Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis and Biological Evaluation of Novel 1,2,5-Oxadiazol-3- Carboximidamide Derivatives as Indoleamine 2, 3-Dioxygenase 1 (IDO1) Inhibitors

Author(s): Zhifeng Xia, Yanyang Nan, Chang Liu, Guangyu Lin, Kedan Gu, Cheng Chen, Weili Zhao, Dianwen Ju and Xiaochun Dong*

Volume 20, Issue 13, 2020

Page: [1592 - 1603] Pages: 12

DOI: 10.2174/1871520620666200604121225

Price: $65

Abstract

Background and Objective: Indoleamine-2,3-dioxygenase 1 (IDO1), which catalyzes the degradation of L-tryptophan (L-Trp) to N-formyl kynurenine (NFK) in the first and rate-limiting step of Kynurenine (KYN) pathway has been identified as a promising therapeutic target for cancer immunotherapy. The small molecule Epacadostat developed by Incyte Corp is the most advanced IDO1 inhibitor in clinical trials.

Methods: In this study, various amidine derivatives were individually installed as the polar capping group onto the amino ethylene side chain to replace the sulfamoylamino moiety of Epacadostat to develop novel IDO1 inhibitors. A series of novel 1,2,5-oxadiazol-3-carboximidamide derivatives were designed, prepared, and evaluated for their inhibitory activities against human IDO1 enzyme and cellular IDO1.

Results: In vitro human IDO1 enzyme and cellular IDO1 assay results demonstrate that the inhibitory activities of compound 13a and 13b were comparable to Epacadostat, with the enzymatic IC50 values of 49.37nM and 52.12nM and cellular IC50 values of 12.34nM and 14.34nM, respectively. The anti-tumor efficacy of 13b is slightly better than Epacadosta in Lewis Lung Cancer (LLC) tumor-bearing mice model.

Conclusion: 13b is a potent IDO1 inhibitor with therapeutic potential in tumor immunotherapy.

Keywords: IDO1 inhibitors, amidine, 1, 2, 5-oxadiazol-3-carboximidamide, Lewis lung cancer, immunotherapy, NFK.

Graphical Abstract

[1]
Giroux Leprieur, E.; Dumenil, C.; Julie, C.; Giraud, V.; Dumoulin, J.; Labrune, S.; Chinet, T. Immunotherapy revolutionises non-small-cell lung cancer therapy: Results, perspectives and new challenges. Eur. J. Cancer, 2017, 78, 16-23.
[http://dx.doi.org/10.1016/j.ejca.2016.12.041] [PMID: 28407528]
[2]
Alexander, W. The checkpoint immunotherapy revolution: What started as a trickle has become a flood, despite some daunting adverse effects; new drugs, indications, and combinations continue to emerge. P&T, 2016, 41(3), 185-191.
[PMID: 26957887]
[3]
Iversen, T.Z.; Andersen, M.H.; Svane, I.M. The targeting of indoleamine 2,3 dioxygenase -mediated immune escape in cancer. Basic Clin. Pharmacol. Toxicol., 2015, 116(1), 19-24.
[http://dx.doi.org/10.1111/bcpt.12320] [PMID: 25207460]
[4]
Yang, Y. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest., 2015, 125(9), 3335-3337.
[http://dx.doi.org/10.1172/JCI83871] [PMID: 26325031]
[5]
Rosenberg, S.A. Decade in review-cancer immunotherapy: Entering the mainstream of cancer treatment. Nat. Rev. Clin. Oncol., 2014, 11(11), 630-632.
[http://dx.doi.org/10.1038/nrclinonc.2014.174] [PMID: 25311350]
[6]
Sheng, J.; Srivastava, S.; Sanghavi, K.; Lu, Z.; Schmidt, B.J.; Bello, A.; Gupta, M. Clinical pharmacology considerations for the development of immune checkpoint inhibitors. J. Clin. Pharmacol., 2017, 57(Suppl 10), (S10), S26-S42.
[7]
King, N.J.; Thomas, S.R. Molecules in focus: Indoleamine 2,3-dioxygenase. Int. J. Biochem. Cell Biol., 2007, 39(12), 2167-2172.
[http://dx.doi.org/10.1016/j.biocel.2007.01.004] [PMID: 17320464]
[8]
Théate, I.; van Baren, N.; Pilotte, L.; Moulin, P.; Larrieu, P.; Renauld, J.C.; Hervé, C.; Gutierrez-Roelens, I.; Marbaix, E.; Sempoux, C.; Van den Eynde, B.J. Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues. Cancer Immunol. Res., 2015, 3(2), 161-172.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0137] [PMID: 25271151]
[9]
Takikawa, O.; Yoshida, R.; Kido, R.; Hayaishi, O. Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J. Biol. Chem., 1986, 261(8), 3648-3653.
[PMID: 2419335]
[10]
Platten, M.; Wick, W.; Van den Eynde, B.J. Tryptophan catabolism in cancer: Beyond IDO and tryptophan depletion. Cancer Res., 2012, 72(21), 5435-5440.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0569] [PMID: 23090118]
[11]
Platten, M.; von Knebel Doeberitz, N.; Oezen, I.; Wick, W.; Ochs, K. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front. Immunol., 2015, 5, 673.
[http://dx.doi.org/10.3389/fimmu.2014.00673] [PMID: 25628622]
[12]
van Baren, N.; Van den Eynde, B.J. Tryptophan-degrading enzymes in tumoral immune resistance. Front. Immunol., 2015, 6, 34.
[http://dx.doi.org/10.3389/fimmu.2015.00034] [PMID: 25691885]
[13]
Munn, D.H.; Sharma, M.D.; Baban, B.; Harding, H.P.; Zhang, Y.; Ron, D.; Mellor, A.L. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity, 2005, 22(5), 633-642.
[http://dx.doi.org/10.1016/j.immuni.2005.03.013] [PMID: 15894280]
[14]
Munn, D.H.; Shafizadeh, E.; Attwood, J.T.; Bondarev, I.; Pashine, A.; Mellor, A.L. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med., 1999, 189(9), 1363-1372.
[http://dx.doi.org/10.1084/jem.189.9.1363] [PMID: 10224276]
[15]
Metz, R.; Rust, S.; Duhadaway, J.B.; Mautino, M.R.; Munn, D.H.; Vahanian, N.N.; Link, C.J.; Prendergast, G.C. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. OncoImmunology, 2012, 1(9), 1460-1468.
[http://dx.doi.org/10.4161/onci.21716] [PMID: 23264892]
[16]
Soliman, H.H.; Minton, S.E.; Han, H.S.; Ismail-Khan, R.; Neuger, A.; Khambati, F.; Noyes, D.; Lush, R.; Chiappori, A.A.; Roberts, J.D.; Link, C.; Vahanian, N.N.; Mautino, M.; Streicher, H.; Sullivan, D.M.; Antonia, S.J. A phase I study of indoximod in patients with advanced malignancies. Oncotarget, 2016, 7(16), 22928-22938.
[http://dx.doi.org/10.18632/oncotarget.8216] [PMID: 27008709]
[17]
Soliman, H.H.; Jackson, E.; Neuger, T.; Dees, E.C.; Harvey, R.D.; Han, H.; Ismail-Khan, R.; Minton, S.; Vahanian, N.N.; Link, C.; Sullivan, D.M.; Antonia, S. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget, 2014, 5(18), 8136-8146.
[http://dx.doi.org/10.18632/oncotarget.2357] [PMID: 25327557]
[18]
Yue, E.W.; Sparks, R.; Polam, P.; Modi, D.; Douty, B.; Wayland, B.; Glass, B.; Takvorian, A.; Glenn, J.; Zhu, W.; Bower, M.; Liu, X.; Leffet, L.; Wang, Q.; Bowman, K.J.; Hansbury, M.J.; Wei, M.; Li, Y.; Wynn, R.; Burn, T.C.; Koblish, H.K.; Fridman, J.S.; Emm, T.; Scherle, P.A.; Metcalf, B.; Combs, A.P. INCB24360 (Epacadostat), a highly potent and selective Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med. Chem. Lett., 2017, 8(5), 486-491.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00391] [PMID: 28523098]
[19]
Nayak, A.; Hao, Z.; Sadek, R.; Dobbins, R.; Marshall, L.; Vahanian, N.; Ramsey, J.; Kennedy, E.; Mautino, M.; Link, C.; Lin, R.; Royer-Joo, S.; Morrissey, K.; Mahrus, S.; Mccall, B.; Pirzkall, A.; Munn, D.; Janik, J.; Khleif, S. 346 phase 1a study of the safety, pharmacokinetics, and pharmacodynamics of GDC-0919 in patients with recurrent/advanced solid tumors. Eur. J. Cancer, 2015, 51, S69.
[http://dx.doi.org/10.1016/S0959-8049(16)30209-X]
[20]
Burris, H.A.; Gordon, M.S.; Hellmann, M.D.; LoRusso, P.; Emens, L.A.; Hodi, F.S.; Lieu, C.H.; Infante, J.R.; Tsai, F.Y.-C.; Eder, J.P.; Cleary, J.M.; Jelovac, D.; Tsuhako, A.L.; Mueller, L.; Lin, R.; Morrissey, K.; Mahrus, S.; Morley, R.; Pirzkall, A.; Davis, S.L. phase Ib dose escalation study of combined inhibition of IDO1 (GDC-0919) and PD-L1 (atezolizumab) in patients (Pts) with locally advanced or metastatic solid tumors. J. Clin. Onco, 2017, 35((15_suppl)), 105-105.
[21]
Crosignani, S.; Bingham, P.; Bottemanne, P.; Cannelle, H.; Cauwenberghs, S.; Cordonnier, M.; Dalvie, D.; Deroose, F.; Feng, J.L.; Gomes, B.; Greasley, S.; Kaiser, S.E.; Kraus, M.; Négrerie, M.; Maegley, K.; Miller, N.; Murray, B.W.; Schneider, M.; Soloweij, J.; Stewart, A.E.; Tumang, J.; Torti, V.R.; Van Den Eynde, B.; Wythes, M. Discovery of a novel and selective Indoleamine 2,3-Dioxygenase (IDO-1) inhibitor 3-(5-Fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and its characterization as a potential clinical candidate. J. Med. Chem., 2017, 60(23), 9617-9629.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00974] [PMID: 29111717]
[22]
Cheong, J.E.; Ekkati, A.; Sun, L. A patent review of IDO1 inhibitors for cancer. Expert Opin. Ther. Pat., 2018, 28(4), 317-330.
[http://dx.doi.org/10.1080/13543776.2018.1441290] [PMID: 29473428]
[23]
Zhai, L.; Spranger, S.; Binder, D.C.; Gritsina, G.; Lauing, K.L.; Giles, F.J.; Wainwright, D.A. Molecular pathways: Targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin. Cancer Res., 2015, 21(24), 5427-5433.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0420] [PMID: 26519060]
[24]
Long, G.V.; Dummer, R.; Hamid, O.; Gajewski, T.F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M.S.; Grob, J-J.; Kim, T.M.; Demidov, L.; Robert, C.; Larkin, J.; Anderson, J.R.; Maleski, J.; Jones, M.; Diede, S.J.; Mitchell, T.C. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. Lancet Oncol., 2019, 20(8), 1083-1097.
[http://dx.doi.org/10.1016/S1470-2045(19)30274-8] [PMID: 31221619]
[25]
Lewis-Ballester, A.; Pham, K.N.; Batabyal, D.; Karkashon, S.; Bonanno, J.B.; Poulos, T.L.; Yeh, S.R. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1. Nat. Commun., 2017, 8(1), 1693.
[http://dx.doi.org/10.1038/s41467-017-01725-8] [PMID: 29167421]
[26]
Chen, S.; Guo, W.; Liu, X.; Sun, P.; Wang, Y.; Ding, C.; Meng, L.; Zhang, A. Design, synthesis and antitumor study of a series of N-Cyclic sulfamoylaminoethyl substituted 1,2,5-oxadiazol-3-amines as new indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors. Eur. J. Med. Chem., 2019, 179, 38-55.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.037] [PMID: 31233921]
[27]
Cai, J.; You, Z.; He, Y.; Zeng, H.; Niu, X.; Song, H.; Wang, Y.; Wang, L.; Wang, J. Preparation of oxadiazole ring-containing compounds useful for the treatment of IDO activity-related cancer. CN Patent 107,954,999, 2019.
[28]
Wang, Q.; Xia, G.; Shi, C.; Zhang, L.; Shu, S.; Zhang, B.; Zhou, J.; Chen, N.; Zhang, Y.; Mao, Y.; Liu, Y. Preparation of oxadiazole ring-containing compounds useful for the treatment of IDO activity-related cancer. CN Patent 107,954,999, 2018.
[29]
Cheng, M.F.; Hung, M.S.; Song, J.S.; Lin, S.Y.; Liao, F.Y.; Wu, M.H.; Hsiao, W.; Hsieh, C.L.; Wu, J.S.; Chao, Y.S.; Shih, C.; Wu, S.Y.; Ueng, S.H. Discovery and structure-activity relationships of phenyl benzenesulfonylhydrazides as novel indoleamine 2,3-dioxygenase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(15), 3403-3406.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.084] [PMID: 24939758]
[30]
Peng, Y.H.; Ueng, S.H.; Tseng, C.T.; Hung, M.S.; Song, J.S.; Wu, J.S.; Liao, F.Y.; Fan, Y.S.; Wu, M.H.; Hsiao, W.C.; Hsueh, C.C.; Lin, S.Y.; Cheng, C.Y.; Tu, C.H.; Lee, L.C.; Cheng, M.F.; Shia, K.S.; Shih, C.; Wu, S.Y. Important hydrogen bond networks in Indoleamine 2,3-Dioxygenase 1 (IDO1) inhibitor design revealed by crystal structures of imidazoleisoindole derivatives with IDO1. J. Med. Chem., 2016, 59(1), 282-293.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01390] [PMID: 26642377]
[31]
Yang, S.; Li, X.; Hu, F.; Li, Y.; Yang, Y.; Yan, J.; Kuang, C.; Yang, Q. Discovery of tryptanthrin derivatives as potent inhibitors of indoleamine 2,3-dioxygenase with therapeutic activity in Lewis Lung Cancer (LLC) tumor-bearing mice. J. Med. Chem., 2013, 56(21), 8321-8331.
[http://dx.doi.org/10.1021/jm401195n] [PMID: 24099220]
[32]
Zhang, X.Q.; Song, Z.; Bao, J.Y. ndoleamine 2,3-dioxygenase inhibitor containing hydrazine group. CN Patent 2018184392, 2018.
[33]
Yue, E.W.; Douty, B.; Wayland, B.; Bower, M.; Liu, X.; Leffet, L.; Wang, Q.; Bowman, K.J.; Hansbury, M.J.; Liu, C.; Wei, M.; Li, Y.; Wynn, R.; Burn, T.C.; Koblish, H.K.; Fridman, J.S.; Metcalf, B.; Scherle, P.A.; Combs, A.P. Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacodynamic activity and efficacy in a mouse melanoma model. J. Med. Chem., 2009, 52(23), 7364-7367.
[http://dx.doi.org/10.1021/jm900518f] [PMID: 19507862]
[34]
Duan, X.; Chan, C.; Guo, N.; Han, W.; Weichselbaum, R.R.; Lin, W. Photodynamic therapy mediated by nontoxic core-Shell nanoparticles synergizes with immune checkpoint blockade yo elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc., 2016, 138(51), 16686-16695.
[http://dx.doi.org/10.1021/jacs.6b09538] [PMID: 27976881]
[35]
Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Weichselbaum, R.R.; Lin, W. Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc., 2016, 138(38), 12502-12510.
[http://dx.doi.org/10.1021/jacs.6b06663] [PMID: 27575718]
[36]
Lan, G.; Ni, K.; Xu, Z.; Veroneau, S.S.; Song, Y.; Lin, W. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc., 2018, 140(17), 5670-5673.
[http://dx.doi.org/10.1021/jacs.8b01072] [PMID: 29665677]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy