Review Article

当前结肠靶向口服给药的薄膜涂层设计

卷 28, 期 10, 2021

发表于: 04 June, 2020

页: [1957 - 1969] 页: 13

弟呕挨: 10.2174/0929867327666200604170048

价格: $65

摘要

结肠靶向口服给药最近吸引了大量的系统性和局部治疗研究。在结肠给药方法中,薄膜涂层被证明是药物给药系统的有效组成部分,因为它们可以整合多种释放策略,如pH控释、时间控释和酶触发释放。此外,涂层调制、天然膜材料和纳米粒子涂层的研究也在蓬勃发展,具有广阔的应用前景。这篇综述的目的是描述主要的方法,以改善药物交付到结肠在过去的十年。当前薄膜涂层发展的突出重要性将推进剂型设计,并导致高效结肠靶向口服给药系统的发展。

关键词: 结肠给药、薄膜包衣、薄膜调制、天然薄膜、纳米粒子包衣、给药

[1]
Vass, P.; Démuth, B.; Hirsch, E.; Nagy, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; Csontos, I.; Nagy, Z.K.; Marosi, G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J. Control. Release, 2019, 296, 162-178.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.023] [PMID: 30677436]
[2]
Jones, R.G.A.; Martino, A. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications. Crit. Rev. Biotechnol., 2016, 36(3), 506-520.
[http://dx.doi.org/10.3109/07388551.2014.992388] [PMID: 25600465]
[3]
Richard, J. Challenges in oral peptide delivery: lessons learnt from the clinic and future prospects. Ther. Deliv., 2017, 8(8), 663-684.
[http://dx.doi.org/10.4155/tde-2017-0024] [PMID: 28730934]
[4]
Wang, Q.-S.; Wang, G.-F.; Zhou, J.; Gao, L.-N.; Cui, Y.-L. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int. J. Pharm., 2016, 515(1-2), 176-185.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.002] [PMID: 27713029]
[5]
Kaur, A.; Kaur, A.P.; Kaur, V.; Kaur, M.; Murthy, R. Polymeric drug delivery approaches for colon targeting: a review. Drug Deliv. Lett., 2014, 4(1), 38-48.
[http://dx.doi.org/10.2174/22103031113036660017]
[6]
Yang, L.; Chu, J.S.; Fix, J.A. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int. J. Pharm., 2002, 235(1-2), 1-15.
[http://dx.doi.org/10.1016/S0378-5173(02)00004-2] [PMID: 11879735]
[7]
Handali, S.; Moghimipour, E.; Rezaei, M.; Kouchak, M.; Ramezani, Z.; Dorkoosh, F.A. In vitro and in vivo evaluation of coated capsules for colonic delivery. J. Drug Deliv. Sci. Technol., 2018, 47, 492-498.
[http://dx.doi.org/10.1016/j.jddst.2018.07.027]
[8]
Philip, A.K.; Philip, B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med. J., 2010, 25(2), 79-87.
[http://dx.doi.org/10.5001/omj.2010.24] [PMID: 22125706]
[9]
Shen, M.-Y.; Liu, T.-I.; Yu, T.-W.; Kv, R.; Chiang, W.-H.; Tsai, Y.-C.; Chen, H.-H.; Lin, S.-C.; Chiu, H.-C. Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer. Biomaterials, 2019, 197, 86-100.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.019] [PMID: 30641267]
[10]
Tian, B.; Liu, S.; Wu, S.; Lu, W.; Wang, D.; Jin, L.; Hu, B.; Li, K.; Wang, Z.; Quan, Z. pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids Surf. B Biointerfaces, 2017, 154, 287-296.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.024] [PMID: 28351801]
[11]
Zhou, X.; Liu, Y.; Huang, Y.; Ma, Y.; Lv, J.; Xiao, B. Mucus-penetrating polymeric nanoparticles for oral delivery of curcumin to inflamed colon tissue. J. Drug Deliv. Sci. Technol., 2019, 52, 157-164.
[http://dx.doi.org/10.1016/j.jddst.2019.04.030]
[12]
El-Kamel, A.H.; Abdel-Aziz, A.A.M.; Fatani, A.J.; El-Subbagh, H.I. Oral colon targeted delivery systems for treatment of inflammatory bowel diseases: synthesis, in vitro and in vivo assessment. Int. J. Pharm., 2008, 358(1-2), 248-255.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.021] [PMID: 18502065]
[13]
Krishnamachari, Y.; Madan, P.; Lin, S. Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int. J. Pharm., 2007, 338(1-2), 238-247.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.015] [PMID: 17368982]
[14]
Li, H.; Sanchez-Vazquez, B.; Trindade, R.P.; Zou, Q.; Mai, Y.; Dou, L.; Zhu, L.-M.; Williams, G.R. Electrospun oral formulations for combined photo-chemotherapy of colon cancer. Colloids Surf. B Biointerfaces, 2019, 183, 110411.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110411] [PMID: 31421404]
[15]
Miramontes-Corona, C.; Escalante, A.; Delgado, E.; Corona-González, R.I.; Vázquez-Torres, H.; Toriz, G. Hydrophobic agave fructans for sustained drug delivery to the human colon. React. Funct. Polym., 2020, 146, 104396.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104396]
[16]
Barclay, T.; Ginic-Markovic, M.; Cooper, P.; Petrovsky, N. Inulin-a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J. Excip. Food Chem., 2016, 1(3), 1132.
[17]
Khan, M.Z.I.; Prebeg, Z.; Kurjaković, N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. I. Manipulation of drug release using Eudragit L100-55 and Eudragit S100 combinations. J. Control. Release, 1999, 58(2), 215-222.
[http://dx.doi.org/10.1016/S0168-3659(98)00151-5] [PMID: 10053194]
[18]
Deng, L.; Dong, H.; Dong, A.; Zhang, J. A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity. Eur. J. Pharm. Biopharm., 2015, 97(Pt A), 107-117.
[http://dx.doi.org/10.1016/j.ejpb.2015.10.010] [PMID: 26515259]
[19]
Kang, J.-H.; Hwang, J.-Y.; Seo, J.-W.; Kim, H.-S.; Shin, U.S. Small intestine- and colon-specific smart oral drug delivery system with controlled release characteristic. Mater. Sci. Eng. C, 2018, 91, 247-254.
[http://dx.doi.org/10.1016/j.msec.2018.05.052] [PMID: 30033252]
[20]
Ishibashi, T.; Ikegami, K.; Kubo, H.; Kobayashi, M.; Mizobe, M.; Yoshino, H. Evaluation of colonic absorbability of drugs in dogs using a novel colon-targeted delivery capsule (CTDC). J. Control. Release, 1999, 59(3), 361-376.
[http://dx.doi.org/10.1016/S0168-3659(99)00005-X] [PMID: 10332066]
[21]
Nalinbenjapun, S.; Ovatlarnporn, C. Chitosan-5-aminosalicylic acid conjugates for colon-specific drug delivery: methods of preparation and in vitro evaluations. J. Drug Deliv. Sci. Technol., 2020, 57, 101397.
[http://dx.doi.org/10.1016/j.jddst.2019.101397]
[22]
Basit, A.W. Advances in colonic drug delivery. Drugs, 2005, 65(14), 1991-2007.
[http://dx.doi.org/10.2165/00003495-200565140-00006] [PMID: 16162022]
[23]
Rubinstein, A. Approaches and opportunities in colon-specific drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 1995, 12(2-3), 101-149.
[http://dx.doi.org/10.1615/critrevtherdrugcarriersyst.v12.i2-3.10] [PMID: 9501968]
[24]
Gupta, V.K.; Beckert, T.E.; Price, J.C. A novel pH- and time-based multi-unit potential colonic drug delivery system. I. Development. Int. J. Pharm., 2001, 213(1-2), 83-91.
[http://dx.doi.org/10.1016/S0378-5173(00)00649-9] [PMID: 11165096]
[25]
Maroni, A.; Del Curto, M.D.; Serratoni, M.; Zema, L.; Foppoli, A.; Gazzaniga, A.; Sangalli, M.E. Feasibility, stability and release performance of a time-dependent insulin delivery system intended for oral colon release. Eur. J. Pharm. Biopharm., 2009, 72(1), 246-251.
[http://dx.doi.org/10.1016/j.ejpb.2008.12.002] [PMID: 19121388]
[26]
Song, L.; Liang, L.; Shi, X.; Chen, H.; Zhao, S.; Chen, W.; Zhou, R.; Zhao, W. Optimizing pH-sensitive and time-dependent polymer formula of colonic pH-responsive pellets to achieve precise drug release. Asian J Pharm Sci, 2019, 14(4), 413-422.
[http://dx.doi.org/10.1016/j.ajps.2018.05.012] [PMID: 32104470]
[27]
Foppoli, A.; Maroni, A.; Moutaharrik, S.; Melocchi, A.; Zema, L.; Palugan, L.; Cerea, M.; Gazzaniga, A. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int. J. Pharm., 2019, 572, 118723.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118723] [PMID: 31628978]
[28]
Maroni, A.; Del Curto, M.D.; Salmaso, S.; Zema, L.; Melocchi, A.; Caliceti, P.; Gazzaniga, A. In vitro and in vivo evaluation of an oral multiple-unit formulation for colonic delivery of insulin. Eur. J. Pharm. Biopharm., 2016, 108, 76-82.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.002] [PMID: 27519826]
[29]
Moghimipour, E.; Dorkoosh, F.A.; Rezaei, M.; Kouchak, M.; Fatahiasl, J.; Angali, K.A.; Ramezani, Z.; Amini, M.; Handali, S. In vivo evaluation of pH and time-dependent polymers as coating agent for colonic delivery using central composite design. J. Drug Deliv. Sci. Technol., 2018, 43, 50-56.
[http://dx.doi.org/10.1016/j.jddst.2017.09.010]
[30]
Kaffash, E.; Saremnejad, F.; Abbaspour, M.; Mohajeri, S.A.; Garekani, H.A.; Jafarian, A.H.; Sardo, H.S.; Akhgari, A.; Nokhodchi, A. Statistical optimization of alginate-based oral dosage form of 5-aminosalicylic acid aimed to colonic delivery: in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2019, 52, 177-188.
[http://dx.doi.org/10.1016/j.jddst.2019.04.006]
[31]
Ferrari, P.C.; Souza, F.M.; Giorgetti, L.; Oliveira, G.F.; Ferraz, H.G.; Chaud, M.V.; Evangelista, R.C. Development and in vitro evaluation of coated pellets containing chitosan to potential colonic drug delivery. Carbohydr. Polym., 2013, 91(1), 244-252.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.044] [PMID: 23044129]
[32]
Liu, F.; Moreno, P.; Basit, A.W. A novel double-coating approach for improved pH-triggered delivery to the ileo-colonic region of the gastrointestinal tract. Eur. J. Pharm. Biopharm., 2010, 74(2), 311-315.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.008] [PMID: 19932177]
[33]
Elyagoby, A.; Layas, N.; Wong, T.W. Colon-specific delivery of 5-fluorouracil from zinc pectinate pellets through in situ intracapsular ethylcellulose-pectin plug formation. J. Pharm. Sci., 2013, 102(2), 604-616.
[http://dx.doi.org/10.1002/jps.23388] [PMID: 23225084]
[34]
Schellekens, R.C.A.; Stellaard, F.; Mitrovic, D.; Stuurman, F.E.; Kosterink, J.G.W.; Frijlink, H.W. Pulsatile drug delivery to ileo-colonic segments by structured incorporation of disintegrants in pH-responsive polymer coatings. J. Control. Release, 2008, 132(2), 91-98.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.008] [PMID: 18775755]
[35]
Sweety, J.P.; Sowparani, S.; Mahalakshmi, P.; Selvasudha, N.; Yamini, D.; Geetha, K.; Ruckmani, K. Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment - insight into thymoquinone’s improved physicochemical properties. J. Drug Deliv. Sci. Technol., 2020., 55101334.
[http://dx.doi.org/10.1016/j.jddst.2019.101334]
[36]
Huanbutta, K.; Sriamornsak, P.; Luangtana-Anan, M.; Limmatvapirat, S.; Puttipipatkhachorn, S.; Lim, L-Y.; Terada, K.; Nunthanid, J. Application of multiple stepwise spinning disk processing for the synthesis of poly(methyl acrylates) coated chitosan-diclofenac sodium nanoparticles for colonic drug delivery. Eur. J. Pharm. Sci., 2013, 50(3-4), 303-311.
[http://dx.doi.org/10.1016/j.ejps.2013.07.010] [PMID: 23896171]
[37]
Giri, T.K.; Bhowmick, S.; Maity, S. Entrapment of capsaicin loaded nanoliposome in pH responsive hydrogel beads for colonic delivery. J. Drug Deliv. Sci. Technol., 2017, 39, 417-422.
[http://dx.doi.org/10.1016/j.jddst.2017.05.002]
[38]
Javanbakht, S.; Hemmati, A.; Namazi, H.; Heydari, A. Carboxymethylcellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. Int. J. Biol. Macromol., 2020, 155, 876-882.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.007] [PMID: 31805324]
[39]
Wei, H.; Li-Fang, F.; Min, B.; Yong-Zhen, C.; Bai, X.; Qing, D.; Feng, W.; Min, Q.; De-Ying, C. Chitosan/Kollicoat SR 30D film-coated pellets of aminosalicylates for colonic drug delivery. J. Pharm. Sci., 2010, 99(1), 186-195.
[http://dx.doi.org/10.1002/jps.21810] [PMID: 19655374]
[40]
Sharma, N.; Sharma, A.; Bhatnagar, A.; Nishad, D.; Karwasra, R.; Khanna, K.; Sharma, D.; Kumar, N.; Jain, G.K. Novel gum acacia based macroparticles for colon delivery of mesalazine: development and gammascintigraphy study. J. Drug Deliv. Sci. Technol., 2019, 54, 101224.
[http://dx.doi.org/10.1016/j.jddst.2019.101224]
[41]
Kumar, V.S.; Rijo, J.; Sabitha, M. Guargum and Eudragit® coated curcumin liquid solid tablets for colon specific drug delivery. Int. J. Biol. Macromol., 2018, 110, 318-327.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.082] [PMID: 29378277]
[42]
Pachuau, L.; Mazumder, B. Evaluation of Albizia procera gum as compression coating material for colonic delivery of budesonide. Int. J. Biol. Macromol., 2013, 61, 333-339.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.07.017] [PMID: 23916644]
[43]
Celkan, A.; Acartürk, F.; Tuğcu-Demiröz, F.; Gökçora, N.; Akkaş, B.E.; Güner, L.A. Gamma scintigraphic studies on guar gum-based compressed coated tablets for colonic delivery of theophylline in healthy volunteers. J. Drug Deliv. Sci. Technol., 2016, 32(Pt A), 31-37.
[http://dx.doi.org/10.1016/j.jddst.2016.01.009]
[44]
Sivapragasam, N.; Thavarajah, P.; Ohm, J.-B.; Ohm, J.-B.; Margaret, K.; Thavarajah, D. Novel starch based nano scale enteric coatings from soybean meal for colon-specific delivery. Carbohydr. Polym., 2014, 111, 273-279.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.091] [PMID: 25037352]
[45]
Pu, H.; Chen, L.; Li, X.; Xie, F.; Yu, L.; Li, L. An oral colon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets. J. Agric. Food Chem., 2011, 59(10), 5738-5745.
[http://dx.doi.org/10.1021/jf2005468] [PMID: 21513356]
[46]
Chen, J.; Li, X.; Chen, L.; Xie, F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr. Polym., 2018, 191, 242-254.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.025] [PMID: 29661315]
[47]
Assifaoui, A.; Bouyer, F.; Chambin, O.; Cayot, P. Silica-coated calcium pectinate beads for colonic drug delivery. Acta Biomater., 2013, 9(4), 6218-6225.
[http://dx.doi.org/10.1016/j.actbio.2012.11.031] [PMID: 23219846]
[48]
Nguyen, M.N.U.; Tran, P.H.L.; Tran, T.T.D. A single-layer film coating for colon-targeted oral delivery. Int. J. Pharm., 2019, 559, 402-409.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.066] [PMID: 30738130]
[49]
Bisharat, L.; Barker, S.A.; Narbad, A.; Craig, D.Q.M. In vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery. Int. J. Pharm., 2019, 556, 311-319.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.021] [PMID: 30557678]
[50]
Ibekwe, V.C.; Fadda, H.M.; McConnell, E.L.; Khela, M.K.; Evans, D.F.; Basit, A.W. Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo-colonic release systems. Pharm. Res., 2008, 25(8), 1828-1835.
[http://dx.doi.org/10.1007/s11095-008-9580-9] [PMID: 18465212]
[51]
Koziolek, M.; Grimm, M.; Becker, D.; Iordanov, V.; Zou, H.; Shimizu, J.; Wanke, C.; Garbacz, G.; Weitschies, W. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap® system. J. Pharm. Sci., 2015, 104(9), 2855-2863.
[http://dx.doi.org/10.1002/jps.24274] [PMID: 25411065]
[52]
Reyes-Ortega, F. Chapter 3 - pH-Responsive Polymers: Properties, Synthesis and Applications. In: Smart Polymers and their Applications; Aguilar, M.R.; San Román, J., Eds.; Woodhead Publishing, 2014; pp. 45-92.
[http://dx.doi.org/10.1533/9780857097026.1.45]
[53]
Obeidat, W.M.; Price, J.C. Preparation and evaluation of Eudragit S 100 microspheres as pH-sensitive release preparations for piroxicam and theophylline using the emulsion-solvent evaporation method. J. Microencapsul., 2006, 23(2), 195-202.
[http://dx.doi.org/10.1080/02652040500435337] [PMID: 16754375]
[54]
Del Curto, M.D.; Palugan, L.; Foppoli, A.; Zema, L.; Gazzaniga, A.; Maroni, A. Erodible time-dependent colon delivery systems with improved efficiency in delaying the onset of drug release. J. Pharm. Sci., 2014, 103(11), 3585-3593.
[http://dx.doi.org/10.1002/jps.24150] [PMID: 25213173]
[55]
Del Curto, M.D.; Maroni, A.; Foppoli, A.; Zema, L.; Gazzaniga, A.; Sangalli, M.E. Preparation and evaluation of an oral delivery system for time-dependent colon release of insulin and selected protease inhibitor and absorption enhancer compounds. J. Pharm. Sci., 2009, 98(12), 4661-4669.
[http://dx.doi.org/10.1002/jps.21761] [PMID: 19655371]
[56]
Sankalia, J.M.; Sankalia, M.G.; Mashru, R.C. Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: establishment of level A IVIVC. J. Control. Release, 2008, 129(1), 49-58.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.016] [PMID: 18456362]
[57]
Mastiholimath, V.S.; Dandagi, P.M.; Jain, S.S.; Gadad, A.P.; Kulkarni, A.R. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma. Int. J. Pharm., 2007, 328(1), 49-56.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.045] [PMID: 16942847]
[58]
Han, M.; Fang, Q.-L.; Zhan, H.-W.; Luo, T.; Liang, W.-Q.; Gao, J.-Q. In vitro and in vivo evaluation of a novel capsule for colon-specific drug delivery. J. Pharm. Sci., 2009, 98(8), 2626-2635.
[http://dx.doi.org/10.1002/jps.21627] [PMID: 19067397]
[59]
Yadava, S.K.; Patil, J.S.; Mokale, V.J.; Naik, J.B. Sodium alginate/HPMC/liquid paraffin emulsified (o/w) gel beads, by factorial design approach and in vitro analysis. J. Sol-Gel Sci. Technol., 2014, 71(1), 60-68.
[http://dx.doi.org/10.1007/s10971-014-3325-5]
[60]
Schiller, C.; Fröhlich, C.P.; Giessmann, T.; Siegmund, W.; Mönnikes, H.; Hosten, N.; Weitschies, W. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther., 2005, 22(10), 971-979.
[http://dx.doi.org/10.1111/j.1365-2036.2005.02683.x] [PMID: 16268972]
[61]
Liu, F.; Lizio, R.; Schneider, U.J.; Petereit, H.-U.; Blakey, P.; Basit, A.W. SEM/EDX and confocal microscopy analysis of novel and conventional enteric-coated systems. Int. J. Pharm., 2009, 369(1-2), 72-78.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.035] [PMID: 19061944]
[62]
Liu, F.; Lizio, R.; Meier, C.; Petereit, H.-U.; Blakey, P.; Basit, A.W. A novel concept in enteric coating: a double-coating system providing rapid drug release in the proximal small intestine. J. Control. Release, 2009, 133(2), 119-124.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.083] [PMID: 18930772]
[63]
Varum, F.J.O.; Hatton, G.B.; Freire, A.C.; Basit, A.W. A novel coating concept for ileo-colonic drug targeting: proof of concept in humans using scintigraphy. Eur. J. Pharm. Biopharm., 2013, 84(3), 573-577.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.002] [PMID: 23348235]
[64]
Bose, A.; Elyagoby, A.; Wong, T.W. Oral 5-fluorouracil colon-specific delivery through in vivo pellet coating for colon cancer and aberrant crypt foci treatment. Int. J. Pharm., 2014, 468(1-2), 178-186.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.006] [PMID: 24709212]
[65]
Maurer, J.M.; Schellekens, R.C.A.; van Rieke, H.M.; Wanke, C.; Iordanov, V.; Stellaard, F.; Wutzke, K.D.; Dijkstra, G.; van der Zee, M.; Woerdenbag, H.J.; Frijlink, H.W.; Kosterink, J.G.W. Gastrointestinal pH and transit time profiling in healthy volunteers using the IntelliCap system confirms ileo-colonic release of colopulse tablets. PloS One, 2015, 10(7)e0129076.s
[http://dx.doi.org/10.1371/journal.pone.0129076] [PMID: 26177019]
[66]
Schellekens, R.C.; Olsder, G.G.; Langenberg, S.M.; Boer, T.; Woerdenbag, H.J.; Frijlink, H.W.; Kosterink, J.G.; Stellaard, F. Proof-of-concept study on the suitability of 13C-urea as a marker substance for assessment of in vivo behaviour of oral colon-targeted dosage forms. Br. J. Pharmacol., 2009, 158(2), 532-540.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00302.x] [PMID: 19732063]
[67]
Schellekens, R.C.A.; Stellaard, F.; Olsder, G.G.; Woerdenbag, H.J.; Frijlink, H.W.; Kosterink, J.G.W. Oral ileocolonic drug delivery by the colopulse-system: a bioavailability study in healthy volunteers. J. Control. Release, 2010, 146(3), 334-340.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.028] [PMID: 20621586]
[68]
Maurer, J.M.; Schellekens, R.C.A.; van Rieke, H.M.; Stellaard, F.; Wutzke, K.D.; Buurman, D.J.; Dijkstra, G.; Woerdenbag, H.J.; Frijlink, H.W.; Kosterink, J.G.W. Colopulse tablets perform comparably in healthy volunteers and Crohn’s patients and show no influence of food and time of food intake on bioavailability. J. Control. Release, 2013, 172(3), 618-624.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.021] [PMID: 24096020]
[69]
Gareb, B.; Dijkstra, G.; Kosterink, J.G.W.; Frijlink, H.W. Development of novel zero-order release budesonide tablets for the treatment of ileo-colonic inflammatory bowel disease and comparison with formulations currently used in clinical practice. Int. J. Pharm., 2019, 554, 366-375.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.019] [PMID: 30414898]
[70]
Oxley, P.; Brechtelsbauer, C.; Ricard, F.; Lewis, N.; Ramshaw, C. Evaluation of spinning disk reactor technology for the manufacture of pharmaceuticals. Ind. Eng. Chem. Res., 2000, 39(7), 2175-2182.
[http://dx.doi.org/10.1021/ie990869u]
[71]
Brechtelsbauer, C.; Lewis, N.; Oxley, P.; Ricard, F.; Ramshaw, C. Evaluation of a spinning disc reactor for continuous processing 1. Org. Process Res. Dev., 2001, 5(1), 65-68.
[http://dx.doi.org/10.1021/op0000834]
[72]
Loh, J.W.; Schneider, J.; Carter, M.; Saunders, M.; Lim, L-Y. Spinning disc processing technology: potential for large-scale manufacture of chitosan nanoparticles. J. Pharm. Sci., 2010, 99(10), 4326-4336.
[http://dx.doi.org/10.1002/jps.22145] [PMID: 20737637]
[73]
Franco, A.P.; Recio, M.A.L.; Szpoganicz, B.; Delgado, A.L.; Felcman, J.; Mercê, A.L.R. Complexes of carboxymethylcellulose in water. Part 2. Co2+ and Al3+ remediation studies of wastewaters with Co2+, Al3+, Cu2+, VO2+ and Mo6+. Hydrometallurgy, 2007, 87(3-4), 178-189.
[http://dx.doi.org/10.1016/j.hydromet.2006.08.013]
[74]
Ormrod, D.J.; Holmes, C.C.; Miller, T.E. Dietary chitosan inhibits hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis. Atherosclerosis, 1998, 138(2), 329-334.
[http://dx.doi.org/10.1016/S0021-9150(98)00045-8] [PMID: 9690916]
[75]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[76]
Park, J.H.; Saravanakumar, G.; Kim, K.; Kwon, I.C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev., 2010, 62(1), 28-41.
[http://dx.doi.org/10.1016/j.addr.2009.10.003] [PMID: 19874862]
[77]
Chourasia, M.K.; Jain, S.K. Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci., 2003, 6(1), 33-66.
[PMID: 12753729]
[78]
McConnell, E.L.; Murdan, S.; Basit, A.W. An investigation into the digestibility of chitosan by human colonic bacteria. J. Pharm. Sci., 2008, 97(9), 3820-3829.
[http://dx.doi.org/10.1002/jps.21271] [PMID: 18186460]
[79]
Muzzarelli, R.A. Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar. Drugs, 2011, 9(9), 1510-1533.
[http://dx.doi.org/10.3390/md9091510] [PMID: 22131955]
[80]
Pardo-Castaño, C.; Bolaños, G. Solubility of chitosan in aqueous acetic acid and pressurized carbon dioxide-water: experimental equilibrium and solubilization kinetics. J. Supercrit. Fluids, 2019, 151, 63-74.
[http://dx.doi.org/10.1016/j.supflu.2019.05.007]
[81]
Yan, T.; Li, C.; Ouyang, Q.; Zhang, D.; Zhong, Q.; Li, P.; Li, S.; Yang, Z.; Wang, T.; Zhao, Q. Synthesis of gentamicin-grafted-chitosan with improved solubility and antibacterial activity. React. Funct. Polym., 2019, 137, 38-45.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.01.013]
[82]
Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34(7), 641-678.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001]
[83]
Fu, Y.; Xiao, C.; Liu, J. Facile fabrication of quaternary water soluble chitosan-sodium alginate gel and its affinity characteristic toward multivalent metal ion. Environ. Technol. Innov., 2019, 13, 340-345.
[http://dx.doi.org/10.1016/j.eti.2019.01.007]
[84]
Wei, H.; Li-Fang, F.; Bai, X.; Chun-Lei, L.; Qing, D.; Yong-Zhen, C.; De-Ying, C. An investigation into the characteristics of chitosan/Kollicoat SR30D free films for colonic drug delivery. Eur. J. Pharm. Biopharm., 2009, 72(1), 266-274.
[http://dx.doi.org/10.1016/j.ejpb.2008.10.017] [PMID: 19028578]
[85]
Ngo, V.D.; Luu, T.D.; Van Vo, T.; Tran, V.T.; Duan, W.; Tran, P.H.L.; Tran, T.T.D. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice. Mater. Sci. Eng. C, 2016, 67, 1-7.
[http://dx.doi.org/10.1016/j.msec.2016.04.098] [PMID: 27287092]
[86]
Luu, T.D.; Lee, B.-J.; Tran, P.H.L.; Tran, T.T.D. Modified sprouted rice for modulation of curcumin crystallinity and dissolution enhancement by solid dispersion. J. Pharm. Investig., 2019, 49(1), 127-134.
[http://dx.doi.org/10.1007/s40005-018-0393-5]
[87]
Chi, H.; Xu, K.; Wu, X.; Chen, Q.; Xue, D.; Song, C.; Zhang, W.; Wang, P. Effect of acetylation on the properties of corn starch. Food Chem., 2008, 106(3), 923-928.
[http://dx.doi.org/10.1016/j.foodchem.2007.07.002]
[88]
Xie, W.; Shao, L.; Liu, Y. Synthesis of starch esters in ionic liquids. J. Appl. Polym. Sci., 2010, 116(1), 218-224.
[http://dx.doi.org/10.1002/app.31327]
[89]
Chen, L.; Li, X.; Li, L.; Guo, S. Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Curr. Appl. Phys., 2007, 7(Suppl. 1), e90-e93.
[http://dx.doi.org/10.1016/j.cap.2006.11.023]
[90]
Bán, M.; Bombicz, P.; Madarász, J. Thermal stability and structure of a new co-crystal of theophylline formed with phthalic acid: TG/DTA-EGA-MS and TG-EGA-FTIR study. J. Therm. Anal. Calorim., 2008, 95(3), 895-901.
[http://dx.doi.org/10.1007/s10973-007-8902-1]
[91]
Assifaoui, A.; Chambin, O.; Cayot, P. Drug release from calcium and zinc pectinate beads: Impact of dissolution medium composition. Carbohydr. Polym., 2011, 85(2), 388-393.
[http://dx.doi.org/10.1016/j.carbpol.2011.02.037]
[92]
Dhalleine, C.; Assifaoui, A.; Moulari, B.; Pellequer, Y.; Cayot, P.; Lamprecht, A.; Chambin, O. Zinc-pectinate beads as an in vivo self-assembling system for pulsatile drug delivery. Int. J. Pharm., 2011, 414(1-2), 28-34.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.059] [PMID: 21601627]
[93]
Sriamornsak, P.; Puttipipatkhachorn, S.; Prakongpan, S. Calcium pectinate gel coated pellets as an alternative carrier to calcium pectinate beads. Int. J. Pharm., 1997, 156(2), 189-194.
[http://dx.doi.org/10.1016/S0378-5173(97)00192-0] [PMID: 10477816]
[94]
Li, Y.; Bai, Y.; Huang, J.; Yuan, C.; Ding, T.; Liu, D.; Hu, Y. Airglow discharge plasma treatment affects the surface structure and physical properties of zein films. J. Food Eng., 2020, 273, 109813.
[http://dx.doi.org/10.1016/j.jfoodeng.2019.109813]
[95]
Sun, Y.; Liu, Z.; Zhang, L.; Wang, X.; Li, L. Effects of plasticizer type and concentration on rheological, physico-mechanical and structural properties of chitosan/zein film. Int. J. Biol. Macromol., 2020, 143, 334-340.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.035] [PMID: 31812748]
[96]
Tran, P.H.L.; Duan, W.; Lee, B.J.; Tran, T.T.D. Drug stabilization in the gastrointestinal tract and potential applications in the colonic delivery of oral zein-based formulations. Int. J. Pharm., 2019, 569, 118614.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118614] [PMID: 31415877]
[97]
Spasojević, L.; Katona, J.; Bučko, S.; Savić, S.M.; Petrović, L.; Milinković Budinčić, J.; Tasić, N.; Aidarova, S.; Sharipova, A. Edible water barrier films prepared from aqueous dispersions of zein nanoparticles. LWT, 2019, 109, 350-358.
[http://dx.doi.org/10.1016/j.lwt.2019.04.038]
[98]
Huang, D.; Zhang, Z.; Quan, Q.; Zheng, Y. Tannic acid: a versatile and effective modifier for gelatin/zein composite films. Food Packag. Shelf Life, 2020., 23100440.
[http://dx.doi.org/10.1016/j.fpsl.2019.100440]
[99]
Chen, G.; Dong, S.; Zhao, S.; Li, S.; Chen, Y. Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Ind. Crops Prod., 2019, 129, 318-326.
[http://dx.doi.org/10.1016/j.indcrop.2018.11.072]
[100]
Zhang, L.; Liu, Z.; Wang, X.; Dong, S.; Sun, Y.; Zhao, Z. The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricus bisporus). Postharvest Biol. Technol., 2019, 155, 47-56.
[http://dx.doi.org/10.1016/j.postharvbio.2019.05.013]
[101]
Vahedikia, N.; Garavand, F.; Tajeddin, B.; Cacciotti, I.; Jafari, S.M.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces, 2019, 177, 25-32.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.045] [PMID: 30703751]
[102]
Notario-Pérez, F.; Martín-Illana, A.; Cazorla-Luna, R.; Ruiz-Caro, R.; Bedoya, L.-M.; Peña, J.; Veiga, M.-D. Development of mucoadhesive vaginal films based on HPMC and zein as novel formulations to prevent sexual transmission of HIV. Int. J. Pharm., 2019., 570118643.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118643] [PMID: 31446023]
[103]
Chen, X.; Cui, F.; Zi, H.; Zhou, Y.; Liu, H.; Xiao, J. Development and characterization of a hydroxypropyl starch/zein bilayer edible film. Int. J. Biol. Macromol., 2019, 141, 1175-1182.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.240] [PMID: 31473310]
[104]
Tran, P.H.L.; Duan, W.; Lee, B.-J.; Tran, T.T.D. The use of zein in the controlled release of poorly water-soluble drugs. Int. J. Pharm., 2019, 566, 557-564.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.018] [PMID: 31181306]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy