/10.1038/gt.2016.28] [PMID: 27052801]
[191]
Gerace D, Martiniello-Wilks R, Nassif NT, Lal S, Steptoe R, Simpson AM. CRISPR-targeted genome editing of mesenchymal stem cell-derived therapies for type 1 diabetes: a path to clinical success? Stem Cell Res Ther 2017; 8(1): 62.
[http://dx.doi.org/10.1186/s13287-017-0511-8] [PMID: 28279194]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy