Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

In Vitro Kinetic Hydrolysis Study of Metronidazole Derivatives with Carvacrol and Eugenol Using Validated RP-HPLC Method

Author(s): Mohammed Alarjah*

Volume 17, Issue 6, 2021

Published on: 29 May, 2020

Page: [738 - 747] Pages: 10

DOI: 10.2174/1573412916999200529123151

Abstract

Background: Prodrugs principle is widely used to improve the pharmacological and pharmacokinetic properties of some active drugs. Much effort was made to develop metronidazole prodrugs to enhance antibacterial activity and/or to improve pharmacokinetic properties of the molecule or to lower the adverse effects of metronidazole.

Objective: In this work, the pharmacokinetic properties of some of monoterpenes and eugenol pro metronidazole molecules that were developed earlier were evaluated in vitro. The kinetic hydrolysis rate constants and half-life time estimation of the new metronidazole derivatives were calculated using the validated RP-HPLC method.

Methods: Chromatographic analysis was performed using Zorbbax Eclipse eXtra Dense Bonding (XDB)-C18 column of dimensions (250 mm, 4.6 mm, 5 μm), at ambient column temperature. The mobile phase was a mixture of sodium dihydrogen phosphate buffer of pH 4.5 and methanol in gradient elution, at 1ml/min flow rate. The method was fully validated according to the International Council for Harmonization (ICH) guidelines. The hydrolysis process was carried out in an acidic buffer pH 1.2 and in an alkaline buffer pH 7.4 in a thermostatic bath at 37 ºC.

Results: The results followed pseudo-first-order kinetics. All metronidazole prodrugs were stable in the acidic pH, while they were hydrolysed in the alkaline buffer within a few hours (6-8 hr). The rate constant and half-life values were calculated, and their values were found to be 0.082- 0.117 hr-1 and 5.9- 8.5 hr., respectively.

Conclusion: The developed method was accurate, sensitive, and selective for the prodrugs. For most of the prodrugs, the hydrolysis followed pseudo-first-order kinetics; the method might be utilised to conduct an in vivo study for the metronidazole derivatives with monoterpenes and eugenol.

Keywords: Metronidazole prodrugs, hydrolysis rate constant, RP-HPLC-DAD 10X sensitive, in vitro evaluation, carvacrol, eugenol.

Graphical Abstract

[1]
Siddhant, M.; Smita, G.; Vaishali, J.; Ashish, J. hplc - igh performance liquid chromatography & UPLC - ultra performance liquid chromatographic system - a review on modern liquid chromatography. Indo Am. J. Pharm. Sci., 2018, 5(8), 7590-7602.
[PMID: 7075655]
[2]
Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F. Recent applications in chiral high performance liquid chromatography: a review. Anal. Chim. Acta, 2011, 706(2), 205-222.
[http://dx.doi.org/10.1016/j.aca.2011.08.038] [PMID: 22023854]
[3]
Bkhaitan, M.M.; Alarjah, M.; Mirza, A.Z.; Abdalla, A.N.; El-Said, H.M.; Faidah, H.S. Preparation and biological evaluation of metronidazole derivatives with monoterpenes and eugenol. Chem. Biol. Drug Des., 2018, 92(6), 1954-1962.
[http://dx.doi.org/10.1111/cbdd.13366] [PMID: 30022596]
[4]
Chung, M.C.; Bosquesi, P.L.; dos Santos, J.L. A prodrug approach to improve the physico-chemical properties and decrease the genotoxicity of nitro compounds. Curr. Pharm. Des., 2011, 17(32), 3515-3526.
[http://dx.doi.org/10.2174/138161211798194512]] [PMID: 22074424]
[5]
Dingsdag, S.A.; Hunter, N. Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother., 2018, 73(2), 265-279.
[http://dx.doi.org/10.1093/jac/dkx351] [PMID: 29077920]
[6]
Mura, C.; Valenti, D.; Floris, C.; Sanna, R.; De Luca, M.A.; Fadda, A.M.; Loy, G. Metronidazole prodrugs: synthesis, physicochemical properties, stability, and ex vivo release studies. Eur. J. Med. Chem., 2011, 46(9), 4142-4150.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.016] [PMID: 21726922]
[7]
Takahashi, M.; Uehara, T.; Nonaka, M.; Minagawa, Y.; Yamazaki, R.; Haba, M.; Hosokawa, M. Synthesis and evaluation of haloperidol ester prodrugs metabolically activated by human carboxylesterase. Eur. J. Pharm. Sci., 2019, 132, 125-131.
[http://dx.doi.org/10.1016/j.ejps.2019.03.009] [PMID: 30878380]
[8]
Rautio, J.; Meanwell, N.A.; Di, L.; Hageman, M.J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov., 2018, 17(8), 559-587.
[http://dx.doi.org/10.1038/nrd.2018.46] [PMID: 29700501]
[9]
Alothman, Z.A.; Rahman, N.; Siddiqui, M.R. Review on pharmaceutical impurities, stability studies and degradation products: an analytical approach. Rev. Adv. Sci. Engg., 2013, 2(2), 155-166.
[http://dx.doi.org/10.1166/rase.2013.1039]
[10]
Rahman, N.; Azmi, S.N.H.; Wu, H-F. The importance of impurity analysis in pharmaceutical products: an integrated approach. Accredit. Qual. Assur., 2006, 11(1-2), 69-74.
[http://dx.doi.org/10.1007/s00769-006-0095-y]
[11]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10, S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[12]
Rahman, N.; Bano, Z.; Azmi, S.N.H. Kinetic spectrophotometric analysis of pantoprazole in commercial dosage forms. Anal. Sci., 2006, 22(7), 983-988.
[http://dx.doi.org/10.2116/analsci.22.983] [PMID: 16837750]
[13]
Rahman, N.; Haque, S.M.; Azmi, S.N.H. Kinetic spectrophotometric determination of metoprolol tartrate in commercial dosage forms. J. Chin. Chem. Soc. (Taipei), 2007, 54(6), 1511-1520.
[http://dx.doi.org/10.1002/jccs.200700213]
[14]
Rahman, N.; Rahman, H.; Haque, S.M. Kinetic spectrophotometric method for the determination of perindopril erbumine in pure and commercial dosage forms. Arab. J. Chem., 2017, 10, S831-S838.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.017]
[15]
Rahman, N.; Khan, S. Kinetic modelling for the assay of nortriptyline hydrochloride using potassium permanganate as oxidant. AAPS PharmSciTech, 2015, 16(3), 569-578.
[http://dx.doi.org/10.1208/s12249-014-0230-8] [PMID: 25380790]
[16]
Rahman, N.; Anwar, N.; Kashif, M.; Hoda, M.; Rahman, H. Determination of labetalol hydrochloride by kinetic spectrophotometry using potassium permanganate as oxidant. J. Mex. Chem. Soc., 2011, 55(2), 105-112.
[17]
Khattab, F.I.; Ramadan, N.K.; Hegazy, M.A.; Ghoniem, N.S. Simultaneous determination of metronidazole and spiramycin in bulk powder and in tablets using different spectrophotometric techniques. Drug Test. Anal., 2010, 2(1), 37-44.
[http://dx.doi.org/10.1002/dta.83] [PMID: 20878885]
[18]
See, K.L.; Elbashir, A.A.; Saad, B.; Ali, A.S.M.; Aboul-Enein, H.Y. Simultaneous determination of ofloxacin and ornidazole in pharmaceutical preparations by capillary zone electrophoresis. Biomed. Chromatogr., 2009, 23(12), 1283-1290.
[http://dx.doi.org/10.1002/bmc.1251] [PMID: 19488980]
[19]
Youssef, R.M. Development of gradient HPLC-DAD method for assay of ternary mixture containing amebicide and analgesic drugs. Acta Chromatogr., 2014, 26(1), 67-80.
[http://dx.doi.org/10.1556/AChrom.26.2014.1.7]
[20]
Moussa, B.A.; El-Kady, E.F.; Mohamed, M.F.; Youssef, N.F. Greener thin-layer chromatographic solvents for the determination of pantoprazole sodium sesquihydrate, metronidazole and clarithromycin in pharmaceutical formulations used as triple therapy in helicobacter infection. JPC-Modern TLC, 2017, 30(6), 481-487.
[http://dx.doi.org/10.1556/1006.2017.30.6.4]
[21]
Granja, R.H.M.M.; Nino, A.M.M.; Reche, K.V.G.; Giannotti, F.M.; de Lima, A.C.; Wanschel, A.C.B.A.; Salerno, A.G. Determination and confirmation of metronidazole, dimetridazole, ronidazole and their metabolites in bovine muscle by LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2013, 30(6), 970-976.
[http://dx.doi.org/10.1080/19440049.2013.787653] [PMID: 23701281]
[22]
Kamberi, M.; Tran, T.N. UV-visible spectroscopy as an alternative to liquid chromatography for determination of everolimus in surfactant-containing dissolution media: a useful approach based on solid-phase extraction. J. Pharm. Biomed. Anal., 2012, 70, 94-100.
[http://dx.doi.org/10.1016/j.jpba.2012.05.038] [PMID: 22726455]
[23]
Wang, Q.; Wang, G.; Xie, S.; Zhao, X.; Zhang, Y. Comparison of high-performance liquid chromatography and ultraviolet-visible spectrophotometry to determine the best method to assess Levofloxacin released from mesoporous silica microspheres/nano-hydroxyapatite composite scaffolds. Exp. Ther. Med., 2019, 17(4), 2694-2702.
[http://dx.doi.org/10.3892/etm.2019.7238] [PMID: 30906459]
[24]
Elkhoudary, M.M.; Abdel Salam, R.A.; Hadad, G.M. Development and optimization of HPLC analysis of metronidazole, diloxanide, spiramycin and cliquinol in pharmaceutical dosage forms using experimental design. J. Chromatogr. Sci., 2016, 54(10), 1701-1712.
[http://dx.doi.org/10.1093/chromsci/bmw126] [PMID: 27621138]
[25]
Łącki, K.M. High-throughput process development of chromatography steps: advantages and limitations of different formats used. Biotechnol. J., 2012, 7(10), 1192-1202.
[http://dx.doi.org/10.1002/biot.201100475] [PMID: 22745056]
[26]
Ezzeldin, E.; El-Nahhas, T.M. New analytical method for the determination of metronidazole in human plasma: application to bioequivalence study. Trop. J. Pharm. Res., 2012, 11(5), 799-805.
[27]
Maslarska, V.; Tsvetkova, B.; Peikova, L.; Bozhanov, S. HPLC method for simultaneous determination of metronidazole and preservatives in vaginal gel formulation. Acta Chromatogr., 2018, 30(2), 127-130.
[http://dx.doi.org/10.1556/1326.2017.00098]
[28]
H.; YANG, H.-M.; GUO, Q.-L.; LIU, Y.-Q.; SHI, H.-L.; TIAN, Y.-L. Simultaneous determination of chloramphenicol, melamine, metronidazole, ronidazole in infant milk powder by LC-MS/MS. Chin. J. Anal. Chem., 2013, 41(2), 283.
[29]
Sabir, A.; Moloy, M.; Bhasin, P. HPLC method development and validation: a review. Int. Res. J. Pharm., 2015, 4, 39-46.
[http://dx.doi.org/10.7897/2230-8407.04407]
[30]
Kaur, A.; Gupta, M. Development and validation of method by hplc techniques. Indo Am. J. Pharm. Sci., 2018, 5(7), 7057-7065.
[31]
Sahu, P.K.; Ramisetti, N.R.; Cecchi, T.; Swain, S.; Patro, C.S.; Panda, J. An overview of experimental designs in HPLC method development and validation. J. Pharm. Biomed. Anal., 2018, 147, 590-611.
[http://dx.doi.org/10.1016/j.jpba.2017.05.006] [PMID: 28579052]
[32]
Bundgaard, H.; Larsen, C.; Thorbek, P. Prodrugs as drug delivery systems XXVI. Preparation and enzymatic hydrolysis of various water-soluble amino acid esters of metronidazole. Int. J. Pharm., 1984, 18(1), 67-77.
[http://dx.doi.org/10.1016/0378-5173(84)90108-X]
[33]
Fadl, T.A.; Hasegawa, T.; Youssef, A.F.; Farag, H.H.; Omar, F.A.; Kawaguchi, T. Synthesis and investigation of N4-substituted cytarabine derivatives as prodrugs. Pharmazie, 1995, 50(6), 382-387.
[PMID: 7651974]
[34]
Pastor, A.; Machelart, A.; Li, X.; Willand, N.; Baulard, A.; Brodin, P.; Gref, R.; Desmaële, D. A novel codrug made of the combination of ethionamide and its potentiating booster: synthesis, self-assembly into nanoparticles and antimycobacterial evaluation. Org. Biomol. Chem., 2019, 17(20), 5129-5137.
[http://dx.doi.org/10.1039/C9OB00680J] [PMID: 31073555]
[35]
Permentier, D.; Vansteenkiste, S.; Schacht, E.; Vermeersch, H.; Remon, J.P. Synthesis of dipeptide esters of metronidazole and evaluation of their hydrolytic stability. Bull. Soc. Chim. Belg., 1992, 101(8), 701-707.
[http://dx.doi.org/10.1002/bscb.19921010808]
[36]
Mahfouz, N.; Aboul-Fadl, T.; Dyab, A. Metronidazole twin ester prodrugs: Synthesis, physicochemical properties, hydrolysis kinetics and antigiardial activity. Eur. J. Med. Chem., 1998, 33(9), 675-683.
[http://dx.doi.org/10.1016/S0223-5234(98)80026-3]
[37]
Mahfouz, N.M.; Hassan, M.A. Synthesis, chemical and enzymatic hydrolysis, and bioavailability evaluation in rabbits of metronidazole amino acid ester prodrugs with enhanced water solubility. J. Pharm. Pharmacol., 2001, 53(6), 841-848.
[http://dx.doi.org/10.1211/0022357011776199] [PMID: 11428660]
[38]
Larsen, C.; Kurtzhals, P.; Johansen, M. Kinetics of regeneration of metronidazole from hemiesters of maleic-acid, succinic acid and glutaric acid in aqueous buffer, human-plasma and pig-liver homogenate. Int. J. Pharm., 1988, 41(1-2), 121-129.
[http://dx.doi.org/10.1016/0378-5173(88)90144-5]

© 2024 Bentham Science Publishers | Privacy Policy